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Abstract. The paper deals with the methods of statistical analysis of dependent competing risks
in the presence of covariates. The problem of identification of marginal and joint distributions of
competing random variables is recalled and certain identifiability results in the framework of regression
models are presented. The main objective is then to study the case when the correlation of competing
variables depends on covariates, as this phenomenon has not been taken into account in the most of
papers dealing with the identifiability of competing risks models with regression. Such a dependence
is demonstrated and estimated on a real example with unemployment data.
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1. Introduction

The case of mutually dependent competing risks often appears in the field of reliability, bio-
statistics and medical studies, as well as in demography, labor statistics, insurance, and in
econometrics generally. The interest in the problem dates back to 70-ties of the last century.
It is well known that, in general, without additional assumptions (e.g. on a parametric form
of distributions) the model is not identifiable. As nicely shown in Tsiatis [13], for each level of
dependence we may obtain different estimate of joint probability distribution of both random
times, and we are not able to distinguish among them. Further, Heckman and Honoré [6] showed
(rather than proved, as their argumentation is more verbal than precisely mathematical) that
when an additional information on covariates is available, identification is possible. Namely,
they dealt with competing times with Cox’s or with AFT regression models. Their result is
in the background of the unemployment duration study by Han and Hausman [5], with two
competing events of unemployment termination. However, they quite neglected the possibility
that the parameter characterizing mutual dependence of risks (e.g. their correlation) may also
depend on covariates. Then the problem of non-identifiability arises anew. Later on the case
of competing risks with covariates was studied by many other authors, in a more precise way,
already with the aid of a copula describing the dependence, see e.g. Lee [9], Berg et al. [2].
However, the problem of possible dependence of copula parameter on the covariates was not
discussed. That is why the present paper opens this problem.

The paper has the following parts: First, the scheme of competing risks is introduced and
the methods and problems of its statistical analysis reminded, namely the problem of possible
non-identifiability of their marginal probability distributions is given in Section 2. We shall
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mention also certain identifiability results in the framework of regression models. Then the
notion of copula is recalled and used in competing risks model formulation. In Section 3 the
Gauss copula is introduced and the likelihood function is derived. It is then use as a basis
for the Bayes solution of the parameters estimation problem. Finally, in Section 4, the Gauss
copula and Cox’s regression model are jointly applied to a real example. We use the data of
Kadane and Woodworth [8] stored in the Statlib database. The data record two competing
terminations of employment in certain company. It will be shown that the model parameters
and, in particular, the correlation of the risks, depend on considered covariates. The model
will be fully parametric, numerical solution will consist in a randomized search for parameters
estimates with the aid of the Metropolis-Hastings MCMC algorithm in the Bayes framework.

2. Competing risks and non-identifiability problem

Let us imagine that a certain event (e. g. a failure of a device) can be caused by K reasons.
Formally, there are K (possibly dependent) random variables, times Tj , j = 1, ...,K, running
simultaneously. Observation is terminated at minimum of them. Sometimes there is another
random or deterministic variable C of right censoring assumed to be independent of all Tj .
Standardly, C may cause the termination of observation from ”external” reasons, before any
of expected events occur; in this case C < Tj for all j. We assume that all variables Tj are of
continuous type. Let FK(t1, ..., tK) = P (T1 > t1, ..., TK > tK) be the joint survival function
of {Tj}. However, instead the ’net’ survivals Tj we observe just ’crude’ data (sometimes called
also ’the identified minimum’) Z = min(T1, ..., TK , C) and the indicator δ = j if Z = Tj , δ = 0
if Z = C. Such data lead us to direct estimation of the distribution of Z∗ = min(T1, ..., TK),
for instance its survival function S(t) = P (Z∗ > t) = FK(t, ..., t). Further, we can estimate so
called incidence densities

f∗j (t) = dP (Z∗ = t, δ = j) = −∂FK(t1, ..., tK)

∂tj
|(t1 = ... = tK = t), (1)

and also their integrals, cumulative incidence functions

F ∗j (t) =

∫ t

0

f∗j (s) ds = P (Z∗ ≤ t, δ = j) (2)

