
762 Technical Gazette 26, 3(2019), 762-770

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20190417093740
Original scientific paper

Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program
Suspected Faults

Honglei ZHU, Dahai JIN, Yunzhan GONG

Abstract: Static analysis plays an important role in the software testing field. However, the initial results of static analysis always have a large number of false positives,
which need to be confirmed by manual or automatic tools. In this paper, a novel approach is proposed, which combines the demand-driven analysis and the inter-procedural
dataflow analysis, and generates the inter-procedural diagnosis paths to help the testers confirm the suspected faults automatically. In our approach, first, the influencing
nodes of suspected fault are calculated. Then, the CFG of each associated procedure is simplified according to the influencing nodes. Finally, the “section-whole” strategy
is employed to generate the inter-procedural diagnosis path. In order to illustrate and verify our approach, an experimental study is performed on the five open source C
language projects. The results show that compared with the traditional approach, our approach requires less time and can generate more inter-procedural diagnosis paths
in the given suspected faults.

Keywords: automatic confirmation; path generation; static analysis; suspected fault

1 INTRODUCTION

Software testing is an inevitable step in software
development, and it accounts for more than 50% of the cost
of software development [1, 2]. In order to detect and repair
the faults existing in the software as soon as possible,
testers often analyze the program with the aid of defect
detection tools [3,4], such as Astrée [5], DTS [6],
Klocwork, etc. These tools employ the static analysis
techniques and have some features such as the high defect
detection rate, accurate fault location and high degree of
automation. Due to the conservatism of static analysis, the
initial results of static analysis tend to have a large number
of false positives, testers need to confirm the initial results
of static analysis by manual or automated confirmation
tools [7, 8]. Therefore, to determine whether a suspected
fault point is a real fault, all the execution status of
suspected fault point or all the paths that go through the
suspected fault point should be calculated [9]. However, in
general, the actual application programs may have a lot of
function calls, and the simple intra-procedural analysis
cannot accurately determine whether the fault is a false
positive [10]. To improve the accuracy of the suspected
fault confirmation, it needs to analyze the whole paths from
the entry point of the program or the external input points
of the program to the suspected fault point [11].

Fig. 1 shows a C language code segment with an
invalid arithmetic operation (IAO) suspected fault which
was detected by DTS (defect testing system) at line 14. If
the suspected fault was confirmed only by analyzing the
procedure func2, it would be considered as a real fault.
Because the parameter c can take the value from infinity to
minus infinity during the intra-procedural data flow
analysis, accordingly, the variable c at line 14 may take the
value zero which gives rise to an IAO fault. However, the
variable c cannot take the value zero by the inter-
procedural analysis, and the inter-procedural diagnosis
path 3-4-5-17-18-19-21-9-10-11-12-13-14 can be used for
determining the IAO fault is a false positive. Therefore, in
this paper, we target at the problem of inter-procedural
diagnosis path generation for automatic confirmation of
program suspected fault, which not only can make the

confirmation of suspected fault accurately but also can help
the developers to repair the fault.

1 void foo()
2 { …
3 scanf(“%d%d”, &x, &y);
4 if (y>0)
5 { z = func1(y);
6 x = func2(x, y, z);
7 …
8 }
9 int func2(int a, int b, int c)
10 { float t;
11 if(c<10)

12 b=func1(a)
13 if(a>0)
14 t=1/c; //IAO
15 ...
16 }
17 int func1(int m)
18 {if (m>0)
19 return 1;
20 return 0;
21 }

Figure 1 An example of illustrating the importance of inter-procedural diagnosis

path

The previous studies on suspected fault confirmation
are mainly dependent on the execution traces or execution
states which are generated by backward symbolic
execution or backward inference [12-17]. Some
researchers proposed the method called postcondition
symbolic execution that eliminates redundant paths
without reducing the search space during symbolic
execution [18], while others use the fault correlation to
identify suspected faults [19, 20]. Unfortunately, although
these prior techniques can mitigate the risk of path
explosion posed by forwarding symbolic execution [21],
they also have some limitations, such as only analyzing the
local program, using the function summary represents the
concrete execution of callee during the inter-procedural
analysis, which fail to guarantee complete accuracy of
suspected fault confirmation and obtain the inter-
procedural diagnosis paths to fix the fault [22-24].
Furthermore, due to only 43% of the nodes, and 52% of the
function being useful during fault detection [25], it is
important to prune the irrelevant nodes and functions
during the generation of inter-procedural diagnosis paths,
because it not only can accelerate the determination of
diagnosis path feasibility but also can mitigate the risk of
path explosion and indirectly improve the efficiency of
suspect fault confirmation.

In this paper, we present a novel approach that
combines the demand-driven analysis and the inter-

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

Tehnički vjesnik 26, 3(2019), 762-770 763

procedural data flow analysis to generate the inter-
procedural diagnosis paths. Compared with the existing
approaches, it has the following characteristics: Firstly, the
backward analysis based on the demand-driven can omit
the irrelevant predicates and procedures during the
generation of inter-procedural diagnosis path. Secondly,
unlike the existing approaches that use the intraprocedural
analysis or simplified inter-procedural analysis, our
approach employs the accurately inter-procedural analysis,
which can derive benefit from improving the accuracy of
suspected fault confirmation and can aid the developers to
fix the faults. Thirdly, the "section-whole" strategy is
adapted to generate the inter-procedural diagnosis paths,
which can improve the scalability of the approach. We
have evaluated the approach on five open source C
language projects, and the experimental results show that
our approach requires less time and can generate more
inter-procedural diagnosis paths in the given suspected
faults.

The contribution of this paper is as follows:
• We present a novel approach that combines the

demand-driven analysis and the inter-procedural data
flow analysis to generate the inter-procedural
diagnosis paths related to the confirmation of
suspected faults.

