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Optimization of a perishable inventory system with both stochastic
demand and supply: comparison of two scenario approaches
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Abstract. In this paper, we study a multi-period inventory model for a perishable product with both
stochastic supply and demand in a rolling horizon framework. The product has a fixed shelf life such
as fresh products, blood cells, chemicals, drugs and other pharmaceutical products. The objective is to
minimize the expected total cost composed of ordering, purchasing, holding, shortage and waste costs.
We focus on finding a high-quality solution close to the optimal solution of the model that provides
decision support for decision-makers. We propose a stochastic programming model and transform it
into MILP model based on conditional scenarios (CS) approach to reduce the computational burden.
By comparing with the sample average approximation (SAA) method in a numerical study, we show
that our method works efficiently.
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1. Introduction

According to the Collaborative Strategies to Reduce Unsaleables report [9], it is estimated
that approximately $15 billion of goods are wasted every year in the US food retail industry.
This costs both manufacturers and retailers throughout their supply chains. Thus, it is vital
to reduce the waste and improve the overall effectiveness of the supply chains. A significant
proportion of the waste coming from product perishability is one of the major concerns for many
industrial sectors such as fresh food, blood products, meat, chemicals, composite materials
and pharmaceuticals. In most inventory models, it is assumed that products can be stored
indefinitely to meet future demand. However, the effects of perishability cannot be ignored for
certain types of products, which may become partially or entirely unsuitable for consumption
as time passes [1, 5]. Retail managers face significant challenges when unsold perishable items
approach their expiration date. The decision-making becomes difficult due to the coexistence
of items of several different ages. They have to choose among alternatives whether or not the
remaining inventory should be sold at a price lower than expected or merely be considered as
waste.

Besides, the existence of uncertainties in supply, delivery time, quality, and demand make
the decision-making process more complicated. For most inventory models, the assumption of
infinite supply may help it become less cumbersome, but this also reduces the model’s precision.
In reality, supply uncertainty can be found in three aspects: supply lead time, supply quantity
and purchase price according to [8]. Thus, considering these uncertainties in inventory models
has been proved to be critical for their real application in inventory management.
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The rolling-horizon approach is usually used in a business environment that is characterized
by unpredicted future uncertainty because planning decisions for far future could not be accurate
enough. This approach can reduce the size of a model and lower computational complexity.
For this reason, in this paper, we adopt the rolling horizon approach.

To the best of our knowledge, very few papers study inventory management of perishable
products with both supply and demand uncertainty in a rolling horizon framework. For this
reason, we investigate an inventory model with multi-periods for a perishable product with fixed
life shelf under both stochastic demand and stochastic supply in a rolling horizon framework.
Based on the product’s remaining shelf life and some useful historical information related to
demand and supply, we develop a practical approach to help retail managers in generating an
effective inventory replenishment plan. The essential characteristics of the inventory model are
perishability, stochastic demand, stochastic supply, and multi-period.

This paper includes several main contributions. Firstly, we propose a stochastic program-
ming model for a perishable inventory system with fixed life shelf under both stochastic demand
and stochastic supply in a rolling horizon framework. Secondly, we formulate a mixed integer
linear programming (MILP) model equivalent to the original problem using the conditional
scenarios (CS) approach. Thirdly, we conduct a numerical study to evaluate the performance
of the proposed algorithm. The results show that our approach can find a high-quality solution
with statistical performance guaranteed in a reasonable computation time. Sensitivity analysis
is conducted to examine the effect of some critical parameters on the total system cost.

The remainder of the paper is organized as follows. In Section 2, the problem and its model
are introduced. The two solution methods are presented in Section 3. A numerical study is
performed and its results are analyzed in qtextsfSection 4. Section 5 concludes this paper with
some remarks for future research.