Notice that limF ∗j (t) = P (δ = j) < 1 if t → ∞, S(t) = 1 −
∑K
j=1 F

∗
j (t). Further, so called

cause–specific hazard functions for events j = 1, 2, . . . ,K are defined as

h∗j (t) = lim
d→0

P (t ≤ Z∗ < t+ d, δ = j |Z∗ ≥ t)
d

(3)

and are estimable as well.
However, in general, from data (Zi, δi), i = 1, . . . , N it is not possible to identify the marginal

or joint distributions of {Tj}. Tsiatis in [13] has shown that for arbitrary joint model we can find
a model with independent components having the same incidences, i.e. we cannot distinguish
among the models. Namely, this ’independent’ model is given by cause-specific hazard functions
h∗j (t). It follows that it is necessary to make certain functional assumptions about the form of
both marginal and joint distribution in order to identify them. Several such cases are specified
for instance in Basu and Ghosh [1]. More recent results on identifiability can be found for
example in Escarela and Carriere [3] considering Frank copula and parametric models. Schwarz
et al in [12] deal with non-parametric setting and study the inverse problem how from marginal
distributions the joint distribution can be estimated, under a given copula class assumption.

Many authors have studied the role of additional information obtained from covariates in the
framework of a regression model for examined random times. The results determining conditions
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for full identifiability of such a regression model start from already mentioned Heckman and
Honoré [6]. Lee in [9] investigated more general transformation models of regression. A common
identifiability assumption consists in sufficiently rich structure of covariates. However, all these
studies rely on the supposition that the dependence structure (in copula models given by the
copula parameter) does not change with covariates. And this rather strong supposition is
therefore the subject of our examination.

3. Copulas in models for competing risks

Let us consider, in the sequel, just two competing events, with corresponding random times S, T
(eventually together with a right–censoring variable C). The data are then given as realizations
of N i.i.d. couples of random variables Zi = min(Si, Ti, Ci), δi = 1, 2, 0, i = 1, 2, ..., N . The
notion of copula (see e.g. Nelsen [11]) offers a way how to model the joint distribution function
F2(s, t) of S, T :

F2(s, t) = C(FS(s), FT (t), θ), (4)

where FS , FT are marginal distribution functions of S, T, C(u, v, θ) is a copula, i.e. a two-
dimensional distribution function on [0, 1]2, with uniformly on [0, 1] distributed marginal com-
ponents U, V . θ denotes the copula parameter which is connected uniquely with correlation of
U, V , hence also with correlation of S, T . It is seen that the use of copula allows to model the
dependence structure separately from the analysis of marginal distributions. Hence, the identi-
fiability of the copula (and its parameter) and marginal distributions of S, T can be considered
as two separate steps.

Zheng and Klein in [14] have proved that when the copula is known, the marginal dis-
tributions are estimable consistently (and then the joint distribution, too, from (4)), even in
a non-parametric (so that quite general) setting. However, in general, the knowledge of θ is
needed, because (again due to [13]) without fully determined copula we are not able to distin-
guish between the ’true’ model and corresponding independent one. On the other hand, Zheng
and Klein [14] argued that the selection of copula type is not crucial. They also showed it on a
simulated example. Later on, the problem of proper copula choice has been analyzed in a set
of papers, let us mention here Kaishev et al [7] comparing performance of several copula types.
A common agreement is that the knowledge (or a good estimate) of parameter θ is much more
important for correct model of joint distribution, than the copula class selection.

As a consequence, because the knowledge of copula type is still an unrealistic supposition,
we can try to use certain sufficiently flexible class of copulas, as approximation, and concentrate
to reliable estimation of its parameter. There exist a large number of different copula functions,
among them for instance the set of Archimedean copulas. We shall use another rather universal
and flexible copula type, namely the Gauss copula.

Let us note that the copula can be used also as a survival copula connecting marginal
survival functions FS , FT of variables S, T to their joint survival function:

F 2(s, t) = C(FS(s), FT (t)) (5)

3.1. Gauss copula

Let X, Y be the standard normal random variables ∼ N(0, 1) tied with (Pearson) correlation
ρ = ρ(X,Y ). Let us denote by ϕ(x), φ(x) the univariate standard normal density and distri-
bution function, further by φ2(x, y) distribution function and by ϕ2(x, y) density function of
two-dimensional Gauss distribution with both expectations equal zero and covariance matrix
Σ = [1, ρ; ρ, 1]. If we define U = φ(X), V = φ(Y ), we obtain that the couple (U, V ) has the
2-dimensional copula distribution on (0, 1)2 with distribution function

C(u, v) = φ2
(
φ−1(u), φ−1(v)

)
(6)
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Naturally, ρ(U, V ) 6= ρ(X,Y ), while Spearman’s correlation coincide, as it is based just on
the order statistics. Namely ρSP(X,Y ) = ρSP(U, V ) = ρ(U, V ), for Gauss and other elliptical
copulas it holds that ρ(X,Y ) = 2 · sin(π6 ρ(U, V )).

