

Abstract—Mobile Edge Computing (MEC) is relatively a novel

concept in the parlance of Computational Offloading. MEC signifies

the offloading of intensive computational tasks to the cloud which is

generally positioned at the edge of a mobile network. Being in an

embryonic stage of development, not much research has yet been

done in this field despite its potential promises. However, with time

the advantages are gaining growing attention and MEC is gradually

taking over some of the resource-intensive functionalities of a

traditional centralized cloud-based system. Another new idea called

Task Caching is emerging rapidly with the offloading policy. This

joint optimization idea of task offloading and caching is relatively a

very new concept. It has been in use for reducing energy

consumption and delay time for mobile edge computing. Due to the

encouraging offshoots from some of the current research on the joint

optimization problem, this research initiative aims to take the

progress forward. The work improves upon the “prioritization of

the tasks” by adopting a very practical approach discussed forward,

and proposes a different way for task offloading and caching to the

edge of the cloud, thereby bringing a significant enhancement to the

QoS of MEC. We propose a novel priority-based offloading and

caching model considering the joint optimization of offloading and

caching along with the local computing policy. The simulation

results show that our proposed model is able to reduce more delay

time and energy cost of MEC than any other model proposed earlier.

Index Terms—caching, computation offloading, mobile edge

computing, priority, energy efficient, delay efficient.

I. INTRODUCTION

OWADAYS the application of mobile phones are ubiquities

in our life. People use this technology for verities of

purpose ranging from professional activities to personal, as well

as for entertainment. The applications that are being used by the

consumers are constantly getting computationally intensive and

resource hungry, thereby pushing the smart mobile devices to a

cliffhanger as these devices are unable to provide resource and

computational support beyond a certain limit.

Manuscript received January 25, 2019; revised April 4, 2019. Date of

publication April 25, 2019. Date of current version June 3, 2019. The associate
editor Prof. Claudia Canali has been coordinating the review of this manuscript

and approved it for publication.
S. Islam, F. Narin Nur and N. Nessa Moon are with the Dept. of Computer

Science and Engineering, Daffodil International University, Dhaka, Bangladesh

(e-mails: saiful15-5379@diu.edu.bd, {narin, moon}@daffodilvarsity.edu.bd).

A. Karim, S. Azam and B. Shanmugamare with the College of Engineering,

IT and Environment, Charles Darwin University, NT, Australia (e-mails:

{asif.karim, sami.azam, bharanidharan.shanmugam}@cdu.edu.au).
Digital Object Identifier (DOI): 10.24138/jcomss.v15i2.707

The user experience thus becomes sluggish and inefficient. By

offloading [1]-[4], these applications can hand over some of the

complex tasks to the remote cloud through a wireless network,

which can bring down the energy needs in a substantial scale,

but there is always an issue with the delay time, that is, the

transmission time from SMD (smart mobile device) to the

remote cloud may increase the delay time. Mobile edge

computing [1], [2] can have a positive impact on such issues. It

can lessen the delay time and simultaneously cater for high

performance by offloading the task at the edge of the cellular

network.

Fig. 1. Illustration of task offloading to the edge cloud.

Mobile edge computing can also overcome the bottleneck of

limited computational power as it has available resources. It can

also discourse the problem of delay time, often instigated by

remote cloud server. On the other hand, Task Caching [1], [5],

[6] is relatively a new idea which is used to cache the offloading

task so that the repeated offloading of the same tasks can be

avoided. Nevertheless, the fundamental concern of MEC

remains the joint optimization of offloading and caching [1] and

to construct a structure which is efficient to the consumer,

meaning it will diminish the energy cost and delay time

concurrently. So, we tried to find a model to solve the

mentioned issues and make MEC more effective and efficient.

Researchers have worked on multiple energy and delay

efficient techniques for MEC systems [1], [14], [15]. In some of

the previous works, the authors have proposed and simulated

designs to solve the joint optimization problem of caching and

offloading to make MEC system more user efficient. The

authors of [15] proposed a solution called suboptimal solution

(SOS) for MEC. It’s a cache assisted offloading scheme to

reduce the energy cost of MEC system. They tried to minimize

Priority-Based Offloading and Caching in

Mobile Edge Cloud

S. Islam, F. Narin Nur, N. Nessa Moon, A. Karim, S. Azam and B. Shanmugan

N

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019 193

1845-6421/06/707 © 2019 CCIS

mailto:saiful15-5379@diu.edu.bd
mailto:moon%7d@daffodilvarsity.edu.bd
FESB
Typewritten Text
 Original scientific paper

the computation complexity in a way that would also able to

reduce the energy cost and delay time of smart mobile device

(SMD). In [14], the authors aim to provide a new caching

strategy called femto-caching along with offloading strategy to

reduce more energy cost and delay time of MEC system. Femto-

caching caches the computing task data which causes the lowest

of total energy cost, until caching capacity of edge cloud is over.

The authors of [1] proposed a model on joint optimization of

offloading and caching which is called TCO to decrease the

delay time and energy cost of SMD all together. Their research

exhibited fairly a decent outcome and the graphical illustration

of their result shows that they were able to reduce an obvious

amount of energy cost and delay time.

However, there are few more shortcomings in the previous

works, for instance, more clarity needs to be infused on the

issues of selecting tasks to cache first, tasks to compute locally

and tasks that are to be offloaded at the edge cloud. They did

not consider any specific formula to prioritize the computing

tasks. It is also a challenging issue to make an efficient

offloading decision with task caching (caching and offloading

strategy). All these objectives also need to be decided in the

light of reduced energy consumption and decreased delay time

[1]. Researchers have also worked on multiple techniques for

the secure and efficient techniques data transmission over

cloud-based systems [9]-[12]. Though previous experiments

showed prodigious results, our goal is to solve the above

mentioned problems in a near-optimal fashion.

