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Abstract. This paper considers the investigation of the optimal number of clusters for datasets that
are modeled as the Gaussian mixture. For that purpose, the adaptive method that is based on a mod-
ified Expectation Maximization (EM) algorithm is developed. The modification is conducted within
the hidden variable of the standard EM algorithm. Assuming that data are multivariate normally
distributed, where each component of the Gaussian mixture corresponds to one cluster, the modifica-
tion is provided by utilizing the fact that the Mahalanobis distance of samples follows a Chi-square
distribution. Besides, the quantity measure is constructed in order to determine number of clusters.
The proposed method is presented in several numerical examples.
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1. Introduction

Cluster analysis is one of the most important tasks in data mining which has great application
in several fields like image analysis, pattern recognition and statistics. In general, clustering
is an unsupervised learning process, the task of which is to classify data points into groups or
clusters. A wide variety of clustering algorithms are proposed for different applications where
the problem of determining the number of clusters plays an important research problem. In
most cases, the optimal number of clusters is an unknown parameter and thereby presents a
challenging problem in cluster analysis, called the Cluster Validity (CV) problem [3, 10].

Clustering validation is a way of a providing the quality of different clustering algorithms, as
well as a way of a comparing the two clustering results with different number of clusters. In that
sense, cluster validity can be used for determining the optimal number of clusters in a dataset.
In general, there exist three cluster validity criteria for evaluating the results of the clustering
algorithms: external criteria, internal criteria and relative criteria. Both internal and external
criteria are based on statistical testing and they have high computation demand, which is their
main disadvantage. The relative criteria does not involve statistical testing. The basis of the
relative criteria is a reference on obtained background knowledge about clustering results. The
aim of the relative criteria is to choose the best clustering schema from the different results based
on the Cluster Validity Indices (CVI). In literature there exist many different relative indices
that can give a quantitative criteria for evaluating the quality of clustering results [3, 10, 11].

In this paper, the datasets that are modeled by the Gaussian mixture model are observed,
and thus the new algorithm is developed based on modification of the well known Expectation
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Maximization (EM) algorithm [1]. The modification is conducted by the well known Maha-
lanobis distance, which has great application in data analysis [5, 6, 7, 9], within the hidden
variable of the standard EM algorithm. The modification is conducted in sense of the outlier
detection [8], which uses the fact that the squared Mahalanobis distance follows a Chi-square
distribution for the data that are normally distributed [2, 4]. In that way, the adaptive EM
algorithm that has flexible rejection procedure of data is developed. Furthermore, in that sense
of the cluster validity indices, the new quantity measure is constructed. The proposed index is
based on the percentage of data included in final clusters obtained by the adaptive EM. It is
shown that the problem of determining the optimal number of clusters can be solved by finding
a knee point of the proposed index [13].

The paper is organized as follows. In Section 2 the EM algorithm and its implementation
for the Gaussian mixture model are introduced. In Section 3 the adaptive EM algorithm and its
pseudo–code are presented. In Section 4 several illustrative examples are presented, and finally,
in Section 5 the conclusion is given.

2. The EM for the Gaussian mixture model

Let us denote by X = {xi : i ∈ I} ⊆ Rn, I = {1, . . . ,m}, the dataset, and by πj ⊆ X clusters,
where J = {1 . . . , k}, k ≤ m. Because the data are modeled as the Gaussian mixture, the well
known EM algorithm is used [1, 10]. The Gaussian mixture models the data as a mixture of
the multiple Gaussian distributions

P (x|Θ) =
∑
j∈J

wjP (x|θj), Θ = {(wj , µj ,Σj) : j ∈ J}, (1)

where wj represents the a priori probability of belonging to a corresponding cluster πj , and
therefore

∑
j∈J wj = 1. The parameter θj = (µj ,Σj) presents expectation µj ∈ Rn and covari-

ance matrix Σj ∈ Rn×n of density function for the multivariate Gaussian distribution

P (x|θj) =
1

(2π)n/2|Σj |1/2
e−

1
2 (x−µj)T Σ−1

j (x−µj) (2)

The EM algorithm is an iterative procedure which computes the maximum likelihood esti-
mate (MLE) of log-likelihood function

lnL(Θ|X) = lnP (X|Θ) (3)

