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Abstract. The main goal of this paper is to give a complete proof of
the trace theorem for Besov-type spaces of generalized smoothness associ-
ated with complete Bernstein functions satisfying certain scaling conditions
on d-sets D ⊂ Rn, d ≤ n. The proof closely follows the classical approach
by Jonsson, Wallin in [18] and the trace theorem for classical Besov spaces.
Here, the trace space is defined by means of differences. When d = n, as
an application of the trace theorem, we give a condition under which the
test functions C∞

c
(D) are dense in the trace space on D.

1. Introduction

Besov-type spaces of generalized smoothness were introduced in the sev-
enties by M.L. Goldman and G.A. Kalyabin as a generalization of the classical
Sobolev and Besov spaces. Since then they have been studied by many au-
thors from various points of view. Due to their close connection to the theory
of stochastic processes and probability theory, these spaces continue to be
of further interest. For a unified and general approach to Besov spaces and
function spaces of generalized smoothness and a review of results we refer the
reader to [5, 6, 16].

In this paper we consider traces on d-sets of a special class of Besov spaces
of generalized smoothness associated with certain continuous negative definite
functions. Let ν : (0,∞) → (0,∞) be a non-increasing function satisfying

(1.1) ν(r) ≤ c1ν(r + 1) and

∫ ∞

0

(1 ∧ s2)ν(s)sn−1ds <∞.
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for all r ≥ 1 and some constant c1 > 0. Such a function ν is a radial Lévy
density of an isotropic unimodal Lévy process with characteristic exponent

(1.2) ψ(|ξ|) =
∫

Rn\{0}
(1− cos (x · ξ)) ν(|x|)dx, ξ ∈ Rn.

Throughout the paper we will assume that ψ satisfies one or both of the
following scaling conditions,
(H1): there exist constants 0 < δ1 ≤ δ2 < 1 and a1, a2 > 0 such that

a1λ
2δ1ψ(t) ≤ ψ(λt) ≤ a2λ

2δ2ψ(t), λ ≥ 1, t ≥ 1;

(H2): there exist constants 0 < δ3 ≤ δ4 < 1 and a3, a4 > 0 such that

a3λ
2δ3ψ(t) ≤ ψ(λt) ≤ a4λ

2δ4ψ(t), λ ≥ 1, t < 1.

Under condition (H1), by [19, (2.1), (2.2)], there exists a complete Bernstein
function φ and a constant γ2 ≥ 1 such that

(1.3) γ−1
2 φ(|ξ|2) ≤ ψ(|ξ|) ≤ γ2φ(|ξ|2), ξ ∈ Rn,

and the radial Lévy density ν enjoys the following property: for every R > 0

(1.4) ν(r) ≍ φ(r−2)

rn
, r ∈ (0, R).

Due to the equivalence of norms, we will always assume that the constant
γ2 in (1.3) is equal to 1. Furthermore, by [19, Lemma 2.1] every Bernstein
function φ satisfies the following useful inequality,

(1.5) 1 ∧ λ ≤ φ(λr)

φ(r)
≤ 1 ∨ λ, λ, r > 0.

For further results on Bernstein functions, we refer the reader to [22]. Define
by

(1.6) Hψ,1(Rn) = {u ∈ L2(Rn) : ‖u‖ψ,1 :=
∫

Rn

(1 + ψ(ξ))|Fu(ξ)|2dξ <∞}

the ψ-Bessel-type potential space on Rn. These spaces naturally arise as do-
mains of Dirichlet forms associated with Lévy processes with the characteristic
exponent ψ. They were introduced by N. Jacob in seminal papers [11, 12],
where the author studied the construction of Feller processes starting from
the corresponding symbol. A thourough investigation of these spaces can be
found in the following works [5, 8, 9, 13, 14, 15, 16]. In the first chapter, we
recall basic definitions and results regarding Besov-type spaces of generalized
smoothness, connect them with ψ-Bessel-type potential spaces and provide
several characterizations of the corresponding norms, based on differences.

Traces of Sobolev spaces on bounded domains with fractal boundary were
initially studied in [27] and later this result was generalized in [7] for fractional
Sobolev spaces. In the latter, the authors applied the trace results in study-
ing Dirichlet forms related to subordinate reflecting diffusions (with stable
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subordinator) in non-smooth domains. As mentioned before, in this paper
we consider traces on d-sets of ψ-Bessel-type potential spaces and their rep-
resentation via differences. This approach allows us to easily associate these
spaces with domains of Dirichlet forms corresponding to a certain class of
purely discontinuous symmetric Markov processes. A trace theorem on h-sets
for generalized Besov-type spaces associated with functions satisfying slightly
different assumptions was presented by Knopova and Zähle in [20]. The au-
thors consider the quarkonial representations of the trace spaces, as well as
the representation via differences, and prove their equivalence. In the fol-
lowing paper [28], Zähle proves a potential representation of the trace spaces
and the corresponding trace Dirichlet forms. In order to make the theory of
generalized Besov spaces more approachable in the context of application to
the theory of stochastic processes, we present a complete and detailed proof
of the trace theorem based on the characterization via differences, following
the approach by Jonsson and Wallin in [18] for classical Besov spaces. In
order to obtain the trace theorem, we use several representation results and
interpolation theorems, which are direct generalizations of the corresponding
results for classical Besov spaces from [18, 24, 25].

In the following two chapters, we give a complete proof of the trace theo-
rem for spaces Hψ,α(Rn) (see Definition 2.2) on d-sets, where the trace space
is defined by means of differences.

Definition 1.1. Let D be a non-empty Borel subset of Rn and 0 < d ≤ n.
A positive Borel measure µ on D is called a d-measure if there exist positive
constants c1 and c2 such that for all x ∈ D and r ∈ (0, 1],

c1r
d ≤ µ(B(x, r)) ≤ c2r

d.

A non-empty Borel set D is called a d-set if there exists a d-measure µ on D.

Note that, by definition, all d-measures on D are equivalent to the re-
striction of the d-dimensional Hausdorff measure to D. For a d-set D in Rn

with d-measure µ, we define the trace space as

Hψ,1(D,µ) = {u ∈ L2(D,µ) : ‖u‖(1),D,µ <∞},

‖u‖(1),D,µ := ‖u‖L2(D,µ) +




∫∫

|x−y|<1

|u(x)− u(y)|2 φ
(
|x− y|−2

)

|x− y|2d−n µ(dx)µ(dy)




1
2

.