In this paper, our research proposes a novel model that

includes task priority. Priority will be calculated from the four

main concerns related to the tasks as the number of requests for

the task (task popularity), deadline, data size and required

resources for the computation. In the (III-B) section, priority

factor calculation will be a significant ace in solving caching

and offloading problem. By measuring Priority, it can be

decided which task to cache first and which task to execute

locally, as well as which task to offload at the edge cloud.

Implementing the above plan itself has problematic questions

to answer, such as priority-based task caching, priority-based

task offloading to the edge cloud and to solve the joint

optimization problem [1]; and keeping in mind the efficiency

factor. As Task Offloading and Task Caching Scheme are being

studied to reduce the total energy consumption and the delay

time, the goal will be to augment the efficiency markedly.

This paper has been organized in an intuitive way. The related

works on MEC has been discussed in the next section and the

proposed system model in the following section, that includes

system scenario, priority calculation, computation model and

problem formulation. Then the proposed scheme is discussed in

Section IV followed by performance setup and measurement in

Section V. Finally, the paper is concluded in Section VI with

some future work directions.

II. RELATED WORKS

As the concept of mobile edge computing is growing rapidly,

a number of works have been carried out to implement and

improve the concept of MEC. Some of the recent works on

MEC are discussed here in this section. With the theory of MCC

[3], [4], [12] there comes the idea of a network architecture with

a centralized cloud [7], [8]. But for the centralized cloud, there

are some issues like long latency and mobile traffic growth

which affect the concept of mobile cloud computing. These

problems can be solved by using mobile edge computing

(MEC) [1], [2] which has a network architecture of a distributed

cloud [7], [8]. Further recent works on MEC for both multi-user

[5], [7] and single user [9] have been identified. For multiuser,

distributed [7], [8] computation policy is used to save energy

and for low latency using game theory; but multiuser MEC

system at a single cloud is more complicated than single user

policy. For a single user, energy and latency minimization are

derived from optimized offloading and local computing.

Computation offloading is one of the major studies in both

MCC and MEC. Computation offloading policy [1-4] is

designed to decrease both energy consumption of SMDs and

delay time. Algorithms have been consulted to find a more

premier way to offload tasks from an SMD to edge cloud.

Besides, there are some issues surfaced such as the limitation of

resources to support all the computing tasks. It is impractical to

think that edge cloud has enough computing resources for all

the computing tasks. A major research work on computational

offloading has been studied considering multi-server (or

distributed server) [5] and multi-user [5], [7] policy.

Computational caching [1], [6], [8] is implemented in MEC to

cache the computing tasks, data or results to the edge cloud in a

view to saving energy and computation time. By the help of

computation caching, users do not need to offload the same

tasks repeatedly. Another caching strategy is content caching

[7], [8]. With the aid of content caching, users can cache the

popular content to the edge cloud to reduce the energy cost and

delay time. A lot of studies have been done on caching to

improve the caching strategies. But the main concern about

caching is, ‘the capacity of edge cloud storage’ still lingers. It

is obvious that the storage capacity of edge cloud is limited.

For Computation offloading, both computing resource

capacity and storage capacity of edge cloud have to be

considered. But for caching policy, only the storage capacity of

edge cloud is considered. In that concern, there comes the

concept of joint optimization [1], [14], [15] of offloading and

caching to the edge cloud. Optimizing the offloading and

caching is the best way to reduce the energy consumption and

delay time of SMDs. In some of the previous works, the authors

have proposed and simulated designs to solve the joint

optimization problem. In [15] the authors have proposed a

suboptimal solution (SOS) for optimizing the offloading and

caching policies. Their proposed solution optimizes the

communication, computation and caching policies for a cache-

assisted multi-user MEC system to reduce the energy cost and

computation delay of user’s SMD. They tried to propose a low-

complexity solution to reduce the computational complexity. In

[14] the authors proposed a strategy called task femto-caching

and offloading (TFO) for MEC system. Femto-caching uses

storage capacity instead of backhaul capacity at the small cell

access points. The authors proposed two femto-caching

techniques called uncoded femto-caching scheme which is a

special covering problem and coded femto-caching which is a

194 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

convex program. They used file popularity distribution

technique to optimize the cache allocation at the edge cloud and

to reduce the total delay time of all users. The authors of [1] aim

to jointly optimize the offloading and caching of tasks to reduce

energy consumption and delay time of SMDs. In order to do so,

they proposed a scheme called task caching and offloading

(TCO) for the MEC system. It is the most recent work on

offloading and caching for MEC as per our knowledge. TCO

scheme is basically a combination of two sub-problems: one is

a convex problem to make the offloading decision and the other

one is 0-1 programming to make the caching decision. They

consider the joint optimization problem of offloading and

caching as mixed-integer nonlinear optimization problem. The

simulation result shows that their proposed scheme decreases a

significant amount of energy consumption.

III. SYSTEM MODEL

The cardinal objective is prioritizing the tasks that needed to

be cached or offloaded. For this purpose, five tasks have been

computed (T1, T2, T3, T4, and T5). Let us consider each task

has different priorities based on their task popularity, deadline,

data size, and required computing resource. Our aim is to cut

the energy consumption of the SMD and lower the delay time

keeping in mind the user’s satisfaction. In this paper, three

problems, given below, will be addressed:

 Determining the task to cache first: The measured

priority will determine the order of the task, that is, the

task with the highest priority will be cached first.