In order to facilitate the ML estimation parameter Θ, the hidden variable Z is introduced.
Then, instead of solving the log-likelihood of the observed data X, the log-likelihood function
of the complete data (X,Z) is observed, i.e.

lnL(Θ|X,Z) = lnP (X,Z|Θ) (4)

The hidden variable Z is constructed to determine from which component observation orig-
inates. In that case Z is defined in a way that the entries zij ∈ {0, 1} of the measurement
vector zi ∈ Rk are equal to one if and only if cluster πj contains observation xi. In that case
P (zij = 1) = wj and

∑
j∈J zij = 1, which implies

P (Z = zi) =
∏
j∈J

w
zij
j (5)

Now the complete log-likelihood function for the Gaussian mixture model can be carried
out as

lnL(Θ|X,Z) = lnP (X,Z|Θ) =
∑
i∈I

∑
j∈J

zij(lnwj + lnP (xi|θj)), (6)
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where the aim is to estimate parameters Θ = {(wj , µj ,Σj) : j ∈ J} alternating the E-step and
the M-step until convergence [12]. The process is described below:

E-step: The calculation of expectation Q(Θ|Θ(t)) is conducted, where

Θ(t) = {(w(t)
j , µ

(t)
j ,Σ

(t)
j ) : j ∈ J} present a current estimation of parameters:

Q(Θ|Θ(t)) = EZ|X,Θ(t) [lnL(Θ|X,Z)]

=
∑
i∈I

∑
j∈J

h
(t)
ij (lnwj + lnP (xi|θj)) (7)

Parameter h
(t)
ij presents the posteriori probabilities, i.e. the probability that observation

xi is generated by πj , defined as follows:

h
(t)
ij =

w
(t)
j P (xi|θ(t)

j )∑
l∈J

w
(t)
l P (xi|θ(t)

l )
(8)

M-step: An optimum of Q(Θ|Θ(t)) must be calculated, which can be analytically solved from
the equation ∇ΘQ(Θ|Θ(t)) = 0. The optimal results can be carried out as:

w
(t+1)
j =

1

m

∑
i∈I

h
(t)
ij , (9)

µ
(t+1)
j =

∑
i∈I

h
(t)
ij xi∑

i∈I
h

(t)
ij

, (10)

Σ
(t+1)
j =

∑
i∈I

h
(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T∑

i∈I
h

(t)
ij

(11)

3. The adaptive EM algorithm

In this section the adaptive EM algorithm, which is based on the standard EM, is presented.
The new algorithm is created as a modification of the standard EM [6], which is based on
the Mahalanobis distance. A modification is conducted on the hidden variable Z, and thereby
the condition is introduced which is based on the fact that the squared Mahalanobis distance
follows χ2

n distribution [2, 4].
The squared Mahalanobis distance is defined as

dM (x; θ) = (x− µ)TΣ−1(x− µ), θ = (µ,Σ), (12)

where µ ∈ Rn presents the arithmetic mean and Σ ∈ Rn×n the sample covariance matrix of a
sample X ⊆ Rn. The squared Mahalanobis distance of samples approximates a Chi-squared
distribution χ2

n with n degrees of freedom for normally distributed data. This condition is
written as an inequality:

dM (x; θ) ≤ χ2
n(p), (13)

where χ2
n(p), p ∈ (0, 1), present p-quantile value of Chi-squared distribution, and therefore

reasonable will be p ≈ 0.05, which prevents influence of those observations which are located
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on the tail regions of the Gaussians of low probability. Finally, the proposed rejection can be
defined as the Kronecker delta:

δ(x; Θ) =

{
1, min

j∈J
dM (x; θj) ≤ χ2

n(p);

0, else
(14)

where dM (x; θj) is generated by component j, i.e. cluster πj . The modification now can be
carried out as the restriction of the standard hidden variable, i.e.