Following the classical approach from [18], the proof of the trace theorem is
divided into three parts; the restriction theorem, the extension theorem for
d < n and finally, the extension theorem when d = n. The following theorem
is a direct consequence of the main results of this paper, i.e. Theorem 3.2,
Theorem 4.2 and Theorem 4.4 for traces of spaces Hψ,α(Rn) on d-sets in Rn.
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Theorem 1.2. Let D be a n-set in Rn and ψ a radial function defined by
(1.2) such that (H1) and (H2) hold. There exists a continuous

(i) restriction operator R : Hψ,1(Rn) → Hψ,1(D,µ),
(ii) extension operator E : Hψ,1(D,µ) → Hψ,1(Rn), such that REu = u,

µ-a.e. on D, for all u ∈ Hψ,1(D,µ).

The trace theorem for ψ-Bessel-type potential spaces is motivated by
the analysis of the boundary behaviour of the censored symmetric Lévy-type

process on a n-set D ⊂ Rn associated with the Dirichlet space Hψ,1
0 (D),

considered in [3, 26]. Here Hψ,1
0 (D) is the closure of the space C∞

c (D) with
respect to the norm ‖ · ‖(1),D,λD and λD is the Lebesgue measure on D. By

showing that the extended space Hψ,1(D) := Hψ,1(D,λD) is the trace space
on a n-set D of Hψ,1(Rn), we can relate the question of the equivalence

of spaces Hψ,1(D) and Hψ,1
0 (D) to the capacity of the boundary ∂D with

respect to the norm on Hψ,1(Rn). An immediate consequence of this result is
the characterization of the finite time approach of the censored process on D
to the boundary ∂D in terms of the polarity of the boundary with respect to
the Lévy-type process in Rn associated with the Dirichlet space Hψ,1(Rn), for
example see [26, Theorem 1.1, Corollary 2.9]. Here we present this result on

the correspondence of spaces Hψ,1(D) and Hψ,1
0 (D) in terms of the Hausdorff

dimension of the boundary ∂D. For an equivalent result in the case of the
classical Bessel potential space see [3, Corollary 2.8].

Corollary 1.3. Suppose that D ⊂ Rn is an open n-set, φ is a complete
Bernstein function such that (H1) and (H2) hold and ψ(ξ) = φ(|ξ|2).

(i) Suppose that 2δ2 ≤ n and that Hh(∂D ∩Km) < ∞ for an increasing
sequence of Borel sets Km such that ∪m∈NKm ⊃ ∂D, where h(r) =
rn−2δ2 if 2δ2 < n and h(r) = max{log r, 0} when 2δ2 = n = 1, then

Hψ,1(D) = Hψ,1
0 (D).

(ii) If 2(δ1 ∧ δ3) ≥ n = 1 or Hd(∂D) > 0 for some d > n − 2δ1 ≥ 0 then

Hψ,1
0 (D) ( Hψ,1(D).

For easier notation, we write f ≍ g if there exists a constant c > 1 such
that for all x, c−1g(x) ≤ f(x) ≤ cg(x). Equivalently, f . g if there exists a
constant c > 0 such that for all x, f(x) ≤ cg(x). By λ we denote the Lebesgue
measure on Rn.

2. Besov-type spaces of generalized smoothness and equivalent
norms

The aforementioned ψ-Bessel-type potential space is a type of a much
more general class of function spaces called Besov-type spaces of generalized
smoothness, see [5, 6, 16]. First we recall these spaces in their most general
form.
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Definition 2.1. A sequence (γj)j∈N0 of positive real numbers is called

(i) almost increasing if there exists d0 > 0 such that d0γj ≤ γk, for all
j ≤ k;

(ii) strongly increasing if it is almost increasing and in addition there exists
a κ0 ∈ N such that 2γj ≤ γk, for j ≤ k − κ0;

(iii) of bounded growth if there are positive constants d1 and J0 ∈ N0 such
that γj+1 ≤ d1γj, for all j ≥ J0;

(iv) an admissible sequence if both (γj)j∈N0 and (γ−1
j )j∈N0 are of bounded

growth and J0 = 0, i.e. there exist positive constants d0 and d1 such
that d0γj ≤ γj+1 ≤ d1γj, for all j ∈ N0.

Definition 2.2. Let N = (Nj)j∈N0 be a strongly increasing sequence and
define

ΩN0 = {x ∈ Rn : |x| ≤ N0} and ΩNj = {x ∈ Rn : Nj−1 ≤ |x| ≤ Nj+1}, j ∈ N.

Let ΦN be a collection of all partitions of unity of C∞
c (Rn) functions asso-

ciated with this decomposition. Let σ = (σj)j∈N0 be an admissible sequence
respectively and (ϕNj )j∈N0 ∈ ΦN . The Besov space of generalized smoothness
associated with N and σ is defined by

Bσ,N2 = {g ∈ S′(Rn) : ‖g‖B,σ,N := ‖(σjϕNj (D)g)j∈N0 |l2(L2(R
n))‖ <∞},

where ϕ(D)g(x) = F−1(ϕ(·)Fg)(x) and

‖(fj)j∈N0 |l2(L2(Rn))‖ =




∞∑

j=0

‖fj‖2L2(Rn)





1
2

.

By [5, Remark 10.1.2.] the space Bσ,N2 is independent of the choice of
system (ϕNj )j∈N0 in the sense of equivalent norms. We will restrict ourselves

to a special subclass of spaces Bσ,N2 associated with an admissible symbol.

Definition 2.3. A non-negative function a ∈ C∞(Rn) is an admissible
symbol if

(i) lim
|x|→∞

a(x) = ∞,

(ii) a is almost increasing in |x|, i.e. there exist constants δ0 ≥ 1 and R > 0
such that a(x) ≤ δ0a(y) if R ≤ |x| ≤ |y|,

(iii) there exists an m > 0 such that x→ a(x)
|x|m is almost decreasing in |x|,

(iv) for every multi-index α ∈ Nn0 there exist constants cα > 0 and R > 0
such that

|Dαa(x)| ≤ cα
a(x)

(1 + |x|2)|α|/2 , ∀|x| ≥ R.

The family of all admissible functions will be denoted by A.
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Note that for every Bernstein function φ such that lim
r→∞

φ(r) = ∞, the

function ξ → φ(|ξ|2) is an admissible symbol, see [6, Lemma 3.1.13].

Remark 2.4. By [6, Lemma 3.1.17, Remark 3.1.18], the sequence Na,r
j =

sup{|x| : a(x) ≤ 2jr}, j ∈ N0, where a ∈ A and r > 0, is strongly increasing.