 Determining the task to offload first: The highest

priority, after due measure, will be offloaded first. In fig.

1, the task offloading scenario of the mobile phone to the

edge cloud is demonstrated.

 Determining the task to execute locally or to offload:

With this segment, an efficient technique will be

presented about the locally executing task or offloading

to the edge cloud. The task with the most priority will be

executed locally. The level of energy consumption is not

being considered here. Because the reduction of delay

time effectively means giving the user maximum

satisfaction by providing the first task as early as

possible.

System model will be discussed briefly in different sections

given below.

A. System Scenario

Let’s consider there are P number of SMDs and Q amount of

tasks to be executed, which can be mentioned as P = (1, 2…P)

and Q = (1, 2…Q). Also 𝑀𝑝,𝑞 has been defined as user p

requests task q. Considering the heterogeneity, three

parameters model for computing task has been assumed.

So, 𝑀𝑝,𝑞= {𝐶𝑟𝑞 , 𝑆𝑞 , 𝐷𝑙𝑝}. Here, 𝐶𝑟𝑞= required computing

resource for the task 𝑀𝑝,𝑞 (in CPU cycles per bit). 𝑆𝑞= data size

(in bits). 𝐷𝑙𝑝= Deadline (in sec).

Besides, another parameter the task popularity has been

defined 𝑇𝑝𝑞(number of request for the task). For calculating

purpose, only the first three parameters will be used. But for

priority calculation, all four parameters will be considered.

Now, for the system model, only one edge cloud is

considered. Here are two things needed to be declared. Cache

size and computing capacity of edge cloud. Cache size of edge

cloud is defined as 𝐶𝑠 and computing capacity (available

resource) of edge cloud is defined as 𝐶𝑐.

B. Priority Scheming

To calculate the priority 𝑃𝑟𝑞 , four parameters that effects task

computation will be used. To give the user maximum

satisfaction possible and considering the energy consumption

and delay time four parameters (task popularity, deadline, data

size and required resource) will be used to prioritize the

computing task.

But for easier calculation purpose and for better priority

calculation, weights will be attached to the parameters. Two

equal weights 𝑤1 and 𝑤2 are considered. The concept has been

demonstrated briefly here.

𝑃𝑟𝑞 = 𝑤1𝑇𝑝𝑞 + 𝑤2
1

𝐶𝑟𝑞+𝐷𝑙𝑝+𝑆𝑞
 (1)

Fig. 2. Illustration of task scheduling based on the task priority calculation of
SMD.

Here, in equation (1), task priority 𝑃𝑟𝑞 is calculated using

four main parameters related to the task. To provide the

maximum user satisfaction, the highest weight is given to the

task popularity 𝑇𝑝𝑞. The other parameters (𝐶𝑟𝑞 , 𝑆𝑞 , 𝐷𝑙𝑝) are

also measured in such a way that it can help us to prioritize the

task to reduce delay time and energy cost of user’s SMD. In fig.

2, task scheduling is shown based on the priority scheme as per

equation (1) to reduce delay time and energy cost of user’s

SMD. There is also shown that if the task is not already cached

at edge cloud than the task with the most priority will be

executed locally, otherwise the task will be offloaded to the

edge cloud for execution.

The task with the maximum priority will be ranked the

highest and to make sure that user gets the task first which user

requested for the most. As it also can be seen that bigger the

data size the less the priority, that is because it causes more

energy consumption and takes more time to offload or execute.

The main reason for putting a priority on the task is to give the

user the task first which he or she requires the most.

C. Computation Model

Computation model consists of uplink data rate, which is the

rate to send data to edge cloud from SMDs. The data rate is

denoted as 𝑅𝑝. And it has been formulated as,

𝑅𝑝 = 𝐵 log2(1 +
𝑃𝑝𝐻𝑝

𝜎2) (2)

S. ISLAM et al.: PRIORITY-BASED OFFLOADING AND CACHING IN MOBILE EDGE CLOUD 195

Here, B is channel bandwidth, 𝑃𝑝 is transmission power for

user p, 𝐻𝑝 is channel gain for user p and 𝜎2 is noise power.

Using equation (2) uplink data rate is being calculated. Here,

downlink data rate won’t be considered because after

computing at the edge cloud the size of the data become smaller

than the one before computing [5]. The downlink data rate is

much faster than the uplink data rate. So, it has been ignored.

In computation model section, the calculation of delay time

and energy cost for local computing in III-D, offloading in III-

E and caching in III-F are discussed briefly.

TABLE I

VARIABLES ASSIGNED FOR PRIORITY-BASED TASK OFFLOADING AND

CACHING MODEL

Variables Assigned to

P number of SMD

Q amount of task to be executed

𝑀𝑝,𝑞 defined as user p requests task q

𝐶𝑟𝑞 required computing resource for the task 𝑀𝑝,𝑞

𝑆𝑞 data size

𝐷𝑙𝑝 Deadline

𝑇𝑝𝑞 task popularity (number of request for the task)

𝐶𝑠 Cache size of edge cloud

𝐶𝑐 computing capacity (available resource) of edge cloud

𝑃𝑟𝑞 Task priority

𝑤1 Weight 1

𝑤2 Weight 2

𝑅𝑝 data rate

B channel bandwidth

𝑃𝑝 transmission power for user p

𝐻𝑝 channel gain for user p

𝜎2 noise power

𝜀 energy consumption per computing cycle

𝑘 energy coefficient

𝜖𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙 energy cost for local computation of task 𝑀𝑝,𝑞

𝜖𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 energy cost for edge cloud computing of task 𝑀𝑝,𝑞

