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Abstract
Human body parts are sometimes compressed by tight clothes, footwear, bandages etc. Therefore, it is important to
balance between functionality and comfort of garments in order to avoid negative effects on human health.
Mechanical properties of both garment and tissue need to be taken into account for the analysis of pressure of tight
garments. The thick walled tube theory is adjusted to a composite cylinder with a rigid core, as an approximate limb
model with corresponding edge conditions. The results suggest the effect of tightness and elastic properties of the
tissue and the tight garment on the level and type of tissue stresses.

Key words
tight clothes and footwear, tissue stress, thick walled tube

Introduction
Compressive activity on the human body occurs due to
tight garments and footwear or in case of load bearing
elements of equipment or devices such as e.g. pulley or
similar. The application of compressive garments or
elements is broad, including the field of medical therapy
(i.e. compressive bandages), sportswear and
equipment or in aesthetic garments [1, 2]. In the design
of compressive bandages, it is important to understand
the body part geometry along with bandage and tissue
deformation characteristics [3]. Some studies
concerning medical therapy applications have reported
on a target pressure achievement throughmulti-layered
bandages [4, 5]. Another study has analysed the effect
of curved body part surface on compressive elastic
garments pressure and the possibilities to provide the
required equal pressure distribution [6].
This work is an overview of basic mechanical tools,
which can be used in the analysis of body parts
exposed to compressive tight clothing, belts, bandages

etc. The motivation for this work is an attempt to prevent
common deformations of the lower leg caused by a tight
elastic reinforced socks cuff, Figure 1. This article is a
continuation of a previous detailed study of the
aforementioned deformation [7] by Šomođi et al.

A similar effect occurs due to a tightly fit belt as a piece
of clothing or footwear. If we aim to analyse the
transitional phase of deformation from the moment of
stretching to the final state of equilibrium deformation,
the viscoelastic (attenuating) behaviour of the tissue
should be taken into consideration. The latter will not be
considered here, thus the final equilibrium condition will
be considered important. Therefore, this work will be
limited to a simple linear elastic model of the material’s
deformational behaviour.

Cylinder compressed by tight elastic tube
We shall first consider a homogeneous elastic cylinder
with a tightly fit thin walled elastic tube. Figure 2 gives
the cross section of cylinder 1 with a tightly fit tube 2. In
the initial non-deformed state, the thin tube radius is
smaller than the cylinder radius for the given initial
overlap, ΔR, which can be defined as tightness.

Figure 2. A set of cylinder and a tightly fit thin walled
tube

In the cylinder and tube assembly, there is a mutual
pressure (p) action due to overlap. The amount of this
pressure is a result of the reduced radius of the cylinder
and the increased radius of the tube that willFigure 1. Lower leg deformation by a tight sock cuff
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compensate the initial overlap R. The stress in the
cylinder corresponds to the uniform double pressure
� �� �p, while there is a circular stress �=pR/t in the

tube, as shown in Figure 3.

Figure 3. Stress state in a tube and a cylinder

Based on Hook's law, the cylinder and tube
deformaHons are as follows:

Based on the deformation conditions, the cylinder
and tube pressure are as follows:

In case of an inhomogeneous i.e. composite cylinder, or
a cylinder with a rigid or hollow core, the situation
becomes more complex as the stress in the cross
section is not constant. In case of rotational symmetry
(i.e. a set of concentric tubes), the analysis can be
conducted on the basis of the theory of thick walled
tubes.

Fundamental theory of thick walled tubes
The theory of thick walled tubes is a standard content of
advanced mechanics of materials [8]. Thanks to the
rotational symmetry in both geometry (marked area by
two concentric circles) and loading (uniform internal or
external surface pressure), it is convenient to use polar
coordinates (Figure 4), while the stresses and
displacements depend only on the radial coordinate r.

Figure 4. Thick walled tube cross section in polar
coordinates and the stresses in the tube element

The static condition results from the forces equilibrium
on the differential element (Figure 4). The equation of
the forces equilibrium in the r direction is as follows:

The sine of a differential small angle is almost equal to
the real angle. After neglecting the small value of higher
order, this equation becomes as follows:

The geometric considerations of the deformed state
give the relative deformations expressions in the radial
and circumferential direction depending on the radial
displacement u(r):

Hook's law gives the relation between the stress and
strain in linear elastic deformation:

When the system of equations (4, 5, 6) is solved by the
unknown stress components, the result is as follows
(details are not given here):

The constants C1 i C2 come from the internal and
external tube edge condition, where the radial stress
corresponds to the given pressure.
As a typical example, we can consider a thick tube with
an internal pressure p, whose inner and outer radius is
R1=R, R2=2R. The first equation (7) gives the conditions
of the inner and outer edges:

The solutions of the system (8) are as follows:

The final expressions of the radial and circular stresses
are:

These expressions represent the distribution of the
radial and hoop stress component on the tube cross
section.
The distribution is given in Figure 5. The hoop stress is
tensile (positive), while the radial stress is negative, i.e.
compressive. The highest value of a particular stress
component is the hoop stress on the inner edge of the
tube cross section,
which is �max=5/3 p.