For a ∈ A we define the Besov space of generalized smoothness associ-

ated with a as Bσ,N
a,2

2 (Rn), where σ = {2j}j∈N0 is an admissible sequence.
These spaces have two useful representations in the sense of equivalent norms;
one given by the Littlewood-Paley-type theorem and the other by means of
differences.

Proposition 2.5. [6, Theorem 3.1.20, Corollary 3.1.21] Let a ∈ A, N =
Na,2 the strongly increasing sequence associated with a, α > 0 and σα =
{2αj}j∈N0 an admissible sequence. Then the space (Ha,α(Rn), ‖·‖a,α), defined
by

(2.1)

Ha,α(Rn) = {u ∈ L2(Rn) : ‖u‖a,α <∞},

‖u‖a,α := ‖(id+ a(D))α/2u‖L2(Rn) =

(∫

Rn

(1 + a(ξ))α|û(ξ)|2dξ
) 1

2

,

is equivalent to (Bσ
α,Na,2

2 (Rn), ‖ · ‖B,σα,Na,2).

Proposition 2.5 implies that Besov-type spaces of generalized smoothness
associated with ψ can be characterized as

Hψ,α(Rn) =
{
u ∈ S′(Rn) : ∃f ∈ L2(Rn) such that Fu = (1 + ψ)−α/2Ff

}
.

Since the function x 7→ (1 + x)−α/2 is completely monotone for every α > 0,
by [22, Theorem 3.7] the function (1+φ)−α/2 is also completely monotone. By
Schoenberg’s theorem, [23, Theorem 2] it follows that the function (1 + ψ)−α/2

is a positive definite function and therefore a Fourier transforms of an inte-
grable function, [22, Theorem 4.14], called the Bessel-type potential Kψ,α.
This means that the space Hψ,α(Rn) defined by (2.1) can be characterized as
a convolution space via the ψ-Bessel convolution kernel Kψ,α i.e.

(2.2) Hψ,α(Rn) = {Kψ,α ∗ f : f ∈ L2(Rn)}, ‖Kψ,α ∗ f‖ψ,α := ‖f‖L2(Rn).

For similar calculations we refer the reader to [8, 9].
From now on we assume that the function ψ satisfies conditions (H1)

and (H2). The following estimates for the kernels Kψ,α were obtained in [20,
Remark 33, Remark 34] and [28].

Lemma 2.6. Let α > 0 and assume (H1) and (H2) hold. If α(δ2∨δ4) < n
then there exist constants ci = ci(φ, α, n) > 0, i = 1, 2, such that for all x ∈ Rn
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and 0 ≤ j ≤ n

|Kψ,α(x)| ≤
c1

|x|nφ(|x|−2)α/2
,

|(Kψ,α(x))
′
xj | ≤

c2
|x|n+1φ(|x|−2)α/2

.

Next, we consider the characterization of spacesHψ,α(Rn) via differences.
First note that by applying (1.2) and the Parseval’s identity (see for example
[17, Lemma 3.1] or [10, Example 1.4.1]), it easily follows that

‖u‖ψ,1 = ‖u‖L2(Rn) +

(
1

2

∫

Rn

∫

Rn

(u(x+ y)− u(x))2ν(y)dydx

) 1
2

(2.3)

for all u ∈ Hψ,1(Rn). We also introduce an equivalent norm on Hψ,1(Rn),
which we later use in the proof of the trace theorem,

‖u‖(1) = ‖u‖L2(Rn) +




∫∫

|x−y|<1

|u(x)− u(y)|2φ
(
|x− y|−2

)

|x− y|n dxdy




1
2

,

with the equivalence of norms ‖ · ‖(1) and ‖ · ‖ψ,1 following from (2.3), (1.4)
and the fact that ν is a Lévy measure. We would like to point out that
a similar equivalence of seminorms for absolutely continuous Lévy measures
with completely monotone radial densities was obtained in [17].

In the remainder of this chapter we prove an analogous equivalence of
norms for spaces Hψ,α(Rn), following the approach in [24] for Besov spaces.

Definition 2.7. For a function f on Rn, h ∈ Rn and k ∈ N, the k-
th difference of function f is defined by (∆k

hf)(x) := ∆1
h(∆

k−1
h f)(x), x ∈

Rn, where ∆1
hf(x) = f(x + h) − f(x). Next, define the k-th modulus of

continuity of a function f ∈ L2(Rn) as ωk(f, t) = sup|h|<t ‖∆k
hf‖L2(Rn), t >

0. Furthermore, for an admissible sequence (γj)j∈N0 let γj = supk
γj+k
γk

and

γ
j
= infk

γj+k
γk

, and let s(γ) := lim
j→∞

j−1 log γ
j
and s(γ) := lim

j→∞
j−1 log γj be

the lower and upper Boyd index, respectively.

Since γj+i+k ≤ γjγi+k for all i, j, k ∈ N0 it follows that γj+i ≤ γjγi,
so the sequence log γj is subadditive. By Fekete’s subadditive lemma the

sequence
(

log γj
j

)

j
converges to inf

j

log γj
j , so the upper index s(γ) is well

defined. The analogous conclusion follows for the lower index s(γ), since

log γ
j
= − log

(
γ−1

j

)
.

Theorem 2.8. [21, Theorem 4.1] Let σ and N be admissible sequences

and N1 = inf
k≥0

Nk+1

Nk
> 1 and

s(σ)

s(N)
> 0. Let k be an integer such that
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k >
s(σ)

s(N)
. Then the norm ‖ · ‖B,σ,N on Bσ,N2 is equivalent to

‖u‖L2(Rn) +




∞∑

j=0

σ2
jωk(u,N

−1
j )2




1
2

.

For a similar result see also [20, Theorem 16]. Note that for every a ∈ A
the sequence Na,r satisfies the assumption Na,r

1 > 1. Furthermore, recall that
σα = (2αj)j∈N0 is an admissible sequence and by Remark 2.4 the sequence
Nψ,2 is strongly increasing. One can easily show that Nψ,2 is also admissible.
Furthermore,

s(σα)

s(Nψ,2)
≥ α

2
> 0 and

s(σα)

s(Nψ,2)
≤ α log 2

1
δ2

log 2
= αδ2,

so Theorem 2.8 holds for k > αδ2. Furthermore,

(2.4)

∞∑

j=0

2αj sup
|H|<1/Nψ,2

j

‖∆k
Hu‖2L2(Rn)

≍
∞∑

j=0

∫

2−(j+1)≤t<2−j

1

t1+2α
sup

|H|<1/Nψ,2
j

‖∆k
Hu‖2L2(Rn)dt

≍
∫ 1

0

1

t1+2α
sup

|H|<1/ψ−1(t−2)

‖∆k
Hu‖2L2(Rn)dt,

since by 2−(j+1) ≤ t < 2−j implies ψ−1(t−2) ≍ Nψ,2
j . By change of variable

t−2 = ψ(|h|−1) it follows that (2.4) is comparable to
∫

|h|<1

(ψα)′(|h|−1)

|h|n+1
sup

|H|<|h|
‖∆k

Hu‖2L2(Rn)dh.