However, our aim is to model the dependence of competing variables S, T . Let us assume
that their joint survival function is given by Gauss copula (6) used as survival copula:

F 2(s, t) = φ2
(
φ−1(FS(s)), φ−1(FT (t))

)
(7)

It means that potential random variables forming the Gauss copula (6) are U = FT (T ), V =
FS(S) and X = φ−1(U), Y = φ−1(V ), the only one parameter describing the dependence of
S and T in model (7) is ρ = ρ(X,Y ) of (6). Though ρ(S, T ) differs from it, all values ρ(S, T )
can be achieved by a convenient choice of parameter ρ. Again ρSP(S, T ) = ρSP(U, V ), Let us
remark here that the real dependence among S, T can be different, given by another copula type,
nevertheless we may conjecture again that the use of Gauss copula offers at least a good and
flexible approximation. Thus, we have to concentrate to the estimation of proper correlation
value as well as to estimation of marginal distributions of S and T .

3.2. Estimation in Gauss copula model

When parameter ρ is known, copula (6) is fully defined and from Zheng, Klein [14] it follows that
the distribution of (S, T ) can be estimated, even in a nonparametric way. On the other hand,
without knowledge of ρ nonparametric model is not identifiable and in the parametric setting
explicit proofs of identifiability are available for just certain types of marginal distributions
specified for instance already in Basu and Ghosh [1]. We shall deal with a richer model including
the covariates, and, similarly like Han and Hausman in [5], with the Cox’s model of dependence
on them. Let us first formulate the maximum likelihood method. The data are (Zi, δi), i =
1, . . . , N , the likelihood function then has the form

L =

N∏
i=1

{
− ∂

∂s
F 2(s, t)

}I[δi=1]

·
{
− ∂

∂t
F 2(s, t)

}I[δi=2]

· F 2(s, t)I[δi=0] (8)

evaluated at s = t = Zi, with F 2(s, t) = P (S > s, T > t). From (7) it follows that, for
Gauss survival copula, F 2(s, t) = φ2(x, y) with x = φ−1(FS(s)), y = φ−1(FT (t)). After some
computation, we obtain that

L =

N∏
i=1

{
fS(Zi)φ1(Yi; ρXi, 1− ρ2)

}I[δi=1]

·
{
fT (Zi)φ1(Xi; ρYi, 1− ρ2)

}I[δi=2] · φ2(Xi, Yi)
I[δi=0],

(9)

again with Xi = φ−1(FS(Zi)), Yi = φ−1(FT (Zi)). Here φ1(x;µ, σ2) denotes the distribution
function of one-dimensional normal distribution N(µ, σ2), evaluated at x. Parameter ρ is hidden
in φ1 and in φ2. Distributions of S and T are present both explicitly and also implicitly, in
transformed Xi, Yi. It is seen that the problem of maximization may be a difficult optimization
task and has to be solved by a convenient numerical procedure. In the following real data
example the model is fully parametric. The search for optimal estimates of parameters is
performed with the aid of the MCMC method, in the Bayes approach framework starting from
conveniently chosen uniform priors (c.f. Gamerman [4]). The method generates a representation
of Bayes posterior distribution. From it, its sample median will be taken as the point parameter
estimate, its sample quantiles allow also to obtain Bayes credibility intervals for parameters.
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4. Real data example

The data are available in the StatLib database [15], the ”Case K” data. The data appear also
in Kadane and Woodworth [8]. There the authors did not use the scheme of competing risks,
the aim of their study was to explore whether older employees were or not ”discriminated”
having higher rate of dismissal. The problem is that the risk of dismissal is correlated with the
risk of voluntary leave, and that these risks can compensate each other. However, in fact, the
question of possible discrimination is behind our analysis, too, though just implicitly.