• Our approach employs the "section-whole" strategy to
construct the inter-procedural diagnosis path.

• Experimental studies, using five open source C
language programs to illustrate the effectiveness and
accuracy of our approach.

The rest of this paper is organized as follows: Section

2 surveys related work. Section 3 introduces some basic
terms that will be used in this paper. Section 4 presents the
approach and describes it in detail. Section 5 describes the
experiment and evaluation. Section 6 concludes this paper.

2 RELATED WORK

Since a forward symbolic execution is non-demand-
driven, it has to explore many paths that are not relevant to
the suspected fault [19]. Recently, many post-failure-
process approaches have been proposed for confirming the
suspected faults, which use the backward symbolic
execution or backward inference to generate the execution
traces or execution states [12-17]. Manevich et al. [12]
proposed a typical post-failure-process approach PSE
which performs postmortem data-flow analysis to explain
program failures with minimal information. However, PSE
does not take into account the influencing nodes related to
program failures, which may increase the time of
computation. Cheng et al. [13] proposed an automatic
verification method for suspected faults based on finite
backtracking symbolic execution. Dillig et al. [14]
proposed a new technique for assisting users in classifying
error reports when automated static analyses fail to verify
a program, and their technique allows verification tools to
interact with users by computing small, relevant queries
that capture exactly the facts that the analysis is missing to
either verify the program or prove the existence of a real
error. It is different from our approach which can generate
an inter-procedural diagnosis path to help the developers
confirm and fix the real fault. Chen et al. [15] proposed

STAR, a novel approach which first computes the crash
triggering precondition using a backward symbolic
execution, and then identifies the complete crash path and
constructs real test cases that can actually reproduce the
crash. Although our approach is similar to this approach,
our approach only takes into account the influencing nodes
that are relevant to the suspected fault during the backward
traversal CFG, which avoid generating a large number of
redundant paths. In addition, the "section-whole" strategy
is employed to alleviate the risk of path explosion. Yao et
al. [16] proposed StatSym, a novel, automated Statistics-
Guided Symbolic Execution framework that integrates the
swiftness of statistical inference and the rigorousness of
symbolic execution techniques to achieve precision,
agility, and scalability in vulnerable program path
discovery. Kasikci et al. [17] proposed failure sketching,
an automated debugging technique that provides
developers with an explanation of the root cause of a failure
that occurred in production. Their approach combines
static program analysis with a cooperative and adaptive
form of dynamic program analysis, while our approach is
a purely static approach.

3 PRELIMINARIES

To help the reader to better understand this paper, in
this section we review some basic terms that will be used
throughout the paper.

A control flow graph (CFG) of program P can be
denoted as a four-tuple <N, E, s, e>, where N is a set of
nodes, E is a set of edges, s is the unique entry node and e
is the unique exit node. A node n ∈ N represents a
statement of P, an edge (ni, nj) ∈ E represents the control
flow from statement ni to statement nj. A program can be
represented as an inter-procedural control flow graph
(ICFG), which intuitively is the union of control flow
graphs for individual procedures comprising the program
[26].

A Use-Definition Chain (UD Chain) is a data structure
that consists of a use U of a variable, and all the definitions
D of that variable that can reach that use without any other
intervening definitions. A definition can have many forms
but is generally taken to mean the assignment of some
value to a variable. A counterpart of a UD Chain is a
Definition-Use Chain (DU Chain), which consists of a
definition D of a variable and all the uses U reachable from
that definition without any other intervening definitions. A
definition of variable n can be denoted as a four-tuple <S,
C, V, P>, where S represents the definition expression of
variable n, C represents a list of constants located in the
definition expression, V represents a list of variables
located in the definition expression, and P represents the
location of variable n.

In a CFG, a node u dominates a node n if and only if
every path from the entry node to n contains u. A node n
post-dominates a node u if and only if every path from u to
the exit node contains n. A node y is control dependent on
a node x if and only if x has successors x' and x" such that
y post-dominates x' but y does not post-dominate x".
Furthermore, we say that node y is transitively controlled
dependent on node x if there is a sequence of nodes, x = x0,
x1 … xn = y, such that xj is control dependent on xj −1, 1 ≤ j
≤ n. Let a node n (transitively) control be dependent on a

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

764 Technical Gazette 26, 3(2019), 762-770

predicate p, then the predicate p is referred to as direct
influencing predicate with respect to n. In addition, the
predicate of which at least one of its branches contains the
statement that the node n or its direct influencing predicate
data is dependent on is referred to as indirect influencing
predicate with respect to node n.

4 AN APPROACH FOR GENERATING THE INTER-

PROCEDURAL DIAGNOSIS PATHS

In this section, first, we introduce the basic process of
suspected faults confirmation. Then, we describe the basic
idea of our approach by illustrating an example. Finally,
we illustrate the approach in detail.

4.1 Approach Overview

Fig. 2 shows the basic process of suspected faults
confirmation. First, the trigger condition of suspected fault
is obtained by recognizing the type of suspected fault.
Then, according to the associated variables and the trigger
condition of a suspected fault, we backward analyze the
inter-procedural control flow and inter-procedural data
flow. After that, with the feasibility analysis of path, the
inter-procedural paths are generated by employing the
"section-whole" strategy. Finally, if there is a feasible path
in the generated paths, along which the suspected fault can
be triggered, then the suspected fault is confirmed as a real
fault and the path is called the diagnosis path. Otherwise,
if all the generated paths are either infeasible or fail to
trigger the suspected fault, then the suspected fault is
identified as a false positive case.