Since (ψα)′(t) ≍ ψα(t)
t it follows that the last line is comparable to
∫

|h|<1

ψα(|h|−1)

|h|n sup
|H|<|h|

‖∆k
Hu‖2L2(Rn)dh.(2.5)

Remark 2.9. (i) By applying a straightforward generalization of [24,
Theorem 2.6.1] to (2.5), Theorem 2.8, Theorem 2.5 and the calculation above
imply that the norms

‖u‖(1),α,k := ‖u‖L2(Rn) +



∫

|h|<1

ψα(|h|−1)

|h|n ‖∆k
hu‖2L2(Rn)dh




1
2

(2.6)

are equivalent to ‖ · ‖ψ,α, for all k > αδ2.
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(ii) Since the function ψα(| · |−1)
| · |n is continuous and ‖∆k

hu‖L2 ≤ c(k)‖u‖L2

the norms ‖ · ‖h0

(1),α,k,

‖u‖h0

(1),α,k := ‖u‖L2(Rn) +




∫

|h|<h0

ψα(|h|−1)

|h|n ‖∆k
hu‖2L2(Rn)dh




1
2

,

are equivalent for all h0 > 0.

(iii) Let c > 0, N ∈ Z and k > αδ2. The norm ‖ · ‖c,N(2) on Hψ,α(Rn)

defined by

(2.7) ‖u‖c,N(2),α,k = ‖u‖L2(Rn) +




∞∑

j=N

ψα
(
2j
)
2nj

∫

|h|<c2−j

‖∆k
hu‖2L2(Rn)dh




1
2

is equivalent to the norm ‖ · ‖(1). This follows by applying (1.5) to the norm

in (ii) for h0 = c2−N ,
∫

|h|<c2−N

ψα(|h|−1)

|h|n ‖∆k
hu‖2L2(Rn)dh

=

∞∑

j=N

∫

c2−j−1≤|h|<c2−j

ψα(|h|−1)

|h|n ‖∆k
hu‖2L2(Rn)dh

≍
∞∑

j=N

ψα
(
2j
)
2nj

∫

c2−j−1≤|h|<c2−j

‖∆k
hu‖2L2(Rn)dh

≍
∞∑

j=N

j∑

i=N

ψα
(
2i
)
2ni

∫

c2−j−1≤|h|<c2−j

‖∆k
hu‖2L2(Rn)dh

=

∞∑

i=N

ψα
(
2i
)
2ni

∫

|h|<c2−j

‖∆k
hu‖2L2(Rn)dh.

3. The restriction theorem

In this section we provide a detailed proof of the continuity of the restric-
tion operator, as a generalization of [18, Section V.1.2]. The same approach
is used in [20, Appendix III]. Before we start with the proof, we show the
following useful consequence of the estimates on Bessel-type potentials from
Lemma 2.6.
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Lemma 3.1. Let d ≤ n, D a d-set in Rn and µ the d-measure on D. Let
ψ be a function such that (1.2), (H1) and (H2) hold and α > 0 such that

(3.1)
n− d

2
< αδ1 ≤ α(δ2 ∨ δ4) <

n− d

2
+ 1.

Then there exists a constant c > 0 such that for all r ≤ 1
3 and f ∈ L2(Rn)

∫∫

|x−y|<r
(Kψ,α ∗ f(x)−Kψ,α ∗ f(y))2 µ(dx)µ(dy) ≤ c

r2d−n

φα(r−2)
‖f‖2L2(Rn).

Proof. Note that for every constant 0 < a < 1

(Kψ,α ∗ f(x)−Kψ,α ∗ f(y))2 ≤
∫

|Kψ,α(x− t)−Kψ,α(y − t)|2af2(t)dt

·
∫

|Kψ,α(x− t)−Kψ,α(y − t)|2(1−a)dt.

Let |x− y| < r. By Lemma 2.6 it follows that

(3.2)

∫

|y−t|<2r

|Kψ,α(x− t)−Kψ,α(y − t)|2(1−a)dt

.

∫

|z|<3r

|Kψ,α(z)|2(1−a)dz .

∫

|z|<3r

(
1

|z|nφα2 (|z|−2)

)2(1−a)
dz

(H1)

.
r−2αδ1(1−a)

(φ
α
2 (r−2))2(1−a)

∫

|z|<3r

(
1

|z|n−αδ1
)2(1−a)

dz

= c̃1
rn

(
rnφ

α
2 (r−2)

)2(1−a) ,

for some c̃1 > 0 and a such that

2(1− a)(n− αδ1) < n.(3.3)

Analogously, if

2a(n− αδ1) < d(3.4)

then for all t ∈ Rn there exists a constant c̃2 > 0
∫∫

|x−y|<r
|y−t|<2r

|Kψ,α(x − t)−Kψ,α(y − t)|2a µ(dx)µ(dy) ≤ c̃2
r2d

(
rnφ

α
2 (r−2)

)2a .

Therefore, it follows that

∫∫

|x−y|<r

(∫

|y−t|<2r

(Kψ,α(x− t)−Kψ,α(y − t))f(t)dt

)2

µ(dx)µ(dy)

≤ c̃1c̃2
r2d−n

φα(r−2)
‖f‖2L2(Rn).
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For the second part, note that the mean value theorem and Lemma 2.6 imply
that

∫∫

|x−y|<r
|y−t|>2r

|Kψ,α(x− t)−Kψ,α(y − t)|2a µ(dx)µ(dy)

. r2a
∫∫

|x−y|<r
|y−t|>2r

(
1

|zx,y|n+1φ
α
2 (|zx,y|−2)

)2a

µ(dx)µ(dy),(3.5)

where zx,y = y − t+ θx,y(x− y) for some θx,y ∈ (0, 1) and |zx,y| ≥ |y−t|
2 . Let

δ = δ2 ∨ δ4. By (H1) and (H2) there exists a constant c̃3 > 0 such that the
last line in (3.5) is comparably less then

r2a+d
(
rαδφ

α
2 (r−2)

)2a
∫

|z|>2r

(
1

|z|n+1−αδ

)2a

µ(dz) = c̃3
r2d

(
rnφ

α
2 (r−2)

)2a

if

(3.6) 2a(n+ 1− αδ) > d.