The data contain the records of all persons employed by a firm during the period of obser-
vation, from 1.1.1900 to 31.1.1995, namely their dates of birth, dates when persons were hired
by the company and when they left it, either voluntarily or were forced to leave (dismissed).
There were together 412 people, from them 96 were dismissed, 108 left voluntarily, the rest,
208 employees, were still with the company at the end of data collection period. The initial
state was 163 employees, hence 249 persons joined the company during the followed period,
thus changing the ”risk set” of the study. From them, 56 were dismissed, 81 left voluntarily,
112 stayed till the end of study.
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Figure 1: Distribution of modes of job termination versus age intervals (left) and lengths of
stay with company (right)

Hence, we deal with two competing risks of the employment termination, and we assume
that the risks are dependent. The time considered is the calendar time, in days, from 1 to 1857,
the end of study is also the fixed time of censoring, namely C = 1857 is the upper bound for
each personal record (it is so called type I censoring by fixed value). It is expected that the
development of the company can be the reason for changing rates of leaving it.
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Figure 2: Development of number of employees during the study period (above). Dashed curve
shows the increase of newly hired people, thick curve then actual number of employees. The

lower plot shows the development of average age of employees

The changes in ”personal policy” of the company can be traced already from Figure 1,
upper plot. The period of higher intensity of employees fluctuation (which could be taken as
an indicator of certain non-stable conditions in the firm) started at about day 800 and lasted
almost another 800 days. The age (in years) of employees at the moment of leave or censoring,
as well as the time spent working in the company were taken as covariates, because it was
expected that both could influence the decision and were changing the relation between the
rate of compulsory and voluntary leavings. The age varied from 19 to 72 years, its median was
40. Time spent at the company varied from only 11 days to more than 41 years (15086 days),
with median 1322 days. Figure 2 shows variation of all 3 events (dismissal, voluntary leave,
censoring) in different groups of age and of time with company. From these graphs it could
be further seen that dismissals were more frequent in groups of higher age. On the contrary,
the rate of voluntary leaves increased in the last period of the study, in particular concerning
younger employees not being with the company long.
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4.1. Competing risks with Cox’s regression model

Both random times are described by their hazard rates

hj(t;x) = h0j(t) · exp(βj · age) · exp(γj · tc), (10)

where j = 1, 2 for related risks of dismissal and voluntary leave, respectively. Covariates
x = (age, tc) are the age of persons and the time spent with company, at the moment of
job termination or of censoring. Further, h0j(t) are baseline hazard rates, βj are regression
parameters of dependence on age, while γj describe dependence on the time spent in company,
”tc”. Finally, t is the time of the study in days. Further, to make computation easier, we
assume that the baseline distributions correspond to Weibull ones. The baseline hazard rates
and their cumulated (integrated) versions have then the form

h0j(t) =
bj · tbj−1

a
bj
j

, H0j(t) =

(
t

aj

)bj
, (11)

where aj , bj , j = 1, 2 are Weibull scale and shape parameters. When the Cox’s regression term
is added, the distribution of both random times for given covariate values is still Weibull, with
the same shape parameters bj and scale parameters depending on covariates, namely

aj(x) = aj exp(−βj
bj
age) exp(−γj

bj
tc) (12)

The complete model then contains 9 unknown parameters, aj , bj , βj , γj for j = 1, 2, and ρ
controlling the dependence of both competing risks via the Gauss copula.

In order to show the dependence of correlation of random times of both competing events
on considered covariates, the sample was divided into four sub-samples: age≤40 or >40 (years),
time with company ≤1322, > 1322 (days). Each sub-sample was analyzed separately. Naturally,
covariates age and tc were also mutually dependent, however not strongly, with correlation
approximately 0.3.

4.2. Results

The model is fully parametric, however already from the form of the likelihood function (4) it is
seen that the computation may be difficult. Therefore the estimates of parameters were obtained
with the aid of a random search using the MCMC method, namely the Metropolis-Hastings
algorithm. Prior distributions of parameters were chosen uniform in reasonable intervals, the
first rough estimate was obtained under the assumption of no dependence, i.e. ρ = 0. Then,
naturally, the value of parameter ρ was alternated, too. Each computation used 20000 iterations,
the last half from them were taken as yielding a representation of posterior distribution. Then
sample medians were taken as parameters estimates, while corresponding sample quantiles as
borders of credibility intervals.