Static
analysis

Report of
suspected

faults

Suspected fault

Calculating the influencing
predicates

Simplifying the CFG Results of
confirmation

confirmation of suspected fault

Intra-procedural diagnosis
path generation

Inter-procedural diagnosis
path generation

Trigger
condition

infeasibility
analysis

 diagnosis path generation

Automatic
confirmation

Figure 2 The basic process of suspected faults confirmation

The highlighted dotted rectangle in Fig. 2 represents

the basic process of inter-procedural diagnosis paths
generation. First, according to the associated variables of a
suspected fault, we calculate the influencing predicates
related to the suspected fault. Then, the CFG of associated
procedures is simplified by pruning the non-influencing
predicates nodes and the irrelevant statement nodes.
Finally, with the "section-whole" strategy, the inter-
procedural diagnosis path is generated, which depends on
the generation of intra-procedural diagnosis path.

To better understand the basic idea of our approach,
the code segment in Fig. 1 is used to illustrate the basic
process of inter-procedural diagnosis of path generation.
The associated variable and trigger condition of IAO
suspected fault located at line 14 is variable c and
constraint condition c ≠ 0, respectively. The influencing
predicates of this suspected fault are a > 0, y > 0, and m >
0 located at line 13, line 4, and line 18, respectively, which
can be calculated by the inter-procedural data flow

analysis. Accordingly, the associated procedures of this
suspected fault are func2(), foo(), and func1(), the non-
influencing predicate is c< 10 located at line 11. The
statements located at line 11 and line 12 are considered as
the irrelevant statements of the suspected fault, which
should be pruned in the CFG of func2(). Therefore, the
intra-procedural diagnosis path 9-10-13-14 can be
generated by traversing the simplified CFG of func2(),
which is a feasible path. After that, the inter-procedural
paths 3-4-5-17-18-19-21-9-10-13-14 and 3-4-5-17-18-20-
21-9-10-13-14 can be obtained by employing the "section-
whole" path generation strategy, however, the path 3-4-5-
17-18-20-21-9-10-13-14 is an infeasible path because of
the existence of conflicting path constraint conditions Y >
0 and Y < 0. Therefore, the inter-procedural path 3-4-5-17-
18-19-21-9-10-13-14, which can trigger the IAO suspected
fault, is considered as the inter-procedural diagnosis path
of this IAO fault. Obviously, through inter-procedural data
flow analysis and the CFG simplification, one non-
influencing predicate and one statement contained a callee
are pruned, four inter-procedural paths are reduced during
the backward diagnosis path generation, and the path
constraint of diagnosis path has fewer constraint
conditions.

4.2 Influencing Predicates Calculation

The influencing predicates calculation can be
considered as the first phase of our approach. A report of
suspected faults is obtained after the code static analysis,
from which we can extract the essential information of
suspected fault. And the essential information of a
suspected fault can be denoted as a four-tuple <N, T, L, V>,
where N, T, L, and V represent the fault ID, fault type, fault
location, and the associated variables of fault, respectively.
The fault location also can be denoted as a three-tuple <F,
P, S>, where F, P, and S represent the file name, procedure
name, and the line number, respectively.

To calculate the influencing predicates of the
suspected fault, the essential information of the suspected
fault is extracted firstly. Then, according to the essential
information, we can obtain the direct influencing
predicates of the suspected fault by the (transitively)
control dependent analysis. After that, using the Use-
Definition chain [27], we compute the definition
statements of the associated variables of the suspected fault
and the variables located in the direct influencing
predicates. Through these definition statements, similar to
the calculation of direct influencing predicates, the indirect
influencing predicates of the suspected fault can be
obtained by the (transitively) control dependent analysis.
Since there are a large number of pointer aliases in the C
program, and the backward analysis based on the demand-
driven is adopted during the generation of inter-procedural
diagnosis path. The method proposed by Zheng et al. is
used to deal with pointer aliases in this paper [28]. Finally,
we iteratively compute the definition statements of the
variables located in the definition statements and the
indirect influencing predicates, and the iterative operation
will not stop until the value of each relevant variable
depends on either the value of an external input source or a
constant. The external input source contains the standard
input stream functions such as scanf() and getchar(),

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

Tehnički vjesnik 26, 3(2019), 762-770 765

memory allocation functions such as malloc(), calloc() and
realloc(), and the parameters of main procedure, etc.
Accordingly, the rest of the indirect influencing predicates
also can be obtained by the iterative calculation. Finally,
the influencing predicates of a suspected fault can be
obtained by combining its direct influencing predicates and
indirect influencing predicates.

Algorithm 1: Influencing predicates calculation
Input: a suspected fault SF
Output: a set PS of influencing predicates
Begin
1 PS = Φ, VS = Φ;
2 PS←CD(SF);
3 VS←SF.V；
4 if (PS ≠ Φ) then
5 for (each p in PS) do
6 TVS= Φ;
7 TVS←ExtraVar(p);
8 VS←TVS ∪ VS;
9 endfor
10 endif
11 for (each v in VS) do
12 PreCalc(v);
13 endfor
14 return PS;
15 PreCalc(v){
16 VS'= Φ;
17 for(each ds in UD(v)) do
18 VS1’=Φ, PS’= Φ;
19 if (ds ∉ ES) then
20 PS'←CD(ds);
21 PS = PS ∪ PS';
22 VS'←ExtraVar(ds));
23 VS1'←ExtraVar(CD(ds));
24 VS' = VS' ∪ VS1';
25 for(each v’ in VS') do
26 PreCalc(v');
27 endfor
28 endif
29 endfor
30 }
End