Similarly, if

(3.7) 2(1− a)(n+ 1− αδ) > n

then there exists a constant c̃4 > 0 such that |x− y| < r implies
∫

2r<|y−t|

|Kψ,α(y − t)−Kψ,α(x− t)|2(1−a)dt ≤ c̃4
rn

(
rnφ

α
2 (r−2)

)2(1−a) .

Therefore, it follows that

∫∫

|x−y|<r

(∫

|y−t|>2r

(Kψ,α(x− t)−Kψ,α(y − t))f(t)dt

)2

µ(dx)µ(dy)

≤ c̃3c̃4
r2d−n

φα(r−2)
‖f‖2L2(Rn).

Since n−d
2 < αδ1 ≤ αδ < n−d

2 + 1 it follows that

(
d

2(n+ 1− αδ)
, 1− n

2(n+ 1− αδ)

)
∩
(
1− n

2(n− αδ1)
,

d

2(n− αδ1)

)
6= ∅,

so we can choose a such that (3.3), (3.4), (3.6) and (3.7) hold.
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For a d-set D in Rn with d-measure µ and α > 0 such that (3.1) holds,
we define the trace space in terms of differences

Hψ,α(D,µ) = {u ∈ L2(D,µ) : ‖u‖(1),D,µ <∞},

‖u‖(1),D,µ := ‖u‖L2 +




∫∫

|x−y|<1

|u(x)− u(y)|2ψ
α
(
|x− y|−1

)

|x− y|2d−n µ(dx)µ(dy)




1
2

.

Note that, similarly as in Remark 2.9(iii), one can easily show that the norms

‖ · ‖(1),D,µ and ‖ · ‖c,N(2),D,µ are comparable, where

‖u‖c,N(2),D,µ := ‖u‖L2(D,µ)+




∞∑

j=N

ψα
(
2j
)

2−(2d−n)j

∫∫

|x−y|<c2−j

|u(x) − u(y)|2 µ(dx)µ(dy)




1
2

.

Next we define the restriction operator. Let Ru be the pointwise restriction
on D of the strictly defined function corresponding to u ∈ Hψ,α(Rn), i.e.

Ru(x) = lim
r→0

1

λ(B(x, r))

∫

B(x,r)

u(y)dy, x ∈ D,

whenever the limit exists. Here, instead of u one can a take a quasi continuous
modification ũ of u, see for example [5, Theorem 3.5.7]. Recall that a function
ũ is quasi continuous if for every ε > 0 there exists an open set Gε such that
ũ|Gcε is continuous, Capψ,α(Gε) < ε and ũ = u a.e. This means that outside

of set N = ∩ε>0Gε function u can be strictly defined and therefore R̃u = u
on N c. To show that µ(N) = 0, note that by the definition of capacity, for
every ε > 0 there exists a function v ∈ Hψ,α(Rn) such that v ≥ 1 on N and
‖v‖a,1 < ε, so

µ(N) ≤
(∫

N

|v(x)|2µ(dy)
) 1

2

≤ c̃1‖v‖ψ,α < c̃1ε

and therefore µ(N) = 0. Here the second inequality follows from calculations
analogous to ones in the proof of Lemma 3.1.

Theorem 3.2. Let d ≤ n, D a d-set in Rn and µ the d-measure on D.
Let ψ be a function such that (1.2), (H1) and (H2) hold and α > 0 satis-
fying (3.1). There exists a continuous restriction operator R : Hψ,α(Rn) →
Hψ,α(D,µ).

Proof. Using the classical interpolation theorem for a special class of
spaces associated with Hψ,1(Rn) we will show that there exists a constant
c̃1 > 0 such that for all u ∈ Hψ,α(Rn)

(3.8) ‖Ru‖1,1(2),D,µ ≤ c̃1‖u‖ψ,α.
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Denote by aj(x, y) = |Ru(x) − Ru(y)|1{|x−y|<2−j}, j ∈ N0 and let T be an

operator on L2(Rn) such that Tu = (aj)j∈N0 . Since Ru = u µ-a.e. on D, by
Lemma 3.1 there exists a constant c̃2 > 0 such that

sup
j∈N0


φα

(
22j
)
2j(2d−n)

∫∫

|x−y|<2−j

|Ru(x)−Ru(y)|2 µ(dx)µ(dy)


 ≤ c̃2‖f‖2L2(Rn)

for all u = Kψ,α ∗ f , f ∈ L2(Rn). Let L = L2(D ×D,µ× µ). It follows that

(aj)j ∈ lφ,α∞ (L) = {(ξj)j : ξj ∈ L, ‖ξ‖lφ,α∞ (L) = sup
j∈N0

φα
(
22j
)
2nj‖ξj‖2L <∞}

and that the operator T is bounded from Hψ,α(Rn) to lφ,α∞ (L), i.e.

‖(aj)j∈N0‖lφ,α∞ (L) ≤ c̃2‖Kψ,α ∗ f‖ψ,α = c̃2‖f‖L2(Rn).

Let (X1, X2)θ,2 := {a ∈ X1+X2 : ‖a‖(X1,X2)θ,2 <∞} be the K-interpolation

space of Banach spacesX1 andX2 and ‖a‖(X1,X2)θ,2 =
(∫∞

0 (t−θK(t, a))2 dtt
) 1

2 ,
where the Peetre K-functional is defined by

K(t, a) = inf
a=a1+a2

(‖a1‖X1 + t‖a2‖X2),

see [25, Section 1.3, p.23]. Choose α0 < α < α1 such that

(3.9)
n− d

2
< δ1α0 ≤ (δ2 ∨ δ4)α1 <

n− d

2
+ 1

and let θ = α1−α
α1−α0

∈ (0, 1). By [25, Theorem 1.3.3(a)] and [2, Lemma 4.1],

since T is bounded from Hψ,αi(Rn) to lφ,αi∞ (L), i = 0, 1, it is also bounded
from (Hψ,α0(Rn), Hψ,α1(Rn))θ,2 to (lφ,α0∞ (L), lφ,α1∞ (L))θ,2. By a version of [25,

Theorem 1.18.2], (lφ,α0∞ (L), lφ,α1∞ (L))θ,2 = lφ,α2 (L), where

lφ,α2 (L) =




(ξj)j∈N0 : ξj ∈ L, ‖ξ‖lφ2 (L) =




∑

j∈N0

φα
(
22j
)
2nj‖ξj‖2L





1
2

<∞




.