2. Problem description and model formulation

2.1. Problem description

In this paper, we consider a multi-period inventory problem for a perishable product with fixed
shelf life in a rolling horizon framework. For simplicity, we assume that company uses the first
in first out (FIFO) withdraw policy. In this paper, the order of events occurred in each period
is given as follows. i) Fresh items arrive at the beginning of each period. Then, the inventory
level of each age is updated. The expired items are discarded. ii) Based on the inventory policy
used, an order then placed if necessary. After that, the demand and supply in this period are
observed, and customer demand is satisfied as much as possible, and unsatisfied demand is
lost sale. iii) At the end of each period, holding costs or shortage costs are charged based on
the remaining inventory which will be carried over from the current period to the next. The
out-dating costs are also charged for expired items.

2.2. Model formulation

In the following, we formulate a stochastic programming model for the inventory optimization
problem of perishable product considered. The age of a product is denoted by i ∈ {1, ...,M}.
Let a, v, h, p w are unit ordering cost, unit purchasing cost, unit holding cost, unit shortage cost
and unit waste cost for each unit of products expired, respectively. Let Iit denote the inventory
level of the product which has age i at the end of period t ∈ {1, ..., T}. It is convenient to
denote I1

t as fresh items of the product in stock at the end of period t ∈ {1, ..., T}.
In the first stage, the decision variable includes the timing of ordering yt and the ordering

quantity Ot in each period t ∈ {1, ..., T}. The second stage variables include the supply quantity
received qt, inventory level Iit for each age i, lost sales Bt and outdated items IMt at the end
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of period t. In the second stage, the recourse actions are made to correct the negative effects
due to the first stage decision (the timing of ordering). In the model, all continuous decision
variables are non-negative.

It is assumed that demand Dt and supply St follows a multivariate Gaussian distribution
N(µ,Σ) where µ is a vector of mean of {Dt, St} and Σ is a covariance matrix that gives the
correlation between the supply St and the demand Dt. Note that x+ = max{0, x}. The
stochastic programming model for an inventory management of a perishable product is given
as follows:

(SP) min

T∑
t=1

EDt,St

[
ayt + uqt + h(

M−1∑
i=1

Iit) + pBt + wIMt

]
(1)

s.t

yt =

{
1, if Ot > 0

0, otherwise
t = 1, ..., T (2)

Y i
t = (Dt −

M−1∑
j=i

Ijt−1)+ i = 1, ...,M, t = 1, ..., T (3)

Iit = (Ii−1
t−1 − Y i

t )+, t = 1, ..., T ; i = 2, ...,M (4)

I1
t = (qt − Y 1

t )+, t = 1, ..., T (5)

Bt =

M−1∑
i=1

Iit−1 −
M∑
i=1

Iit + qt −Dt, t = 1, ..., T (6)

qt = min{St, Ot}, t = 1, ..., T (7)

Iit ≥ 0, i = 1, ...,M ; t = 1, ..., T (8)

qt, Bt ≥ 0, yt ∈ {0, 1} t = 1, ..., T (9)

The objective in eq.(1) is to minimize the total expected cost which includes five types of
costs: ordering, purchasing, inventory holding, lost sales and out-dating cost over the planning
horizon of T periods.

In eq.(2) the binary variable yt = 1 only if there is an order quantity Ot in period t. Eq.(3)
shows the variable Y i

t as the remaining demand after withdrawing all products having ages
from i to M using FIFO withdraw policy. Note that the decision variables Y i

t are redundant,
but they are introduced for the readability of the model. Eq.(4) and eq.(5) give the transition
of inventory from the actual period to the next. In eq.(3) and eq.(4), we implicitly assume that
for the first period, t = 1, the variables Iit−1 are replaced by the predetermined parameters Ii0
(initial inventory). Eq.(6) shows the inventory balance constraints between period t and t+ 1.
This equation also determines that lost sale, Bt, which only occurs when the supply quantity
received, qt, and the inventory of all age i cannot meet demand, Dt. Eq.(7) ensures that the
quantity received is always limited by the supply St.

3. Solution approach

In this section, the original model (SP) is transformed into an equivalent MILP model by
applying the scenario approach. The sample average approximation (SAA) method is a con-
ventional approach for stochastic optimization. Beltran-Royo proves that conditional scenarios
(CS) method might provide a better solution than the SAA method [2]. That is why we develop
a scenario-based optimization approach for solving our model based on conditional scenarios
(CS) method.