Algorithm 1 is an algorithm for calculating the

influencing predicates of a suspected fault. The symbols SF
and SF.V in algorithm 1 represent a suspected fault and the
associated variables of a suspected fault, respectively. The
functions CD(s), UD(v), and ExtraVar(s) are the functions
that used to compute the direct influencing predicates of
statement s with the relationship of control dependent, the
definition statements of variable v with the Use-Definition
chain, and the variables or parameters of called function in
the statement s or predicate s, respectively. First, the
algorithm calculates the associated variables of suspected
fault which are considered as the initial value of the set VS
and the direct influencing predicates of suspected fault
which are considered as the initial value of the set PS
(line1-3). If the suspected fault has the direct influencing
predicates, then extracting the variables or parameters that
are located in these influencing predicates and adding them
into the set VS (line4-10). After that, the algorithm
iteratively calculates the indirect influencing predicates of
each variable in the set VS (line11-13). Finally, the
influencing predicates of a suspected fault can be obtained
(line 14). Obviously, the function PreCalc(v) is an iterative

function that is used to calculate the indirect influencing
predicates of variable v. It calculates the definition
statements of variable v first. If a definition statement
locates at an external input source or depends on the
constant, then ends the analysis related to this definition
statement. Otherwise, the direct influencing predicates
related to this definition statement, and the variables or
parameters that located in these influencing predicates and
this definition statement are added into a set of the variable
for iteratively calculating the influencing predicates
(line15-30). It should be noted that if the value of a variable
is dependent on the formal parameter of a function which
is not the main function of a program, then the definition
statements of the corresponding actual parameter related to
the formal parameter of this function are considered as the
definition statements of this variable.

To better understand algorithm 1, an example with
IAO suspected fault in Fig. 1 is used to illustrate the
algorithm. First, through identifying the type of suspected
fault and analyzing the control dependent relationship of a
suspected fault, the variable c and predicate a > 0 are
considered as the associated variable and direct influencing
predicate of a suspected fault, respectively. Then, the
variable c and the variable an extracted from the direct
influencing predicate a > 0 are added into the set VS for
iteratively calculating the indirect influencing predicates of
the suspected fault. After that, we can obtain the definition
statement of variable c(z) at line 5 (the variable z is the
corresponding actual parameter of the formal parameter c
in procedure func2()). With the further calculation, the
direct influencing predicate and relevant variable of this
definition statement also can be obtained, which are the
predicate y > 0 and m > 0, and variable y, respectively. The
parameter y of procedure func1() is regarded as the relevant
variable of definition statement at line 5, and the procedure
func1() should be analyzed in detail because of the value of
variable z depends on the return value of procedure func1(),
and the predicate m > 0 is regarded as the influencing
predicate accordingly. Due to the value of the variable y
depending on the external input, so the predicates a > 0 and
y > 0 are regarded as the influencing predicates related to
variable c. Then, similar to the calculation of influencing
predicates related to variable c, the algorithm continues to
calculate the influencing predicates related to variable a.
Finally, the predicates a > 0 and y > 0 are regarded as the
influencing predicates of the IAO suspected fault. It should
be noted that because the procedure func1() at line 12 has
no side effects on the variables a and c in set VS, it does
not need to be analysed further.

4.3 CFG Simplification

The CFG simplification is the step followed by the
influencing predicates calculation. As we can see from sub-
section 3.2, not all of the statements or the called functions
in a procedure have an effect on a statement or a variable
in the procedure. Similarly, not all of the statements and
the called functions in the fault procedure or other
procedures have an effect on the suspected fault. If we do
not consider these cases during the backward path
generation, then not only the number of the generated path
will increase sharply, but also the path constraint of each

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

766 Technical Gazette 26, 3(2019), 762-770

generated path may contain some irrelevant constraint
conditions for the suspected fault.

To alleviate the risk of path explosion during the
backward path generation and eliminate the irrelevant
constraint conditions to easily determine the path
feasibility, we should simplify the CFG of procedures that
are associated with the suspected fault before the backward
path generation. First, we calculate the relevant procedures
related to the suspected fault by the call graph and the inter-
procedural data flow analysis. Then, we calculate the
irrelevant statements and the called functions by the
calculation of influencing predicates and definition
statements in algorithm 1. Finally, we prune the
corresponding nodes of these irrelevant statements and
called functions in the CFG of the procedure.

func_head_func2_0

decl_stmt_1

if_head_2

stmt_3

if_out_4

if_head_5

stmt_6

if_out_7

...

func_head_func1_0

if_head_1

if_out_3

return_4

func_out_func1_5

return_2

T

F

T

T F

F

func_head_func2_0

if_head_5

stmt_6

if_out_7

...

T

F

The original CFG The simplified CFG
Figure 3 The original and simplified CFGs of func2()

Fig. 3 shows the original and simplified CFGs of

func2() in Fig. 1. In the original CFG, the corresponding
node of IAO suspected fault is node stmt_6. The node
stmt_3 represents the definition statement of variable b, in
which the variable b is determined as the irrelevant variable
of the suspected fault and the called function func1() has
no side effects on the stmt_6 during the influencing
predicates calculation. Therefore, the node stmt_3 is
determined as an irrelevant node, and the called function
func1() does not need to be analyzed in detail. Similarly,
due to the node if_head_2 being regarded as a non-
influencing predicate in the step of influencing predicates
calculation, it is also determined as an irrelevant node.
Finally, the nodes decl_stmt_1, if_head_2, stmt_3, and
if_out_4, and the edges originated these nodes can be
pruned in the original CFG of func2(), and the simplified
CFG of func2() is shown in the right of Fig. 3. By the
backward traversing the simplified CFG from the node
stmt_6, only one path can be generated from the entry of
function func2() to the suspected fault point, which is less
than three paths that are generated by the backward
traversing the original CFG from the node stmt_6.
Additionally, the path constraint of the path generated by
the backward traversing the simplified CFG only has only
one constraint condition, and the path constraint of the path
generated by the backward traversing the original CFG has
at least one constraint condition. Therefore, the CFG
simplification not only can alleviate the risk of path
explosion but also can improve the efficiency of path
feasibility determination.