𝜖𝑝,𝑞 Total energy cost

𝜇𝑝
𝑙𝑜𝑐𝑎𝑙 CPU computing capability of p

𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 computation resource of edge cloud required for p

𝜏𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙 execution time for executing task 𝑀𝑝,𝑞 locally

𝜏𝑝,𝑞
𝑡𝑟𝑎𝑛𝑠 transmission time from SMD to edge cloud of task 𝑀𝑝,𝑞

𝜏𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 execution time of task 𝑀𝑝,𝑞 at edge cloud

𝜏𝑝,𝑞
𝑞𝑢𝑒𝑢𝑒

 queuing time of task 𝑀𝑝,𝑞

𝜏𝑝,𝑞
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 processing time of task 𝑀𝑝,𝑞 at edge cloud

𝜏𝑝,𝑞 total delay time

a integer decision variable for caching

b integer decision variable for offloading

D. Energy and Delay Calculation for Local Computing

Our main target is to reduce the energy consumption for

computing application task locally and also to reduce delay time

for the task execution. Though it is proposed a way to do that

but it must be calculated the energy consumption and execution

time for executing task locally or by the edge cloud. It is known

that a lot of energy used to execute the task but some amount of

energy also needed to transmit the data from SMD to edge

cloud. Same goes for the execution time. On the basis of earlier

research [4], the energy consumption per computing cycle is

 𝜀 = 𝑘𝜇2. Here, k is defined as energy coefficient. It depends

on the system architecture. According to the previous research

in [11], the value of k is set as 10−25. So, to calculate the energy

consumption, the energy cost is obtained for local computation

𝜖𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙 of task 𝑀𝑝,𝑞 as,

𝜖𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙 = 𝑘(𝜇𝑝

𝑙𝑜𝑐𝑎𝑙)2𝐶𝑟𝑞 (3)

Here, 𝜇𝑝
𝑙𝑜𝑐𝑎𝑙 is CPU computing capability of p SMD. Again

the execution time 𝜏𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙 for executing task 𝑀𝑝,𝑞 locally can

be calculated as follows,

𝜏𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙 =

𝐶𝑟𝑞

𝜇𝑝
𝑙𝑜𝑐𝑎𝑙 (4)

E. Energy and Delay Calculation for Offloading

 As equation for energy and delay calculation for the task

executing locally, equation for mobile edge computing also

needs to be formulated. Thus, the idea is to calculate energy cost

of SMD, so the energy cost for edge cloud will not be

considered. Energy which is needed to offload or transmit the

task data to the edge cloud will only be calculated. And for

delay time, the processing time needed by edge cloud to process

a task data, the queuing time and transmission time to offload

task data from SMDs to edge cloud are need to be calculated.

The energy cost for edge cloud computing 𝜖𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 of task 𝑀𝑝,𝑞

can be denoted as,

𝜖𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 = 𝑃𝑝(𝜏𝑝,𝑞

𝑞𝑢𝑒𝑢𝑒
+ 𝜏𝑝,𝑞

𝑡𝑟𝑎𝑛𝑠) = 𝑃𝑝(𝜏𝑝,𝑞
𝑞𝑢𝑒𝑢𝑒

+
𝑠𝑞

𝑅𝑝
) (5)

 Here, 𝜏𝑝,𝑞
𝑡𝑟𝑎𝑛𝑠 is transmission time from mobile device to edge

cloud for task q of user mobile device p. 𝜏𝑝,𝑞
𝑞𝑢𝑒𝑢𝑒

 is the queuing

time. At the time of transmission p, tasks need to wait in the

queue. This waiting time has been termed as “queuing time”.

𝜏𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 = 𝜏𝑝,𝑞

𝑞𝑢𝑒𝑢𝑒
+ 𝜏𝑝,𝑞

𝑡𝑟𝑎𝑛𝑠 + 𝜏𝑝,𝑞
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

= 𝜏𝑝,𝑞
𝑞𝑢𝑒𝑢𝑒

+
𝑆𝑞

𝑅𝑝
+

𝐶𝑟𝑞

𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 (6)

 Here, 𝜏𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 is the execution time for executing task 𝑀𝑝,𝑞 at

the edge cloud, 𝜏𝑝,𝑞
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 is processing time, needed by edge

cloud and 𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 is the computation resource of edge cloud

required for the user mobile device p.

F. Energy and Delay Calculation for Task Caching

Task caching is a new idea that has contributed a lot to the

reduction of energy consumption and delay time of SMDs. Task

data are cached at the edge cloud for future use which can

reduce a lot of energy cost and delay time. First, SMD sends a

request to the edge cloud about the task data which needs to be

196 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

processed. If the task data are already cached at the edge cloud

then the edge cloud informs the SMD that the task data are

already in the edge cloud. So, the SMD doesn’t need to send the

same task data again and again. So, the delay time calculation

for the task will only be the processing time 𝜏𝑝,𝑞
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

 needed by

the edge cloud. So there will not be any energy calculation by

the SMD as SMD does not need to transmit the task data to the

edge cloud. Then the edge cloud sends the result to the SMD,

thereby reducing a lot of delay time and energy cost.

But for the task caching strategy, there are some issues like

which task to cache first. As it was mentioned earlier that a new

strategy is proposed called priority-based task caching which

can be used to effectively optimize this issue. But in the case

when there is no task is cached, the energy cost and delay time

of SMD p will be the same as 𝜖𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 and 𝜏𝑝,𝑞

𝑐𝑙𝑜𝑢𝑑 .

G. Problem Formulation

To formulate the equation for execution time and energy cost

for mobile edge computing, it is needed to define some decision

variables. To measure the task caching problem, 𝑎𝑞 ∈ {0,1} is

considered as integer decision variable for caching problem. If

𝑎𝑞 = 0 then it means that task q is not cached at edge cloud or

if 𝑎𝑞 = 1 then it means task q is already cached at edge cloud.