Furthermore, (lφ,α0

2 (L2(Rn)), lφ,α1

2 (L2(Rn)))θ,2 = lφ,α2 (L2(Rn)) and Hψ,α(Rn)

is a retract of the space lφ,α2 (L2(Rn)), [4, Theorem 2.5 and Theorem 3.4].
Therefore, the interpolation identity (Hψ,α0(Rn), Hψ,α1(Rn))θ,2 = Hψ,α(Rn)
follows by [4, Theorem 5.3]. Combining these results we get (3.8).

4. Extension theorem

The proof of the extension theorem is divided into two parts: case d < n
and case d = n. In the first case we define the extension operator E by (4.3),
using the Whitney decomposition of Dc and the approach as in [18, V.1.3],
which deals with the classical Besov spaces. The assumption d < n is crucial
in order to prove boundedness of the operator E : L2(D,µ) → L2(Rn), see
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the calculation prior to (4.6). The case d = n follows then by interpreting the
n-set D in Rn as a n-subset of Rn+1. The extension operator is then defined
as a composition of the extension operator to Rn+1 and restriction operator
to Rn.

Before proving the extension theorem for d < n, we recall the definition
of the Whitney decomposition of a set.

Definition 4.1. A Whitney decomposition of an open set A is a collection
of closed cubes {Qi}i∈N with disjoint interiors and sides parallel to the axes
such that A =

⋃
iQi, where each cube Qi has side length si = 2−Mi for some

Mi ∈ Z and diameter li such that li ≤ d(Qi, A
c) ≤ 4li.

Denote by xi the center of the cube Qi and let ε ∈ (0, 14 ). Denote by
Q∗
i = (1+ε)Qi the cube with center xi expanded by factor 1+ε. If x ∈ Qk∩Q∗

i

then

(4.1)
1

4
sk ≤ si ≤ 4sk

and Qi and Qk touch each other. This implies that every point in A is
covered by at most N0 cubes Q∗

i , where N0 ∈ N depends only on n. By [18,
Section I.2.3] we can associate with decomposition {Q∗

i } a partition of unity
{ϕi}i∈N ⊂ C∞

c (Rn), i.e. a family of non-negative functions with the following
properties:

supp ϕi ⊂ Q∗
i ,

∑
ϕi = 1 on Dc, |Djϕi| ≤ c̃l

−|j|
i for some c̃ > 0.(4.2)

If D is a d-set in Rn then by [18, Proposition VIII.1.1] the closure D of D is
also a d-set and µ(D \D) = 0 for every d-measure µ. Therefore, it is enough
to prove the theorem for a closed d-set D.

Next, we define the extension operator E from Hψ,α(D,µ) to Hψ,α(Rn),

when d < n. Let ωi = µ(B(xi, 6li))
−1 ≍ l−di and I = {i ∈ N : si ≤ 1}. For

Hψ,α(D,µ) define

(4.3) Eu(x) =






u(x), x ∈ D,
∑

i∈I
ϕi(x)ωi

∫

|y−xi|<6li

u(y)µ(dy), x 6∈ D.

Theorem 4.2. Let D be a closed d-set in Rn and d < n. Let ψ be a
function such that (1.2), (H1) and (H2) hold and α > 0 such that (3.1) holds.
There exists a continuous extension operator E : Hψ,α(D,µ) → Hψ,α(Rn),
given by (4.3), such that Eu = u µ-a.e. on D for all u ∈ Hψ,α(D,µ).

Proof. We will show that for some c > 0, N ∈ N and k0 > αδ2 there
exists a constant c̃1 such that

(4.4) ‖Eu‖h0

(1),α,k0
≤ c̃1‖u‖c,N(2),D,µ, ∀u ∈ Hψ,α(D,µ).
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Here we can choose the smallest k0 ∈ N satisfying the given condition, see
Theorem 2.8 and Remark 2.9. Since D is of Lebesgue measure zero in Rn it
is enough to prove (4.4) for Eu1Dc . For every x ∈ Dc there exists a k such
that x ∈ Qk. If sk > 4 then by (4.2) x 6∈ Q∗

i for all i ∈ I and Eu(x) = 0.
Therefore it is enough to consider the case when sk ≤ 4. Also note that∑

i ϕi(x) =
∑
i∈I ϕi(x) when sk < 1/4.

Let x ∈ Qk and let i ∈ I be such that φi(x) 6= 0. Then for all y ∈ B(xi, 6li)
we have

(4.5) |y − xk| ≤ |y − xi|+ |xi − x|+ |x− xk| ≤ 6li + li + lk ≤ 29lk,

which implies that

|Eu(x)| ≤
∑

i∈I
ϕi(x)ωi

∫

|y−xi|<6li

|u(y)|µ(dy)

.
∑

i∈I
ϕi(x)l

−d
i

∫

|y−xk|<29lk

|u(y)|µ(dy)

(4.1)

.
∑

i∈I
ϕi(x) · l−dk

∫

|y−xk|<29lk

|u(y)|µ(dy)

.

(
l−dk

∫

|y−xk|<29lk

u2(y)µ(dy)

)1/2

.

For j ∈ N define ∆j :=
⋃

{k:sk=2−j}Qk. Note that there exists an integer N1

depending only on n such that every point y ∈ Rn is covered by at most N1

balls B(xk, 29lk) where Qk ⊂ ∆j . This follows from the fact that |xk−xk′ | ≥
2−j and lk =

√
n2−j, for all Qk, Qk′ ⊂ ∆j . By the previous calculation it

follows that
∫

Dc
|Eu(x)|2dx =

∞∑

j=−2

∑

Qk⊂∆j

∫

Qk

|Eu(x)|2dx

.

∞∑

j=−2

∑

Qk⊂∆j

∫

Qk

(
l−dk

∫

|y−xk|<29lk

u2(y)µ(dy)

)
dx

≍
∞∑

j=−2

2−(n−d)j
∑

Qk⊂∆j

∫

|y−xk|<29lk

u2(y)µ(dy)

≤ 22(n−d)
∞∑

j=−2

∫

∆j

u2(y)µ(dy),

which implies that

(4.6) ‖Eu‖L2(Rn) . ‖u‖L2(D,µ).
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Next, for x ∈ ∆i, y ∈ ∆j and |x− y| < 2−i/2 we have

2−j
√
n ≤ d(∆j , D) ≤ d(y,D) ≤ |x− y|+ d(x,D) ≤ 6

√
n2−i,

so j ≥ i− 2. Analogously,
√
n2−i ≤ 5

√
n2−j + 2−i−1 so j ≤ i+ 2. Therefore,

(4.7) x ∈ ∆i, |x− y| < 2−i/2 ⇒ y ∈
i+2⋃

j=i−2

∆j .