4.4 Diagnosis of Path Generation

The diagnosis of path generation can be regarded as
the last phase of our approach. Because backward
traversing the Inter-procedural control flow graph (ICFG)
may generate a large number of paths with more constraint
conditions, it is difficult to determine the feasibility of
these paths. Therefore, in order to improve the efficiency
of path feasibility determination and reduce the generation
of inter-procedural paths, the "section-whole" strategy is
employed in this phase, and it divides the diagnosis path
generation into two steps: intra-procedural diagnosis path
generation and inter-procedural diagnosis path generation.

It is necessary to detect the feasibility of a path as early
as possible and prevent the delivery of path infeasibility
during the inter-procedural path generation. The intra-
procedural diagnosis path is generated first, then the inter-
procedural diagnosis path is generated according to the
intra-procedural diagnosis path and the function call
relationship. We use the unsatisfiable path constraint
patterns to detect the infeasible paths during the intra-
procedural and inter-procedural diagnosis path generation
[29]. With the simplified CFG of each associated
procedure and the sequence of function calls related to the
procedure that the suspected fault is located in it, we
backward traverse the simplified CFG from the suspected
fault point or a call site. If a node in the simplified CFG
invokes a procedure which has a direct or indirect effect on
the suspected fault, then the function summary of this
procedure should be calculated. The function summary
contains feasible paths information of the procedure, return
value of the procedure, and the side effects of the
procedure. The explored path which can reach this node
should combine with each of feasible paths of the callee,
and the feasibility of these combined paths should be
determined so that the traversal can continue to be executed
only along these feasible paths. Finally, we can generate
the paths from the entry of procedure to a special point of
procedure, in other words, the intra-procedural diagnosis
paths are generated. It should be noted that the trigger
condition of the suspected fault is regarded as a path
constraint condition when determining the feasibility of the
traversed paths because it can prune many of the traversed
paths.

Generally, although a test case of intra-procedural path
sometimes can trigger the suspected fault, due to the
complex function call relationship may exist in a large
program, the intra-procedural diagnosis path could not
accurately confirm a suspected fault. By the call graph of
the program, the function call sequences related to the
procedure that the suspected fault locates in it can be
calculated. Then, according to the simplified CFG of every
procedure in these sequences, the inter-procedural
diagnosis paths can be calculated by backward traversal
along with these sequences. The traversal will not stop until
all of the external input nodes that the suspected fault data
are dependent on have been traversed.

To better understand the "section- whole" strategy, the
example in Fig. 1 is used to illustrate these two steps. First,
the intra-procedural path of func2() 9-13-14 is generated by
traversing the simplified CFG of func2() from the
suspected fault point. Then, according to the inter-
procedural data-dependent analysis and the function call

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

Tehnički vjesnik 26, 3(2019), 762-770 767

relationship, the simplified CFG of procedure foo() should
be calculated. And due to the procedure func1() located at
line 5 being an associated procedure, the paths in procedure
func1() should be combined with the traversed paths when
the traversing arrives at this node. Two paths 3-4-5-17-18-
20-21 and 3-4-5-17-18-19-21 can be generated by
backward traversing the simplified CFG of foo() from the
node stmt_6, but since the path 3-4-5-17-18-20-21 is an
infeasible path, only the path 3-4-5-17-18-19-21 can
combine with the path 9-13-14 to generate the inter-
procedural path. Finally, the inter-procedural path 3-4-5-
17-18-19-21-9-13-14 is generated, which is determined as
a feasible path. Therefore, this path is regarded as an inter-
procedural diagnosis path of suspected fault IAO.
Compared with the strategy of directly backward
traversing the entire ICFG, the "section-whole" strategy
can detect the feasibility of a path as early as possible and
prevent the transmission of path infeasibility.

5 EVALUATION AND DISCUSSION

In this section, we first introduce the experimental
design and evaluation metrics. Then, we introduce the
experimental results in detail to verify the accuracy and
efficiency of our approach. Finally, we discuss the
experimental results.

5.1 Experimental Design

To evaluate our approach, we conduct experiments on
five open source C language programs. The basic
information of these programs is given in Tab. 1, the
columns File, LOC, Function, SF, RF, and FF represent
the number of files, lines of code, the number of functions,
the number of suspected faults detected by DTS, the
number of real faults and the number of fake faults
confirmed by manual, respectively. To ensure the
effectiveness of the experiments, first, we confirm the
suspected faults of each benchmark by manual, if there is a
test case that can trigger a suspected fault, then the
suspected fault is considered as a real fault (RF). In
contrast, if none of the test cases can trigger a suspected
fault, then the suspected fault is considered as a fake fault
(FF). The number of real faults and fake faults in each
benchmark is shown in Tab. 1. Then, we select 5 real faults
and 5 fake faults from each benchmark by a random
program. Finally, we treat the selected real faults and fake
faults as the seeds.

Table 1 Basic information about the benchmark
Benchmark File LOC Function SF RF FF

spell-1.0 4 1820 26 38 14 24
a200c 37 6584 85 80 23 57
barcode-0.98 15 4166 56 73 26 47
antiword 78 20213 566 112 28 84
sphinxbase 68 22709 576 470 257 213

To better evaluate the efficiency of our approach, we

compare the approach proposed in this paper with the one
that generates the diagnosis paths regarding a suspected
fault by directly backward traversing the whole ICFG. We
count the number of paths traversed by each approach for
the inter-procedural diagnosis path generation and also
count the number of predicates that the traversed paths go

through. In addition, the number of predicates and paths
generated by these two approaches are compared,
respectively. Moreover, we also simply evaluate the
accuracy of our approach. If a suspected fault is a real fault,
and the inter-procedural diagnosis path is not generated by
an approach, then a false negative case is counted for that
approach. In contrast, if a suspected fault is not a real fault,
the inter-procedural diagnosis path is generated by an
approach, then a false positive case is counted for that
approach. Finally, to further illustrate the effectiveness of
our approach, we select a real fault whose inter-procedural
diagnosis path can be generated by each of these two
approaches, and the number of predicates in the inter-
procedural diagnosis path is respectively counted.