Ẑ = Z
X̂
, (15)

where X̂ = {xi : i ∈ Î}, Î = {i ∈ I : δi = 1}, δi = δ(xi; Θ). Now the E-step and the M-step can

be performed on lnL(Θ|X̂, Z), and the results can be easily derived as the optimization problem
for the standard hidden variable. By including the initialization step Θ(t) the optimization
results can be carried out as:

w
(t+1)
j =

1

m̂(t)

∑
i∈Î(t)

h
(t)
ij , (16)

µ
(t+1)
j =

∑
i∈Î(t)

h
(t)
ij xi∑

i∈Î(t)

h
(t)
ij

, (17)

Σ
(t+1)
j =

∑
i∈Î(t)

h
(t)
ij (xi − µ(t+1)

j )(xi − µ(t+1)
j )T

∑
i∈Î(t)

h
(t)
ij

, (18)

where Î(t) = {i ∈ I : δ
(t)
i = 1}, δ(t)

i = δ(xi; Θ(t)) and m̂(t) = |Î(t)|. Below in Algorithm 1 is
presented a pseudo-code of the adaptive EM algorithm.
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Algorithm 1 The adaptive EM algorithm

1: Initialization step: � = f(wj ; �j ;�j) : j 2 Jg, p 2 (0; 1);
2: loop:
3: Calculate:

bI  fi 2 I : �i = 1g;

4: E-step: For every i 2 bI calculate cluster probability for ever j 2 J :

hij  
wjP (xij�j)X

l2J

wlP (xij�l)
;

5: M-step: Calculation of the Gaussian mixture model parameters for every j 2 J :

wj  
1

bm
X
i2bI

hij ;

�j  

X
i2bI

hijxi

X
i2bI

hij
;

�j  

X
i2bI

hij(xi � �j)(xi � �j)
T

X
i2bI

hij
;

6: iterate until � converges;

1

In the next section it is shown on various numerical examples that the adaptive EM algorithm
has convergence property. Furthermore, it is shown that the optimal number of the clusters
can be effectively investigated by observing a percentage of non-rejected data, i.e. m̂/m.

4. Numerical examples

In this section, an experimental research on numerical examples modeled as the Gaussian
mixture is considered. The research is conducted on two data types: without the outliers,
and with the presence of outliers (i.e., in noisy environment). The noises are generated by the
random vector, which is uniformly distributed over the pre-defined region.

The final result of the adaptive EM for a specific k is denoted by m̂k/m. The result of m̂k/m
is conducted by running the adaptive EM for many different initial parameters, and choosing
among them the result which achieves maximum value of the proposed index (i.e. a percentage
of non-rejected data). It is shown that the optimal number of clusters can be indicated by the
knee point of m̂k/m via k. The knee point presents the point Tk(k, m̂k/m), k = 2, 3, . . ., with
the largest corresponding angle

αk = arccos
|v1 · v2|
‖v1‖‖v2‖

, (19)

where v1 = TkTk−1 and v2 = TkTk+1 present line vectors. Considering that, the optimal number
of clusters now can be written as

k∗ = argmax
k=2,3,...

αk (20)

The initialization step is set as follows: the covariance matrices are set to pondered identity

matrices, i.e. Σ
(0)
j = λjI, λj > 0; the expectations µ

(0)
j are selected randomly over a dataset



6 Vedran Novoselac

X. In this sense, the n-dimensional Euclidean balls dM (x; θ
(0)
j ) ≤ χ2

n(p) are introduced to

present initial components; the component weights w
(0)
j are set to be a ratio of an observed

n-dimensional volume of the Euclidean ball and a sum of all initialization balls. The radii are
selected to be less than the diameter of X, diamX = maxi,j∈I ‖xi − xj‖, where the proposed
method has shown that if the n-dimensional ball intersects a cluster, in most cases this leads
to its detection. The p-quantil value of the χ2

n(p) presents a crucial parameter of the flexibility
of the adaptive EM, where it is discussed that p ≈ 0.05 will be reasonable to be observed. For
example, the proposed method acts the same as the standard EM if p → 0, or if p ∈ (0, 1) is
set to reject a large number of data, then the proposed method will cause continuous shrinking
of the clusters, and eventually stop (because of the bad condition matrices). Consequently,
numerical research is conducted with p = 0.05, where relevant results for certain models are
achieved.

The running of the adaptive EM is regulated by the difference of the input parameters,
where the Euclidean norm is observed, i.e.

‖Θ(t+1) −Θ(t)‖ =
√

∆w + ∆µ+ ∆Σ, (21)

where
∆w =

∑
j∈J
‖w(t+1)

j − w(t)
j ‖

2, (22)

∆µ =
∑
j∈J
‖µ(t+1)

j − µ(t)
j ‖

2, (23)

∆Σ =
∑
j∈J
‖Σ(t+1)

j − Σ
(t)
j ‖

2, (24)

present the standard squared Euclidean norm for scalar, vector and matrix cases. A stoppage
of the Algorithm 1 is established if the difference does not exceed pre-defined ε > 0.