So, 𝑎𝑞 ∈ {0,1} can be represented as task 𝑎𝑞 is already cached

at edge cloud and task 1 − 𝑎𝑞 is not cached at edge cloud, so it

can be represented as 𝑎 = 𝑎1, 𝑎2, … . . 𝑎𝑞. Same goes for the

offloading problem. For offloading, 𝑏𝑝 ∈ {0,1} is considered as

integer decision variable for the offloading issue. If 𝑏𝑝 = 0 then

it means task q is going to offload to the edge cloud or if 𝑏𝑝 =

1 then it means task q will be executed locally. So, 𝑏𝑝 ∈ {0,1}

can be represented as task 𝑏𝑝 will be executed locally and 1 −

𝑏𝑝 task will be offloaded to edge cloud, so it can be represented

as 𝑏 = 𝑏1, 𝑏2, … . . 𝑏𝑝.

Following the above discussion and considering (caching,

offloading and local computing) for 𝑀𝑝,𝑞 (task q of SMD p) the

total delay time can be expressed as,

𝜏𝑝,𝑞 = 𝑎𝑞
𝐶𝑟𝑞

𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 + (1 − 𝑎𝑞)[(1 − 𝑏𝑝)𝜏𝑝,𝑞

𝑐𝑙𝑜𝑢𝑑 + 𝑏𝑝𝜏𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙] (7)

Total energy cost of SMD can be denoted as,

𝜖𝑝,𝑞 = (1 − 𝑎𝑞)[(1 − 𝑏𝑝)𝜖𝑝,𝑞
𝑐𝑙𝑜𝑢𝑑 + 𝑏𝑝𝜖𝑝,𝑞

𝑙𝑜𝑐𝑎𝑙] (8)

Here, it can be seen that there is no energy calculation

showed in equation (8) for processing of cached data. Because

as it is discussed earlier in section III-F, there is no consumption

of energy for SMD during the processing of cached data. As our

goal is to reduce energy cost and delay time of SMDs, so there

are some conditions need to be true for task q of SMD p. So it

can be expressed as,

minimize a,b ∑
𝜏𝑝,𝑞

𝑃𝑟𝑝,𝑞

𝑃
𝑝=1 (9)

s.t. ∑ 𝑎𝑞𝑠𝑞 ≤ 𝐶𝑠𝑞
𝑞=1

 ∑ 𝑏𝑝𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 ≤ 𝐶𝑐𝑃

𝑝=1

 𝜏𝑝,𝑞 ≤ 𝐷𝑙𝑝

 𝑎𝑞 ∈ {0,1}

 𝑏𝑝 ∈ {0,1}

This five constraint conditions and the objective function will

give us the minimal energy consumed by the SMD n. The first

condition is the size of data which needs to be cached cannot be

bigger than the edge cloud capacity. The second condition

describes that the required resource cannot overcome the

resource capacity of edge cloud. The third condition ensures the

task duration should not exceed the deadline. The forth

condition shows the decision variables are binary variables (0,

1). And the last condition shows that the task can be separated.

Fig. 3. PrO scheme (priority-based task offloading and caching for MEC to

reduce delay time and energy cost of SMD).

Thus our main target is to assure user satisfaction by

minimizing the delay time and energy cost of SMD, a priority-

based task offloading and caching scheme is proposed to meet

the target. In fig. 3, our priority-based task offloading and

caching scheme (PrO) is shown, where the tasks Q of user SMD

P are prioritized in an efficient way to reduce the delay time and

energy cost of SMDs. In equation (9), ∑
𝜏𝑝,𝑞

𝑃𝑟𝑝,𝑞

𝑃
𝑝=1 is the formula

that shows that higher the output of this formula higher the

priority will be for a task. The task with the highest value will

be executed locally. The other task will be offloaded to the edge

cloud in the decreasing order of the output of equation (9).

IV. DELAY EFFICIENT TASK OFFLOADING AND CACHING

The equation (9) ∑
𝜏𝑝,𝑞

𝑃𝑟𝑝,𝑞

𝑃
𝑝=1 where, it is shown that the

minimization of delay time depending on the decision variables

of task offloading and caching a, b. Now both joint optimization

problem will be considered as two sub problems. Where first,

the optimization of energy efficient task offloading in IV-A will

be shown and in the second section, the optimization of energy

efficient task caching in IV-B will be discussed.

A. Delay Efficient Task Offloading

For delay efficient task offloading scheme, the decision

variable of task caching 𝑎 = 𝑎0 that means it is considered, the

delay efficient task caching as optimal solution 𝑎0. Now the

objective function becomes the convex optimization problem of

b. It can be shown as,

𝐹(𝑏) = ∑ 𝑎𝑞
0 𝐶𝑟𝑞

𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 + (1 − 𝑎𝑞

0)𝑃
𝑝=1 [(1 − 𝑏𝑝)𝜏𝑝,𝑞

𝑐𝑙𝑜𝑢𝑑 +

 𝑏𝑝𝜏𝑝,𝑞
𝑙𝑜𝑐𝑎𝑙] (10)

S. ISLAM et al.: PRIORITY-BASED OFFLOADING AND CACHING IN MOBILE EDGE CLOUD 197

Now, the conditions for the optimization problem of delay

efficient task offloading can be obtained as,

minimize 𝑏
 𝐹(𝑏)

𝑃𝑟𝑝,𝑞
 (11)

s.t. ∑ 𝑏𝑝𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 ≤ 𝐶𝑐𝑃

𝑝=1

 𝜏𝑝,𝑞 ≤ 𝐷𝑙𝑝

 𝑏𝑝 ∈ {0,1}

Now from here, the optimal solution of delay efficient task

offloading 𝑏∗ can be measured by using optimization method

like interior point method.