5.2 Evaluation Metrics

We use standard Precision and Recall metrics to
evaluate the accuracy of an approach. Precision measures
the actual inter-procedural diagnosis path that is correctly
generated in terms of a percentage of the total number of
inter-procedural diagnosis paths, while Recall measures
the ability of an approach to find the actual inter-procedural
diagnosis path. By using TP, FP, and FN to denote true
positive, false positive and false negative detection results,
respectively, the Precision and Recall can be computed
using Eqs. (1) and (2).

()
TPPrecision

TP FP
=

+
 (1)

()
TPRecall

TP FN
=

+
 (2)

Additionally, we evaluate the efficiency of an

approach by computing its time cost, the total time required
for each benchmark.

5.3 Experimental Results

Tab. 2 lists the experimental results of the two
approaches mentioned above. The first column gives the
name of each benchmark. Columns RF, FF, TravPath, and
TravPre represent the number of real faults taken into
consideration, the number of fake faults taken into
consideration, the number of traversed paths for generating
the inter-procedural diagnosis paths and the number of
traversed predicates for generating the inter-procedural
diagnosis paths, respectively. Columns TP, FP, FN, TN
and Time give the number of the real faults that are
confirmed as the real faults by the diagnosis paths (true
positive cases), the number of the fake faults that are
wrongly confirmed as the real faults by the diagnosis path
(false positive cases), the number of the real faults that
cannot be confirmed as the real faults by the diagnosis
paths (false negative cases), the number of the fake faults
that are confirmed as fake faults by the diagnosis paths
(true negative cases), and the cost time of an approach,
respectively. Furthermore, the columns Approach I and
Approach II represent the approach proposed in this paper
and the approach that generates the inter-procedural

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

768 Technical Gazette 26, 3(2019), 762-770

diagnosis path by directly backward traversing the whole
ICFG, respectively

Tab. 2 shows that, for the 25 real faults in the seeds, 16
inter-procedural diagnosis paths and 12 inter-procedural
diagnosis paths were generated by Approach I and
Approach II, respectively. That is to say, Approach I and
Approach II only can confirm 16 real faults and 12 real
faults respectively, which have 9 false negative cases and
13 false negative cases respectively. For each fake fault in
each benchmark, no diagnosis path is generated during the
experiment (the generated paths are either infeasibility or
fail to trigger the fake fault), that is to say, there is no test

case that can trigger the fake fault. Therefore, these fake
faults are identified as fake faults, and the number of true
negative cases is the same as the number of fake faults.
According to equation (2), Recall values can be calculated.
The former approach achieves higher Recall value than the
latter one and the Recall improvement of the former over
the latter 16% for all the subject programs on average.
Moreover, because neither of these two approaches causes
any false positives for the real faults, each of inter-
procedural diagnosis paths can trigger a real fault. Thus,
the Precision also can be calculated by the equation (1),
and the Precision of each approach is 100%.

Table 2 Experimental results

Benchmark Seed Approach I Approach II
RF FF TraPath TraPre TP FP FN TN Time TraPath TravPre TP FP FN TN Time

spell-1.0 5 5 236 1 013 5 0 0 5 264 647 15942 5 0 0 5 591
a200c 5 5 3938 26174 4 0 1 5 759 17421 374692 3 0 2 5 976
barcode-0.98 5 5 3747 30219 3 0 2 5 872 13487 353746 2 0 3 5 1187
antiword 5 5 6475 76986 2 0 3 5 1 184 10109 428751 1 0 4 5 1409
sphinxbase 5 5 8089 139712 2 0 3 5 1351 13524 681536 1 0 4 5 1593
Total 25 25 22485 274 104 16 0 9 25 4430 55188 1854667 12 0 13 25 5756

To generate the inter-procedural diagnosis paths, we
set the maximum expansion of loop to 1, and the maximum
computation time for one suspected fault to 180 seconds
during our experiments (further increasing the maximum
computation time cannot bring noticeable improvement to
the current experimental results). Accordingly, 22485
paths and 55188 inter-procedural paths were traversed by
Approach I and Approach II respectively, which totally
contain 274104 predicates and 1854667 predicates
respectively. Furthermore, comparing the total time costs
of Approach I and Approach II, Approach I requires 4430
seconds less than Approach II that needs 5756 seconds.
That is to say, in terms of efficiency, Approach I increased
by 29.9% compared with Approach II.

Figure 4 A comparison of the number of predicates in the diagnosis paths

generated by two approaches

Although it is different than the number of inter-

procedural diagnosis paths that were generated by
Approach I and Approach II respectively, for the given real
faults, any of the inter-procedural diagnosis paths that were
generated by Approach II also can be generated by
Approach I. Therefore, to illustrate the advantages of our
approach, we choose a real fault of which the inter-

procedural diagnosis path can be generated by each of
these two approaches from each benchmark program, and
compare the number of predicates included in these two
inter-procedural diagnosis paths. Fig. 4 shows the number
of predicates in two inter-procedural diagnosis paths that
were generated for the same real fault by Approach I and
Approach II, respectively. The orange cylinder represents
the experimental results of Approach I, and the green
cylinder with oblique line represents the experimental
results of Approach II. As we can see from Fig. 4, five
inter-procedural diagnosis paths are generated by
Approach I in which only 72 predicates are traversed
totally, while 171 predicates are traversed for Approach II.
On average, Approach I needs to traverse 12.2 predicates
to generate an inter-procedural diagnosis path while
Approach II needs to traverse 33.6 predicates. Therefore,
the above results show that our approach achieves higher
efficiency than Approach II.