Example 1. In Figure 1 the dataset with and without outliers is presented. The noises are
uniformly distributed over the pre-defined rectangle.

a) No-noisy environment
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b) Noisy environment
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8

10

Figure 1: Dataset

In Figure 2 the trends of the proposed validity criteria m̂k/m are presented. The results are
obtained by running the adaptive EM a few hundred times for each observed k, where p = 0.05,
ε = 0.1, and λj = c, ∀j ∈ J . The research is conducted with various c ∈ R in order to resolve
the mentioned problem. The experimental research has shown that the trends of graphs possess
the knee points. This is the situation when m̂k/m has a monotonous trend after the knee point,
which means that the adaptive EM does not obtain remarkably better results for greater number
of clusters. Thereby the knee point can be a good candidate for the optimal number of clusters.
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The Figures 2c),d) presents that the largest angle αk points to the point at k∗ = 4, where Figure
2c) correspond to no-noisy case presented in Figure 2a) and Figure 2d) to noisy case presented
in Figure 2b).

a) No-noisy environment
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b) Noisy environment
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c) No-noisy environment
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d) Noisy environment
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Figure 2: Cluster validation

In Figure 3 the final results of the adaptive EM are presented, which correspond to the optimal

number of clusters at k∗ = 4. The red dashed lines present the contours dM (x; θ
(t)
j ) = χ2

n(p)

of the adaptive EM final result, together with µ
(t)
j . The blue dashed lines present the original

contours dM (x; θj) = χ2
n(p) and expectations µj of the component j, i.e. cluster πj.
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Figure 3: Final results

Example 2. In Figure 4 the case of the overlapping clusters is presented, where many center-
based indices do not achieve good results [11].

a) No-noisy environment
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Figure 4: Dataset

The Figure 5 present the trends of the proposed validity criteria. The experimental research
has shown again that the trend of graphs possessses the knee point, which can indicate the
optimal number of clusters. Besides that, one bad result was obtained, which has happened in a
noisy case for c = 0.09. This is because the adaptive EM is very sensitive to input parameters,
and thereby can converge to bad clustering results for a bad choosen initialization. This is the
situation when the radius of the initialization Euclidean balls are too large, which may lead to
results that include a large amount of outliers.
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b) Noisy environment
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Figure 5: Clustering validation

In Figure 6 the final results of the adaptive EM for k∗ = 3 are presented.
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Figure 6: Final results
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Example 3. In Figure 7 the combination of overlapping and isolated clusters is presented.

a) No-noisy environment
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Figure 7: Dataset

The Figure 8 shows again that the trend of graphs can be a good indicator of the optimal
number of clusters. Because the adaptive EM is very sensitive to the initialization step, it can
happen that the final clusters cover no-noisy data together with a large amount of outliers. This
is the situation which is presented in Figure 8b) for c = 0.09. Because of that, the proposed
method can converge to bad clustering results for a bad choosen initialization parameters, which
means that the final results can lead to the wrong conclusion.
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Figure 8: Clustering validation

In Figure 9 the final results of the adaptive EM for k∗ = 6 are presented.
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Figure 9: Final results

5. Conclusion

It is shown that the proposed method can resolve the problem of finding the optimal number
of clusters, or in the other sense, it can detect the desired Gaussian mixture statistical model.
Because the datasets are modeled as the Gaussian mixture, the statement that the squared
Mahalanobis distance follows the χ2

n distribution has been shown to be a good choice for
modification of the EM algorithm. This statement is often used as an indicator whether a data
point may be an outlier, or have a multivariate normal distribution [2, 4], and thereby the
restriction on the hidden variable by the defined Kronecker delta presents an excellent choice.
Furthermore, the proposed clustering measurement, i.e. percentage of the no-noisy data, has
been shown to be an excellent choice for the investigation of the optimal number of clusters,
where it is well known that most validity indices are not reliable for the mentioned problem
[11]. Among all features, the convergence property of the adaptive EM algorithm is established
for every numerical example presented in the paper, where it is shown that relevant results have
been achieved.
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