B. Delay Efficient Task Caching

Now for delay efficient task caching, the solution of delay

efficient task offloading will be the optimal one 𝑏 = 𝑏∗. So, the

objective function becomes the function of a. The optimal

solution can be obtained by using branch and bound algorithm

which can convert the problem into (0-1) integer programming

problem. So the objective function can be shown as,

𝐺(𝑎) = ∑ 𝑎𝑞
𝐶𝑟𝑞

𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 + (1 − 𝑎𝑞)𝑃

𝑝=1 [(1 − 𝑏𝑝
∗)𝜏𝑝,𝑞

𝑐𝑙𝑜𝑢𝑑 +

 𝑏𝑝
∗𝜏𝑝,𝑞

𝑙𝑜𝑐𝑎𝑙] (12)

Now, the conditions for the optimization problem of delay

efficient task caching can be obtained as,

minimize a
𝐺(𝑎)

𝑃𝑟𝑝,𝑞
 (13)

s.t. ∑ 𝑏𝑝𝜇𝑝
𝑐𝑙𝑜𝑢𝑑 ≤ 𝐶𝑐𝑃

𝑝=1

 𝜏𝑝,𝑞 ≤ 𝐷𝑙𝑝

 𝑎𝑞 ∈ {0,1}

From here, the optimal solution of delay efficient task

caching 𝑎0 can be measured.

Now, the estimated optimal solution of joint optimization

problem of delay efficient task offloading and caching can be

measured by understanding the linear iterative algorithm.

V. PERFORMANCE SETUP AND MEASUREMENT

As mentioned earlier in the section III-A, for number of users

P, Q number of computation intensive tasks need to be

executed. For that, one edge cloud is considered having

available resources for task computation at the edge of the

cellular network. SMD uses the wireless channel to offload the

task to the edge cloud. So, it is assumed that the wireless

channel gain as 𝐻𝑝which is defined as 𝐻𝑝= 127+30×logd. Here

d is the distance between the user SMD and the edge cloud. It

is also needed to assume the transmission power 𝑃𝑝 and

bandwidth B of SMD to offload the task to the edge cloud are

0.5 W and 20 MHz. Besides, the equivalent noise power is

assumed as 𝜎2=2 × 10−13. Moreover, it is assumed that the

computing capacity of SMD and edge cloud are 1 GHz and 25

GHz. Task popularity 𝑇𝑝𝑞 is calculated from the number of

request for the task using Zipf distribution. By using probability

distribution: normal distribution and uniform distribution [12],

the data size 𝑆𝑞 and required computing resource 𝐶𝑟𝑞 for the

task 𝑀𝑝,𝑞 are assumed. Cloudsim simulator [13] is used to

compare the outcome of our proposed priority-based task

offloading and caching scheme (PrO) and the other schemes

like task femto- caching and offloading (TFO) scheme [14],

suboptimal solution scheme (SOS) [15] and task caching and

offloading (TCO) scheme [1].

A. Operative Offloading and Caching Assessment

The strategy of task caching, offloading and local computing

for priority-based task offloading and caching (PrO) and the

consequences of their action are briefly discussed below. It will

help to understand the working process of the proposed priority-

based task offloading and caching scheme (PrO).

Consequences of task caching: To measure the priority-based

task offloading and caching scheme (PrO), it is needed to

measure the task caching policy. The effect of task caching

depends on the condition applied in the caching strategy. The task

which offloaded first will be cached first at the edge cloud. The

offloaded tasks will be cached as per priority of tasks until

reaching the cache capacity of edge cloud. Before offload or local

execution of every task it will be checked whether the task is

already cached or not at edge cloud.

Consequences of task offloading: The task data will be

offloaded to the edge cloud after checking whether the task data

is already cached or not. Task data will be offloaded to the edge

cloud based on the priority of the task. The tasks with higher

priorities will be offloaded first (except the task with the highest

priority which will be executed locally). For task offloading to

the edge cloud, the tasks should fulfil the conditions mentioned

in section III-G or task will be computed locally instead of

offloading to the edge cloud.

Consequences of local computing: For local computing, the

task with the highest priority will be computed locally after

checking whether the task is already cached or not. If the task

with the highest priority is already cached than the next task with

the maximum priority will be computed locally. The reason of

exhausting MEC is to compute the intensive task at the edge

cloud instead of SMD to reduce delay time and energy cost of

SMD. But in this paper, it is considered that the task with the

highest priority will be computed locally instead of offloading to

the edge cloud to get more user satisfaction. It may cause some

energy loss of SMD but it is delay efficient. Besides, the task

which doesn’t fulfil the conditions mentioned in section III-G

will be computed locally instead of offloading to the edge cloud.

B. Performance Evaluation

In performance evaluation, the delay time and energy

consumption of user’s SMD P for different task data size, edge

cloud cache size, required computation capacity per task and

number of users has been presented in graphical figure (fig. 4;

fig. 5). It will be compared between task femto-caching and

offloading (TFO) scheme [14], suboptimal solution scheme

(SOS) [15], task caching and offloading (TCO) scheme [1] and

priority-based task offloading and caching scheme (PrO). In fig.

4: the energy consumption of user SMD for different task data

size, edge cloud cache size, required computation capacity per

task and number of user will be shown. And in fig. 5, the delay

198 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

time of user SMD for different task data size, edge cloud cache

size, required computation capacity per task and number of user

will be shown.