Since Eu(x) = 0 for for x ∈ ∆i, i ≤ −3 it follows that Eu(y) = 0 when

|x − y| < 2−i−1 for some x ∈ ∆i, i ≤ −5. Analogously, ∆k0
h (Eu)(x) = 0 if

|h| < 2−5/k0. Therefore, for hi := 2−i−1/k0,
∫

Dc

∫

|h|<h0

|∆k0
h (Eu)(x)|2ψ

α
(
|h|−1

)

|h|n dh dx

≤
∞∑

i=−4

∫∫

x∈∆i
|h|<hi

|∆k0
h (Eu)(x)|2ψ

α
(
|h|−1

)

|h|n dh dx

+

∞∑

i=5

∫∫

x∈∆i
hi≤|h|<2−5/k0

|∆k0
h (Eu)(x)|2ψ

α
(
|h|−1

)

|h|n dh dx =: A+B.

First we asses the term B. Let Fi :=
⋃∞
j=i∆j . Note that

B =

∞∑

i=5

i−1∑

m=4

∫

hm+1≤|h|<hm

ψα
(
|h|−1

)

|h|n
∫

x∈∆i

|∆k0
h (Eu)(x)|2dx dh

=
∞∑

m=4

∫

hm+1≤|h|<hm

ψα
(
|h|−1

)

|h|n
∫

x∈Fm+1

|∆k0
h (Eu)(x)|2dx dh

(1.5)

.

∞∑

m=4

ψα (2m) 2mn
∫∫

x∈Fm+1

hm+1≤|h|<hm

|∆k0
h (Eu)(x)|2dx dh.

Similarly as in (4.7), for x ∈ Fi+1 and |h| < hi it follows that x+ ℓh ∈ Fi−2,
for all ℓ ∈ {0, 1, . . . k0}. Since
|∆k0

h (Eu)(x)|2 . |Eu(x)−Eu(x+h)|2+· · ·+|Eu(x+(k0−1)h)−Eu(x+k0h)|2

it follows that

B .

∞∑

m=4

ψα (2m) 2mn
∫∫

x,y∈Fm−2

|x−y|<hm

(Eu(x) − Eu(y))2dx dy.(4.8)
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For k,m ≥ 2 and x ∈ ∆k and y ∈ ∆m it follows that

|Eu(x)− Eu(y)| ≤
∑

i

∑

j

ϕi(x)ϕj(y)ωiωj

∫∫

|s−xi|<6li
|t−xj |<6lj

|u(s)− u(t)|µ(ds)µ(dt).

From

(4.9) x ∈ ∆k, ϕi(x) 6= 0 ⇒ 1

8
lk ≤ li ≤ 64lk

it follows that

|Eu(x)− Eu(y)|
(4.5)

.
∑

i

∑

j

ϕi(x)ϕj(y)l
−d
k l−dm

∫∫

|s−xk|<29lk
|t−xm|<29lm

|u(s)− u(t)|µ(ds)µ(dt)

≤


l

−d
k l−dm

∫∫

|s−xk|<29lk
|t−xm|<29lm

(u(t)− u(s))2 µ(dt)µ(ds)




1/2

.

Here xk, xm are the centres and lk, lm diameters of cubes Qp ⊂ ∆k and
Qr ⊂ ∆m containing x and y respectively. Now it follows that for i ∈ N,
y ∈ ∆m and k,m ≥ 2

∫

x∈∆k,

|x−y|<2−i

|Eu(x)− Eu(y)|2dx

.

∫

x∈∆k
|x−y|<2−i

l−dk l−dm

∫∫

|s−xk|<29lk
|t−xm|<29lm

(u(t)− u(s))2 µ(dt)µ(ds)dx

≤ N0l
−d
k l−dm s−nk

∫∫

|s−y|<c2−k+2−i

|t−xm|<29lm

(u(t)− u(s))2 µ(dt)µ(ds),

where c = 30
√
n. Analogously, we get

∫∫

x∈∆k, y∈∆m
|x−y|<2−i

|Eu(x)− Eu(y)|2dxdy

. N2
0 2

−(n−d)k2−(n−d)m
∫∫

|t−s|<2−i+c2−k+c2−m

(u(t)− u(s))2dµ(s)dµ(t).
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This implies that for i ≥ 4
∫∫

x,y∈Fi−2

|x−y|<2−i

|Eu(x)− Eu(y)|2dx dy =

∞∑

k,m=i−2

∫∫

x∈∆k, y∈∆m
|x−y|<2−i

|Eu(x)− Eu(y)|2dxdy

.




∞∑

k,m=i−2

2(d−n)k2(d−n)m




∫∫

|t−s|<(8c+1)2−i

(u(t)− u(s))2 µ(ds)µ(dt)

and by applying this to (4.8) we get that

B .

∞∑

i=4

ψα
(
2i
)
2i(2d−n)

∫∫

|t−s|<(8c+1)2−i

(u(t)− u(s))2 µ(ds)µ(dt).(4.10)

Next, let

F (h) :=
∑

|j|=k0

∫

∆i

∫ 1

0

...

∫ 1

0

|h|2k0 |Dj(Eu)(x+ (t1 + ...+ tk0)h)|2dt1 ...dtk0 dx.

By the mean value theorem

(4.11)

A .

∞∑

i=−4

∫

|h|<hi

F (h)
ψα
(
|h|−1

)

|h|n dh

(4.7)

≤
∞∑

i=−4

∫

|h|<hi

ψα
(
|h|−1

)

|h|n−k0 dh ·
∑

|j|=k0

∫

Fi−2\Fi+3

|Dj(Eu)(z)|2dz

(H1)

. 5

∞∑

i=−2

ψα(2i)

22k0i

∑

|j|=k0

∫

∆i

|Dj(Eu)(z)|2dz.