178 Duc Huy Nguyen, Haoxun Chen

3.1. Deterministic equivalent model

Based on the scenario-based stochastic programming approach, we reformulate the model (SP)
into a mixed integer linear programming (MILP) model. This approach allows to capture the
uncertainty in an approximate way with the precision depending on the number of scenarios
considered. Let ω ∈ Ω be the index of a scenario (a possible realization of random variables) and
its probability of occurrence is pω. The mathematic expectation E(.) in the objective function
can be replaced by

∑
ω pω[.]. Then, the nonlinear objective function in eq.(1) is transformed

into the deterministic objective function eq.(10) The deterministic equivalent MILP model is
given as follows:

min

T∑
t=1

ayt +
∑
ω∈Ω

T∑
t=1

pω

[
uqt,ω + h(

M−1∑
i=1

Iit,ω) + pBt,ω + wIMt,ω

]
(10)

s.t. Constraints eq.(11)− eq.(20)

The index ω is added to each two-stage decision variables related to the scenario ω except
for the ordering quantity Ot. The notation of the first-stage decision variables yt remains
as before. The ordering quantity Ot does not appear explicitly in the objective function but
implicitly through the realization of random variables such demand Dt,ω and supply St,ω. In
the following, we linearize the nonlinear constraints given (2)–(6) of the original problem (SP).
Note that H is a big number. The constraint (2) can be linearized as follows:

0 ≤ Ot ≤ Hyt t = 1, ..., T (11)

The eq.(3) can be linearized as follows:

Dt,ω −
M−1∑
j=i

Ijt−1,ω ≤ Y i
t,ω ≤ (Dt,ω −

M−1∑
j=i

Ijt−1,ω) + (1− αi
t,ω)H (12)

0 ≤ Y i
t,ω ≤ αi

t,ωH (13)

αi
t,ω ∈ {0, 1} (14)

That can be explained as follows:

i) if αi
t,ω = 1, then Y i

t,ω = (Dt,ω −
∑M−1

j=i Ijt−1,ω) ≥ 0 due to eq.(12) – eq.(13)

ii) if αi
t,ω = 0, then Y i

t,ω = 0 and (Dt,ω −
∑M−1

j=i Ijt−1,ω) ≤ 0 due to due to eq.(12) – eq.(13)

The two cases of αi
t,ω imply that the constraint (3) can be replaced by the constraints

(12)–(14) in the deterministic equivalent model.

Since the coefficients related to Iit,ωi = 1, ...M in the objective function to minimize are
positive, constraints (4) and (5) can be linearized as follows:

Iit,ω ≥ (Ii−1
t−1,ω − Y i

t,ω) t = 1, ..., T ; i = 2...M (15)

I1
t,ω ≥ (qt,ω − Y 1

t,ω) t = 1, ..., T (16)

Constraint (6) ensure the inventory balance between period t and t + 1. Lost sale, Bt,ω,
occurs when the demand Dt,ω can not be satisfied in period t under scenario ω. The constraints
are given by:

Bt,ω =

M−1∑
i=1

Iit−1,ω −
M∑
i=1

Iit,ω + qt,ω −Dt,ω, t = 1, ..., T (17)
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Constraint (7) specifies that the quantity received qt,ω is the minimum between order quan-
tity Ot and a realization of supply capacity St,ω in period t under scenario ω. That constraint
can be linearized as follows:

St,ω − (1− γt,ω)H ≤ qt,ω ≤ St,ω (18)

Ot − γt,ωH ≤ qt,ω ≤ Ot (19)

γt,ω ∈ {0, 1} (20)

That can be explained as follows:
i) if γt,ω = 1, we have qt,ω = St,ω because St,ω is not only an upper bound but also a lower

bound of qt,ω due to constraint (18). We then have qt,ω = St,ω ≤ Ot due to constraint (19).
Then qt,ω = min{St,ω, Ot}.

ii) if γt,ω = 0. we have qt,ω = Ot due to constraint (19) and qt,ω = Ot ≤ St,ω due to
constraint (18). So, qt,ω = min{St,ω, Ot}. Then in both cases, we have qt,ω = min{St,ω, Ot}.