Suboptimal solution scheme (SOS): Suboptimal solution is

a low complexity cache assisted offloading scheme to

reduce the energy cost of MEC system. For that, three

parameters for each task have been considered: size of the

task data, required computing resource (workload) and

size of the computation result. Besides, it also considers

the task popularity and randomness in requirements of the

task.

Task femto-caching and offloading (TFO): For TFO

scheme, it considers the task data size, required computing

resource and task popularity to a certain level. Caching

capacity of edge cloud is set as void at the beginning.

Femto-caching caches the computing task

 data which causes the lowest of total energy cost. Until

caching capacity of edge cloud is over, cache the task data

iteratively.

Task caching and offloading (TCO): In TCO scheme, tasks

are cached, offloaded and computed locally considering

task popularity, data size and required resource but it

doesn’t maintain any certain strategy or formula to order

the tasks. Though, the simulation result of TCO scheme

showed a great result in terms of minimizing the energy

cost and computation delay of user SMD.

Priority-based task offloading and caching (PrO): In this

paper, priority-based task offloading and caching is

proposed to assure more user satisfaction. In PrO scheme,

the tasks are cached, offloaded and computed locally

maintaining the order of the tasks based on their priority.

This (PrO) scheme is able to reduce more delay time and

energy cost than any other schemes proposed earlier.

C. Impact of PrO Scheme on Energy Consumption and Delay

Time

The impact of priority-based task offloading and caching

(PrO) on energy consumption and delay time is compared with

task femto-caching and offloading (TFO) scheme, suboptimal

solution scheme (SOS) scheme, and task caching and

offloading (TCO) scheme. In fig. 4 and fig. 5, it is clear that our

PrO scheme has better impact than the other schemes.

Impact of PrO scheme on energy consumption: In illustration

of performance evaluation in fig. 4, it is clearly seen that the

proposed PrO scheme reduces more energy cost than the FTO,

SOS and TCO schemes. In fig. 4(a), it also shows that bigger

the data size, the higher the energy cost. In fig. 4(b), it can be

seen that required computation capacity almost has the same

impact as the task data size. In fig. 4(c), it shows the impact of

number of user on the energy consumption. In fig. 4(d), it shows

the impact of edge cloud cache size on energy cost, the larger

the cache size, the lower the energy consumption. In fig. 4, it is

clear that our proposed priority-based task offloading and

(a) Size of task data (b) Required computation capacity of task

(c) Number of mobile users (d) Edge cloud cache size

Fig. 4. Impacts of energy consumption on performances over the studied systems. The initial setting is p = 25, 𝐶𝑠
 = 500MB, 𝐶𝑟𝑞 (using

normal distribution) average of 0.6 gigacycles per task, 𝑆𝑞 (using uniform distribution) average of 60 MB.

S. ISLAM et al.: PRIORITY-BASED OFFLOADING AND CACHING IN MOBILE EDGE CLOUD 199

caching scheme (PrO) is more energy efficient than any other

schemes proposed earlier.

Impact of PrO scheme on delay time: In illustration of

performance evaluation in fig. 5, it is clearly seen that the

proposed PrO scheme reduces more delay time than the FTO,

SOS and TCO schemes. Although, in this paper, the queuing

time for each computing task is considered. In fig. 5(a), it also

shows that larger the data size, the higher the delay time. In fig.

5(b), it can be seen that required computation capacity almost

has the same impact as the task data size. In fig. 5(c), it shows

the impact of number of user on the delay time. In fig. 5(d), it

shows the impact of edge cloud cache size on delay time, the

greater the cache size the lower the delay time. In fig. 5, it is

clear that our proposed priority-based task offloading and

caching scheme (PrO) is more delay efficient than any other

schemes proposed previously.

VI. CONCLUSION

In our paper, a priority-based task offloading and caching

scheme (PrO) is proposed for mobile edge computing. Our main

target is to prioritize the computing task in a certain way that

can reduce energy cost and delay time efficiently. The proposed

solution helps us to decide which task to cache first and which

or how much task to offload to the edge cloud. The queuing

time is also considered along with transmission time and

processing time to calculate the total execution time of a task

for MEC.

The task with the highest priority is decided to compute

locally to achieve the maximum user satisfaction. For that, a

weighted priority is proposed using four most concerned

aspects related to the task (task popularity, data size, deadline

and computing resource). The joint optimization problem (task

offloading and caching) is considered as mixed integer

nonlinear programming. Here, sufficient algorithmic steps is

provided to solve this joint optimization problem. In

comparison to other schemes, the simulation result of our

proposed scheme is more user efficient (less energy cost and

delay time). For future work, there are some potential directions

to extend the recent work. Joint user scheduling can be a

potential direction for further research. Proper resource

allocation for the task can gratify the low latency requirement

and can reduce more energy cost. And finally, cooperative

computation among close edge clouds (multi-edge cloud) can

improve the performance of priority-based task offloading and

caching scheme (PrO) for MEC.

REFERENCES

[1] Yixue Hao, Min Chen, Long Hu, M Shamim Hossain, and Ahmed

Ghoneim. Energy efficient task caching and offloading for mobile edge

computing. IEEE Access, 6:11365–11373, 2018. DOI:
10.1109/ACCESS.2018.2805798.

(a) Size of task data (b) Required computation capacity of task

(c) Number of mobile users (d) Edge cloud cache size

Fig. 5. Impacts of delay time on performances over the studied systems. The initial setting is p = 25, 𝐶𝑠
 = 500MB, 𝐶𝑟𝑞 (using normal

distribution) average of 0.6 gigacycles per task, 𝑆𝑞 (using uniform distribution) average of 60 MB.