In the last line we also used that Dj(Eu)(z) = 0 if z ∈ ∆i and i ≤ −3. To find
an upper bound for |Dj(Eu)(z)|, z ∈ ∆i, we distinguish two cases; i ≥ 2 and

i < 2. First, take z, y ∈ Qm ⊂ ∆l, l ≥ 2 and |j| = k0. Since
∑

i

Djϕi(z) = 0,

by similar calculations as before, we get

|Dj(Eu)(z)| =

∣∣∣∣∣∣∣

∑

i

Djϕi(z)ωi

∫

|s−xi|<6li

(u(s)− Eu(y))µ(ds)

∣∣∣∣∣∣∣

≤
∑

i

∑

k

|Djϕi(z)|ϕk(y)


ωiωk

∫∫

|s−xi|<6li
|t−xk|<6lk

|u(s)− u(t)|2 µ(ds)µ(dt)




1
2

.
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Recall that there are at most N0 indices i for which z ∈ Q∗
i and Djϕi(z) 6= 0.

By (4.1) and (4.2), z ∈ Q∗
i implies ωi ≍ l−dm and |Djϕi(z)| . l

−|j|
i . l

−|j|
m .

Also, by (4.9) ωk ≍ l−dm for k such that ϕk(y) 6= 0. Therefore,

|Dj(Eu)(z)|
(4.5)

. l−k0m


l

−2d
m

∫∫

|s−xm|<29lm
|t−xm|<29lm

|u(s)− u(t)|2 µ(ds)µ(dt)




1
2

.

Applying this inequality to (4.11) we arrive to

A .

∞∑

i=2

ψα(2i)

22k0i

∑

|j|=k0

∑

Qm⊂∆i

∫

Qm

22k0i+2id

∫∫

|s−xm|<29lm
|t−xm|<29lm

|u(s)− u(t)|2 µ(ds)µ(dt)dz

and since every s ∈ Dc is covered by at most N1 balls B(xm, 29lm) it follows
that

A .

∞∑

i=2

ψα(2i)2i(2d−n)
∫∫

|s−t|<60
√
n2−i

|u(s)− u(t)|2 µ(ds)µ(dt).(4.12)

For the remaining part in A, take z ∈ ∆k, k ≥ −2. By the same arguments
as before,

|Dj(Eu)(z)| ≤
∑

i

|Djϕi(z)|ωi
∫

|s−xi|<6li

|u(s)|µ(ds)

(4.2)

.
∑

ϕi(z) 6=0

l−2
i


ωi

∫

|s−xi|<6li

|u(s)|2 µ(ds)




1
2

. 2kk0


2kd

∫

|s−xk|<29lk

|u(s)|2 µ(ds)




1
2

and therefore
∑1
i=−2

∫
∆i

|D(Eu)(z)|2dz . ‖u‖L2(D,µ). This inequality to-

gether with (4.6), (4.10) and (4.12) implies (4.4).
That E is truly the extension operator for R, i.e. that REu = u µ-a.e.,

follows from calculation similar to the calculation above. One first shows that
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for every t0 ∈ D and r > 0 small enough
∫

|x−t0|≤r
(Eu(x)− u(t0))

2dx

.
rd

ψα(r−1)

∫

|t−t0|<30r

(u(t)− u(t0))
2ψ

α(|t− t0|−1)

|t− t0|2d−n
µ(dt),

where the integral is finite for µ-almost all t0 and decreasing as r goes to 0.

Since lim
r→0

1

ψα(r−1)rn−d
= 0, it follows that for µ almost all t0

|REu(t0)− u(t0)| . lim
r→0

(
r−n

∫

|x−t0|≤r
(Eu(x)− u(t0))

2dx

)1/2

= 0.

Remark 4.3. Let α ∈ (12 ,∞). Note that for a n-setD in Rn, D̃ = D×{0}
is a n-set in Rn+1 and that every function u ∈ Hψ,α(D,µ) can be represented

as a function ũ in H ψ̃,α̃(D̃, µ̃), where

α̃ := 2α, ψ̃(|ξ|) := ψ
1
2 (|ξ|)|ξ| 1

α̃ , µ̃(A× {0}) := µ(A)

ũ(x, 0) := u(x), x ∈ D and ‖ũ‖(1),D̃,µ̃ = ‖u‖(1),D,µ.

By [22, Theorem 7.13.] the function ξ 7→ φ
1
2 (|ξ|)|ξ| 1

2α is a complete Bern-

stein function and ψ̃ satisfies conditions (H1) and (H2) with δ̃i :=
δi
2 + 1

4α .

Analogously, the space Hψ,α(Rn) can be represented as H ψ̃,α̃(Rn × {0}, µ̄),
where µ̄ is the restriction of the n-dimensional Hausdorff measure in Rn+1 to
Rn × {0}.

Theorem 4.4. Theorem 4.2 holds true as well in the case of d = n and
α ∈ (12 ,∞).

Proof. Take u ∈ Hψ,α(D,µ) and let ũ be the corresponding function in

H ψ̃,α̃(D̃, µ̃) from Remark 4.3. By Theorem 4.2 function ũ can be extended

to a function Ẽũ ∈ H ψ̃,α̃(Rn+1), which can then be restricted to a function

in H ψ̃,α̃(Rn × {0}, µ̄) by applying the continuous restriction operator R̄ from
Theorem 3.2. Again using Remark 4.3, we can define the extension operator
E as

(Eu)(x) = (R̄Ẽũ)(x, 0), x ∈ Rn.

The continuity of E follows from the continuity of the extension and restriction

operators Ẽ and R̄ and REu = u almost everywhere on D, where R is the
restriction operator from Hψ,α(Rn) to Hψ,α(D,µ).

Proof of Corollary 1.3: By applying Theorem 1.2, the proof is an
immediate consequence of [26, Theorem 1.1, Corollary 2.9]. By [26, Corollary
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2.9], Hψ,1
0 (D) = Hψ,1(D) if and only if the capacity of the boundary ∂D with

respect to the Lévy process with the characteristic exponent ψ is equal 0, i.e.

Capψ(∂D) ≍ inf{‖u‖ψ,1 : u ≥ 1 on U, U open and ∂D ⊂ U} = 0.

Using the scaling condition (H1) we can relate this capacity to the Riesz
capacities of order n− 2δi, i = 1, 2,

Capn−2δ1(∂D) ≤ Capψ(∂D) ≤ Capn−2δ2(∂D).

By using the well known connection of the Riesz capacity and the Hausdorff
dimension of a set (see e.g. [1]) wee conclude, similarly as in [26, Theorem
1.1], that conditions on δ2 in (i) imply that Capψ(∂D) = 0. Analogously,
conditions in (ii) imply that Capψ(∂D) = 0.
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