3.2. Conditional scenarios approach

Since the computational complexity for solving the stochastic programming problem increases
with the number of scenarios, some techniques to reduce the number of representative scenarios
that should be considered: moment matching methods, the sample average approximation
(SAA) method, approaches based on probability metrics among others. According to [2], the
conditional scenarios (CS) problem allows to deal with uncertainty in shorter computational
time, and it could yield a better solution. Also, the CS approach can be seen as an aggregation
method, in which, aggregation weights are given by conditional probability function of the
random parameters.

The notation for the conditional scenarios method is given in the following. Let E and
e = 1, ..., E be the number and the index of discrete realizations of random variable considered,
respectively. Denote r as the component index of random vectors, r = 1, ..., R and {r, e} as the
index pair for conditional scenarios. ξ is random vectors including R components (ξ1, ..., ξR)T .
ξr: rth is a component of random vector ξ. ξ̃r,e is a realization of random variable ξr with

e = 1, ..., E. {p̃r,e} is the corresponding probability of the realization ξ̃r,e. Denote ξ̂r,e and
{p̂r,e} as a conditional scenario and its corresponding probability given at the end of the CS
procedure, respectively. The conditional scenarios method [2] is given as follows:

1. Given a vector of random variables ξ = (ξ1, ..., ξR)T with the index r = 1, ..., R and
ξ ∼ NR(µ,Σ). For each random variable ξr defined in a given interval Lr, we discretize
it and obtain finite realizations ξ̃r,e, e = 1, ..., Er with the corresponding probabilities
{p̃r,e}. Er is the number of discrete realizations in the given interval Lr = [ar, br]. For
example, Lr = [µr − 4σr, µr + 4σr].

(a) Divide the interval Lr into Er sub-intervals of equal length Lr,e = [ar,e, br,e]

(b) For each Lr,e, compute the discrete realizations, ξ̃r,e and their corresponding proba-
bilities, p̃r,e as follows:

ξ̃r,e = E[ξr | ξr ∈ Lr,e] = µr + σr
pdf(αr,e)− pdf(βr,e)

cdf(αr,e)− cdf(βr,e)

p̃r,e = P(ξr ∈ Lr,e) = cdf(αr,e)− cdf(βr,e)

where αr,e = (ar,e − µr)/σr and βr,e = (br,e − µr)/σr. Let pdf and cdf be the
probability density function and the cumulative distribution funtion, respectively, of
a standard normal variable. Let µr and σr be the mean and the standard deviation
of the random variable ξr, respectively.
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2. We compute the conditional scenarios ξ̂r,e and the corresponding probabilities {p̂r,e} by
using the discrete realizations, ξ̃r,e found in step 1 as follows:

ξ̂r,e = E[ξ | ξ̃r,e] = µ+
ξ̃r,e − µr

σ2
r

Σr and p̂r,e = p̃r,e

The total number of conditional scenarios is:
∑R

r=1Er where Er is the number discrete

realizations of ξr into ξ̃r.

The above procedure can be summarized by the following procedure: ξ → {ξ̃r,e} → {ξ̂r,e}.
Note that the index pair for conditional scenario {r, e} and its corresponding probability are
replaced by the index for scenario ω and pω in the subsection 3.1.

3.3. Solution evaluation

To evaluate the solution quality, we compare our approach with the most common approach,
sample average approximation (SAA) method. In this technique, the expected objective func-
tion of the stochastic problem is approximated by an average sample estimate derived from a
random sample.

The main difference between SAA and CS approach is the way to approximate the random
vector ξ and their associated probabilities (equal probability versus conditional probability).
Besides, only one sampling is made in CS approach, but a large number of samplings is necessary
to ensure the quality of solution in SAA approach. In addition, the use of reduction techniques
such as Latin hypercube sampling [6, 4] could increase the efficiency of the SAA method. For
this reason, we applied this technique to generate the whole scenarios in the SAA method.