200 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 2, JUNE 2019

[2] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim.

Energy-efficient resource allocation for mobile-edge computation
offloading. IEEE Transactions on Wireless Communications, 16(3):1397–

1411, 2017. DOI: 10/1109/TWC.2016.2633522.

[3] Ridhi Sharma et al. Computation offloading in mobile cloud computing.
International Journal of Current Trends in Science and Technology,

7(12):20501–20510, 2017.

[4] Yonggang Wen, Weiwen Zhang, and Haiyun Luo. Energy-optimal mobile
application execution: Taming resource-poor SMDs with cloud clones. In

INFOCOM, 2012 Proceedings IEEE, pages 2716–2720. IEEE, 2012.

[5] Min Chen, Yixue Hao, Meikang Qiu, Jeungeun Song, Di Wu, and Iztok
Humar. Mobility-aware caching and computation offloading in 5g

ultradense cellular networks. Sensors, 16(7):974, 2016.

[6] Xiuhua Li, Xiaofei Wang, Keqiu Li, and Victor CM Leung. Caas: Caching
as a service for 5g networks. IEEE Access, 5:5982–5993, 2017. DOI:

10.1109/ACCESS.2017.2689678.

[7] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user
computation offloading for mobile-edge cloud computing. IEEE/ACM

Transactions on Networking, (5):2795–2808, 2016.

[8] Anupam Bonkra and UG Student. Survey on computational offloading in
mobile cloud computing environment. International Journal of

Engineering Science, 11893, 2017.

[9] Neil Williams, Kheng Cher Yeo, and Sami Azam. Cost effective analysis
of web based transmission. In Computational Intelligence for

Communication Systems and Networks (CIComms), 2013 IEEE

Symposium on, pages 72–78. IEEE, 2013.
[10] Fernaz Narin Nur and Nazmun Nessa Moon. Health care system based on

cloud computing. Asian Transactions on Computers, 2(5):9–11, 2012.

[11] Antti P Miettinen and Jukka K Nurminen. Energy efficiency of mobile
clients in cloud computing. HotCloud, 10:4–4, 2010.

[12] Ke Zhang, Yuming Mao, Supeng Leng, Quanxin Zhao, Longjiang Li, Xin

Peng, Li Pan, Sabita Maharjan, and Yan Zhang. Energy-efficient
offloading for mobile edge computing in 5g heterogeneous networks.

IEEE access, 4:5896–5907, 2016. DOI: 10.1109/ACCESS.2016.2597169

[13] Cloud simulator cloudsim. http://code.google.com/p/cloudsim. Accessed:
2018-07-30.

[14] Karthikeyan Shanmugam, Negin Golrezaei, Alexandros G Dimakis,

Andreas F Molisch, and Giuseppe Caire. Femtocaching: Wireless content
delivery through distributed caching helpers. IEEE Transactions on

Information Theory, 59(12):8402–8413, 2013.
[15] Ying Cui, Wen He, Chun Ni, Chengjun Guo and Zhi Liu. Energy-Efficient

Resource Allocation for Cache-Assisted Mobile Edge

Computing.arxiv.org/abs/1708.04813v1.IEEE.
DOI:10.1109/LCN.2017.112.

Saiful Islam attained his B.Sc. degree in Computer
Science and Engineering from Daffodil International

University, Bangladesh. His research interests in Cloud

Computing, Cloud Security and Computer Networking.

Dr. Fernaz Narin Nur received her B.Sc. (Hons)
from the Department of Computer Science and

Engineering, Jahangirnagar University, Bangladesh in

2008 and M.S. from Institute of Information
Technology, University of Dhaka, Bangladesh in

2010. She obtained her Ph.D. degree from the

Department of Computer Science and Engineering,
University of Dhaka, Bangladesh. She is now working as an Assistant Professor

in the department of CSE of Daffodil International University, Bangladesh. She
is a member of GNR (Green Networking Research group), IEEE, Bangladesh

Women in IT. Her research interests include Wireless Sensor Network,

Directional Wireless Sensor Network, Ad Hoc Networks, MAC Protocols,
Performance Analysis, etc.

Nazmun Nessa Moon is a PhD student in the Department
of CSE, BUET, Bangladesh. She received her B.Sc.

(Hons) from the Department of Computer Science and

Engineering, RUET in 2004 and MSc from Institute of
Information Communication Technology, BUET in 2012.

Her research interests include Graph Drawing and

Algorithm, Graph Theory, Bioinformatics, Internet of
Things. She is working in Daffodil International University since 2012.

Asif Karim is a PhD researcher at Charles Darwin

University, Australia and lives in the port city of Darwin.
His research interest includes Machine Intelligence and

Cryptographic Communication. He is currently working
towards the development of a robust and advanced email

filtering system primarily using Machine Learning

algorithms. Asif has considerable industry experience in
IT, primarily in the field of Software Engineering.

Dr. Sami Azam is a leading researcher and lecturer at the

college of Engineering and IT of Charles Darwin

University, Australia. He is actively involved in the
research fields relating to Computer Vision, Signal

Processing, Artificial Intelligence and Biomedical

Engineering. Dr. Azam has number of publications in
peer reviewed journals and international conference

proceedings.

Dr. Bharanidharan Shanmugam is a research intensive

lecturer at the college of Engineering and IT of Charles

Darwin University, Australia. He has a large number of

publication in several different journals and conference

proceedings. Dr. Shanmugam’s research interest mainly
revolves around the field of Cybersecurity.

S. ISLAM et al.: PRIORITY-BASED OFFLOADING AND CACHING IN MOBILE EDGE CLOUD 201