5.4 Discussion

Although the experimental results show that 64% of
the inter-procedural diagnosis paths can be generated for
the real faults by using our approach, there are 9 false
negative cases, which account for 36% of all real faults.
We carefully analyzed all the false negative cases and
found that the following issues still have an effect on the
generation of inter-procedural diagnosis path, such as
complex cyclic structures and arrays, recursive function.

As our approach employs the "0-1" cycle strategy
during the traversal of CFG, if a definition statement of an
associated variable related to the suspected fault locates in
the complex cycle structure, then the accurate data
dependencies of this associated variable cannot be
obtained. Accordingly, if the actual diagnosis path of a real
fault must go through this cycle body, while any traversed
paths through this cycle body may be identified as the
diagnosis path of this real fault, then the exploration of
diagnosis path will continue until the other inter-procedural
diagnosis path is generated or the traversal exceeds the
limitation of maximum computation time. Therefore, the

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

Tehnički vjesnik 26, 3(2019), 762-770 769

complex cycle structure is an influencing condition that
may give rise to a false negative.

Although our approach can prune a lot of redundant
paths and predicates during the diagnosis path generation
by using the analysis of inter-procedural data dependency
and the "section-whole" strategy, if the value of an
associated variable depends on the return value of a
complex function, and the function summary of this
function that has a number of callees with complex
invocation relationship, then the computation of function
summary needs cost much time and the function summary
will have a large number of paths, which would lead to the
diagnosis path being generated in the limited time.
Similarly, the recursive function is also an influencing
condition of diagnosis path generation because of the
complex computation of function summary.

Additionally, from Tab. 1 and Tab. 2, we can see that
the more functions or lines in the program, the more
difficult to generate an inter-procedural diagnosis path,
especially the traditional approach that uses the directly
backward traversing ICFG strategy to generate the inter-
procedural diagnosis path. Therefore, compared with the
traditional approach, although our approach may give rise
to some false negative cases and need to improve in some
aspects, such as the processing of complex cycle structure
and recursive function, the generation of function summary
for the complex function, the Recall value of our approach
increases by 16%, and both the number of traversed paths
and the number of traversed predicates for generating the
inter-procedural diagnosis path are greatly reduced.

6 CONCLUSION

Because initial results of code static analysis always
have a large number of false positives, they need to be
confirmed by manual or automatic confirmation tools. To
aid the testers to confirm the suspect faults as soon as
possible, we present a novel approach that combines the
demand-driven analysis and the inter-procedural data flow
analysis. In our approach, we first compute the influencing
nodes of the suspected fault. Then, according to the
influencing nodes, we simplify the CFG of each associated
procedure. Finally, we use the "section-whole" strategy to
generate the inter-procedural diagnosis path which can
confirm the suspect faults automatically. To evaluate the
accuracy and efficiency of our approach, we also conduct
experiments on five open source C projects. And a
comparison study between our approach and the traditional
approaches also demonstrated that our approach
effectively outperforms the traditional approaches.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (U1736110, 61702044,
61502029).

7 REFERENCES

[1] Hailpern, B. & Santhanam, P. (2002). Software debugging,

testing, and verification. IBM System Journal, 41(1), 4-12.
https://doi.org/10.1147/sj.411.0004

[2] Tassey, G. (2002). The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology, RTI Project, 7007(11), 1-309.

[3] Bessey, A., Block, K., & Chelf, B. (2010). A few billion lines
of code later: using static analysis to find bugs in the real
world. Communications of the ACM, 53(2), 66-75.
https://doi.org/10.1145/1646353.1646374

[4] Li, Z., Zhang, J., Liao, X., & Ma, J. (2015). Survey of
Software Vulnerability Detection Techniques. Chinese
Journal of Computer, 38(4), 717-732.
https://doi.org/10.3724/SP.J.1016.2015.00717

[5] Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Mine, A.,
Monniaux, D., & Rival, X. (2005). The Astrée analyzer. In
Proceedings of 14th European Symposium on Programming,
ESOP 2005, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2005, 21-30.
https://doi.org/10.1007/978-3-540-31987-0_3

[6] Xiao, Q., Gong, Y., Yang, Z., Jin, D., & Wang, Y. (2010).
Path-Sensitive Static Defect Detecting Method. Journal of
Software, 21(2), 209-217.
https://doi.org/10.3724/SP.J.1001.2010.03782

[7] Zhu, H., Jin, D., & Gong, Y. (2018). False positive
elimination in suspected code fault automatic confirmation.
International Journal of Computers and Application, 40(3),
1-9. https://doi.org/10.1080/1206212X.2017.1397342

[8] Mei, H. Wang, Q. Zhang, L., & Wang, J. (2009). Software
Analysis: A Road Map. Chinese Journal of Computer, 32(9),
1697-1710. https://doi.org/10.3724/SP.J.1016.2009.01697

[9] Barik, T. (2016). How Should Static Analysis Tools Explain
Anomalies to Developers? In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, 1118-1120.
https://doi.org/10.1145/2950290.2983968

[10] Zhang, D., Sui, J., & Gong, Y. (2017). Large scale software
test data generation based on collective constraint and
weighted combination method. Tehnicki vjesnik, 24(4),
1041-1049. https://doi.org/10.17559/TV-20170319045945