(9)

(10)

Figure 5. Distribution of the hoop and radial stresses of
the internal pressure loaded tube

Technical applications are mainly based on the given
theory, i.e. gun barrel loaded by an internal release
pressure, and a tighten shaft-hub coupling. Here, the
possibility of the thick walled tube theory is used in case

9

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)



of an elastic cylinder with a rigid core, which can be
considered as an approximate model for the limbs
loaded by an external pressure as a result of a tightly
fitted clothing, footwear or similar.
Cylinder with rigid core compressed by tight tube
Due to simplicity, the limb will be modelled as a
composite cylinder comprising a rigid core (bone) and
an elastic external shell which represents the muscle,
tendon, fat and skin tissues. The external pressure due
to tightly fitted thin tube is also present.

Figure 6. Assembly of a cylinder with a rigid core and a
tight thin tube (left), pressures on the elastic part of the
cylinder and the tube.
In the assembly, there is the pressure between the
cylinder and the thin tube and pressure p1 (Figure 6) on
the inner edge of the cylinder due to core resistance.
Although the pressures p and p1 are yet unknown, the
edge conditions of the thick tube – the soft tissue are as
follows:

The deformation conditions should be met as well: on
the internal edge, the radial displacement is equal to
zero due to rigid core resistance, while at the external
edge as earlier, the radial displacement and extension
of the tightly fitted tube together correspond to the
initial overlap �R:

Based on the equations (5, 6, 7), radial displacement
u(r) is given as:

Now finally from the equations (9, 10, 11), the expression
of the pressure is
as follows:

We shall conclude this chapter with an illustrative
example. The Young's module E2 and radius R2 are
given with other dependent parameters, expressed as
follows: E1=0,05E2, R1=0,5R2, t=0,02R2, R=0,2R2. We shall
consider three cases with three different possible
values of the Poisson's ratio: a)�=0, b)�=0,3, c)�=0,5.
The pressure p values calculated according to equation
(12) are: a) p=0.0032258 E2 ; b) p=0.0033753 E2 ; c)
p=0.0035135 E2. In this case, the displacement

Figure 7. Stresses distribution in the results of the
numerical example

The stresses are compressive. It can be observed that
the values of radial stresses are greater than the hoop
stresses. This difference is more pronounced in the
tissue close to the bone, while the stress on the surface
is closer to the uniform biaxial pressure. With the
increase of the Poisson's ratio, the differences between
the hoop and radial stresses in the elastic part of the
cylinder reduce, as well as by the increase of the radial
coordinate r. It is interesting that at =0, the hoop stress
near the bone disappears, which happens due to the
fact that the radial displacement equals to zero at this
point.

Conclusion
The stresses in the tissue caused by tightly fitted
clothing, footwear or similar can be approximately
analysed by the application of the aforementioned
mechanical models. The example of the cylinder with
the rigid core requires edge conditions, which unlike the
standard usage of the thick walled tube theory, uses
displacements and not only stresses. In the illustrative
example, the typical tissue stress distributions are given
as well as the effect of the Poisson's ratio. For the
purpose of a more realistic description of the situation
where the pressure is due to a tightly fitted textile
garment (e.g. socks), a suitable approximation of the
nonlinear tensile behaviour of the textile material can be
taken instead of the linear elastic behaviour of the thin
tube, causing the model to become slightly complex.
The model of the homogeneous soft tissue can be
replaced by the more advanced model which takes into
account different deformational properties of the e.g.
muscle tissue and the fat under the skin tissue. In this
regard, if the geometric distribution of certain types of
tissue retain the axial symmetrical character, a two
concentric homogeneous tube assembly of different
properties E i�can be used instead of a homogeneous
tube as a soft tissue model. Finally, if the known tissue

calculation shows that approximately 80…88% of
the initial overlap covers the deformation of tube 2,
while the rest is due to tissue deformation. Finally,
the radial and hoop stress components of the tissue
cross sections are determined, as shown in the
diagram of Figure 7.
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distribution with different properties along the limbs
cross sections cannot be expressed as an axially
symmetrical model, the experiment will require a more
complex numerical modelling, i.e. a finite element
analysis.
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