tc≤ 1322 tc> 1322
age≤ 40 0.6891 0.7814
quantiles (0.2024, 0.8673) (0.2504, 0.8823)
n1, n2, n0 15, 47, 54 4, 11, 83
age> 40 -0.5850 0.1948
quantiles (-0.7140, -0.3559) (0.0083, 0.3970)
n1, n2, n0 46, 34, 10 31, 16, 61

Table 1: Sample medians and 90% credibility intervals, i.e. 5% and 95% sample quantiles (in
brackets) of estimated ρ in 4 different groups; n1, n2, n0 are numbers of people dismissed, left

voluntarily, censored in each group
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The results are collected in Table 1. It is seen that estimated correlations differ among
groups, though a statistically significant difference is just between the result for age > 40, tc ≤
1322 and the rest (age in years, ”tc” in 100 days). Nevertheless, estimated correlation depends
on both covariates. The interpretation of higher positive correlation in the group of younger
employees could be that they are more flexible and in the case of symptoms of approaching
negative changes in the company they are more prone to search for a new employment.

On the other hand, negative correlation means that when the (potential) rate of one event
increases, the rate of the second decreases. It could be interpreted, in the case of increasing risk
of being dismissed, like passive waiting, without own decision. Notice also that some groups
contain just small number of noncensored observations, leading to weak confidence of estimates,
here represented by rather wide credibility intervals.

age≤40, tc≤1322 age>40, tc≤1322 age≤40, tc>1322 age>40, tc>1322
β1 0.0155 0.0015 0.0348 0.1176

(0.0088, 0.0627) (-0.0003, 0.0220) (-0.0253, 0.0811) (0.1026, 0.1761)
β2 -0.2438 0.0028 -0.0029 0.0037

(-0.2937, -0.1947) (-0.0009, 0.0255) (-0.0207, 0.0164) (-0.0021, 0.0053)
γ1 0.0003 0.0061 0.1175 0.0985

(-0.0008, 0.0015) (-0.0038, 0.0212) (0.0759, 0.1621) (0.0758, 0.1183)
γ2 -0.2526 -0.3553 -0.061 -0.0023

(-0.3065, 0.2124) (-0.4155, 0.2972) (-0.0879, -0.0387) (-0.0053, 0.0019)

Table 2: Sample medians and 90% credibility intervals, i.e. 5% and 95% sample quantiles (in
brackets) of estimated Cox’s regression parameters in 4 different groups

Further, from Table 2 it is seen that also Cox’s model parameters characterizing the depen-
dence of hazard rates on covariates differ among groups, and in some groups significantly from
the rest (credibility intervals are disjoint). Let us recall that β1 shows the dependence of risk
of dismissal on age, β2 the dependence of rate of voluntary leave on age, γ1, γ2 the dependence
of the same rates on the time with company. For instance, from positive β1 we can deduce that
the risk of dismissal increases significantly with age, in particular for longer employed people.
In fact, it could be understood as an indicator of existing discrimination of older employees
in the sense of the study [8] of Kadane and Woodworth. Further, younger and just recently
engaged employees have larger tendency to leave (negative β2 as well as negative γ2), while γ1
is positive, indicating a higher rate of dismissal, for people being with company for a longer
time.

As the Cox’s model parameters differ among groups (sometimes statistically significantly),
we can doubt about sufficient flexibility of a global Cox’s model. Actually, one of goodness-of-fit
test methods is based on such an approach that the model estimated from all the data is tested
on data sub-samples.

5. Conclusion

We have studied the problem of competing risks with regression, with the focus on assessing
mutual dependence of competing random variables. The joint distribution was expressed with
the aid of Gauss copula, while the Cox’s regression model described the covariate influence.
The model was utilized in an example with real unemployment data. Statistical analysis re-
vealed prevailingly positive correlation between times to both competing events, and also the
dependence of correlation on the covariate. This was, in fact, the main purpose of the study.

It has to be said that the Weibull distribution used in order to simplify computations is not
an optimal model of actual baseline hazard rates. Better possibilities consist in using a more
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general model, e.g. a mixture of 2 or 3 Weibull hazard rates or a general nonparametric form of
baseline rates. However, such a generalization then leads to increased computation problems.
The experience with present and similar computational procedures indicates that the likelihood
function is, as a rule, rather flat, the convergence of computations to stable estimates is slow,
resulting credibility intervals are then quite wide. This phenomenon does not depend on the
copula choice, it is a consequence of complicated model structure.
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