[11] Bush, W. R. Pincus, J. D., & Sielaff, D. J. (2000). A static
analyzer for finding dynamic programming errors. Software
Practice and Experience, 30(7), 775-802.
https://doi.org/10.1002/(SICI)1097-
024X(200006)30:7%3C775::AID-SPE309%3E3.0.CO;2-H

[12] Manevich, R., Sridharan, M., Adams, S., Das, M., & Yang,
Z. (2004). PSE: explaining program failures via postmortem
static analysis. ACM SIGSOFT Software Engineering Notes,
29(6), 63-72. https://doi.org/10.1145/1029894.1029907

[13] Cheng, S. Jiang, F. Lin, J., & Tang, Y. (2009). Automatic
verification of possible software doubtful defects. Journal of
Tsinghua University (Science and Technology), 49, 2222-
2227. https://doi.org/10.16511/j.cnki.qhdxxb.2009.s2.011

[14] Dillig, I., Dillig, T., & Aiken, A. (2012). Automated Error
Diagnosis Using Abductive Inference. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, 181-192.
https://doi.org/10.1145/2254064.2254087

[15] Chen, N. & Kim, S. (2015). Star: Stack trace based automatic
crash reproduction via symbolic execution. IEEE
Transactions on Software Engineering, 41(2), 198-220.
https://doi.org/10.1109/TSE.2014.2363469

[16] Yao, F., Li, Y., Chen, Y., Xue, H., & Venkataramani, G.
(2017). StatSym: Vulnerable Path Discovery through
Statistics-Guided Symbolic Execution. IEEE/IFIP
International Conference on Dependable Systems and
Networks, 109-120. https://doi.org/10.1109/DSN.2017.57

[17] Kasikci, B., Schubert, B., Pereira, C., Pokam, G., & Candea,
G. (2015). Failure sketching: a technique for automated root
cause diagnosis of in-production failures. Proceedings of the
25th Symposium on Operating Systems Principles, 344-360.
https://doi.org/10.1145/2815400.2815412

Honglei ZHU et al.: Inter-Procedural Diagnosis Path Generation for Automatic Confirmation of Program Suspected Faults

770 Technical Gazette 26, 3(2019), 762-770

[18] Yi, Q., Yang, Z., Guo, S., Wang, C., Liu, J., & Zhao, C.
(2018). Eliminating path redundancy via post-conditioned
symbolic execution. IEEE Transactions on Software
Engineering, 44(1), 25-43.
https://doi.org/10.1109/TSE.2017.2659751

[19] Zhang, D. (2017). High-speed Train Control System Big
Data Analysis Based on Fuzzy RDF Model and Uncertain
Reasoning. International Journal of Computers,
Communications & Control, 12(4), 577-591.
https://doi.org/10.15837/ijccc.2017.4.2914

[20] Zhang, D., Jin, D., Gong, Y., Chen, S., & Wang, C. (2015).
Research of alarm correlations based on static defect
detection. Tehnicki vjesnik, 22(2), 311-318.
https://doi.org/10.17559/TV-20150317102804

[21] Das, M., Lerner, S., & Seigle, M. (2002). ESP: Path-sensitive
program verification in polynomial time. In Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’02), 57-68.
https://doi.org/10.1145/512529.512538

[22] Xie, Y., Aiken, A. (2007). Saturn: A scalable framework for
error detection using Boolean satisfiability. ACM
Transactions on Programming Languages & Systems
(TOPLAS), 29(3), 16-58.
https://doi.org/10.1145/1232420.1232423

[23] Hallem, S., Chelf, B., Xie, Y., & Engler, D. (2002). A system
and language for building system-specific, static analyses. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI’02), 69-82. https://doi.org/10.1145/512529.512539

[24] Dillig, I. Dillig, T. Aiken, A., & Sagiv, M. (2011). Precise
and compact modular procedure summaries for heap-
manipulating programs. In Proceedings of the 32nd ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI'11). 567–577.
https://doi.org/10.1145/1993498.1993565

[25] Le, W. & Soffa, M. L. (2008). Marple: A demand-driven
path-sensitive buffer overflow detector. In Proceedings of
the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (FSE’08), 272-282.
https://doi.org/10.1145/1453101.1453137

[26] Pande, H. & Landi, D. W. (1991). Interprocedural Def-Use
Associations in C Programs. In Proceedings of the
Symposium on Testing, Analysis, and Verification, 139-153.
https://doi.org/10.1145/120807.120820

[27] Harrold, M. J. & Soffa, M. L. (2004). Efficient Computation
of Interprocedural Definition-Use Chains. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(2), 175-204.
https://doi.org/10.1145/174662.174663

[28] Zheng, X. & Rugina, R. (2008). Demand-driven alias
analysis for C. ACM SIGPLAN Notices, 43(1), 197-208.
https://doi.org/10.1145/1328438.1328464

[29] Zhu, H., Jin, D., Gong, Y., Xing, Y., & Zhou, M. (2019).
Detecting interprocedural infeasible paths based on
unsatisfiable path constraint patterns. IEEE Access, 7,
15040-15055. https://doi.org/10.1109/ACCESS.2019.2894593

Contact information:

Honglei ZHU, Corresponding author
State Key Laboratory of Network and Switching Technology,
Beijing University of Posts and Telecommunications,
No. 10 Xitucheng Road, 100876 Beijing, China
E-mail: zhuhonglei@bupt.edu.cn

Dahai JIN
State Key Laboratory of Network and Switching Technology,
Beijing University of Posts and Telecommunications,
No. 10 Xitucheng Road, 100876 Beijing, China
E-mail: jindh@bupt.edu.cn

Yunzhan GONG
State Key Laboratory of Network and Switching Technology,
Beijing University of Posts and Telecommunications,
No. 10 Xitucheng Road, 100876 Beijing, China
E-mail: gongyz@bupt.edu.cn

	1 INTRODUCTION

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