4. Numerical study

In this section, numerical studies are conducted to evaluate the performance of the proposed
algorithm. All MILP problems related to CS and SAA approach were solved by a solver Gurobi
6.5 with default parameters on a HP computer with Intel Core i5-4210M CPU 2.66 GHz and
8.0 GB RAM.

4.1. Data generation

In the numerical study, we use the data from [3, 7] such as the fixed maximum shelf life, average
demand, coefficient of variation (CV = σ/µ), number of period. By following [3], we normalize
all cost parameters on the purchasing cost v, which is set to 1. The unit holding cost ratio h/v
is varied from 0.02 to 0.04. The unit lost sales cost p is determined from the lost sales cost
ratio p/(v+ p+ h), which is varied between 90% and 99%. The unit out-dating cost ratio, w/v
is varied between 0 and 1. The fixed ordering cost for each order placed is varies from 250v
to 500v. The maximum shelf life is M = 2 or 3. The number of periods is T = 7. The mean
demand for each period is computed by µDt

= ft.µD where the demand pattern in each period
is ft = {0.12, 0.13, 0.13, 0.16, 0.18, 0.18, 0.10}, and the value of mean demand in each period
µDt = [240, 260, 260, 320, 360, 360, 200] and σDt = 0.25µDt . Supply follows a stationary normal
distribution with µSt = 320 and σSt = 0.2µSt for all t = 1, ..., 7.



Optimization of a perishable inventory system with both stochastic demand and supply 181

4.2. Performance evaluation of the solution approach

In this section, we present our computational experiments on the algorithms proposed in the
previous section for solving instances. To formulate the CS problem, we apply Section 4.1 to
calculate the conditional scenarios that approximate the normal random vector which includes
µ = {µDt , µSt} and σ = {σDt , σSt}. For T = 7, we have R = 14 random parameters, E = 12
discretization points and Lr = [µr − 4σr, µr + 4σr]. The choice of E = 12 can be explained
as follows: we considered the (MILP) problem with different discretization level such as E =
5, 6, 7..., 100. We observe that the scenarios optimal solution has very similar quality compared
with others for the discretization with E ≥ 12.

In fact, the SAA and CS approaches try to solve the original problem approximately with
an intention to reduce the computational burden. However, it is hard to assess the quality of
the optimal SAA and CS solutions by using the optimality gap because we can not find the
optimal solution of the original problem. In this case, we assess the E-SAA and E-CS value
which are the expected value of the objective function of the original problem obtained at the
SAA solution and CS solution, respectively. We generate randomly 1000 000 sampling from a
multivariate normal distribution of ξ = {Dt, St}, t = 1, ..., T to calculate the value E-SAA and
E-CS.

Table 1 and Table 2 present the computational time and solution obtained by CS and SAA
approach. All instances include 4 368 continuous variables, 3 192 binary variables, and 16 471
constraints. The 9th and 14th columns show the relative gap between the two solutions found
by CS and SAA approach, (E-SAA - E-CS)/E-CS, in two case M = 2 and 3. Based on the
inferential statistical analysis, the obtained solutions, E-SAA, could achieve an approximatively
optimal solution with probability 95% within 0.1% deviation from the true optimal solution.
The CS approach performs efficiently since the E-CS value is always less than the E-SAA value
with 0.07% and 0.09% in average for M = 2 and 3, respectively. Besides, the CS approach has
much shorter CPU times (35.37s versus 284.91s and 35.41s versus 317.08s respectively). The
numerical study suggests that the CS approach has a good balance between the solution quality
and the computational time.

4.3. Analysis of the solution

In this study, we consider a perishable product with the fixed shelf life M = 2. The ordering
cost, unit holding cost, unit shortage cost, and unit wastage cost are $30, $2, $15, $3 respec-
tively. The parameters of a distribution of demand and supply are given as follows: µD =
[860, 810, 760, 570, 620]; µS = [520, 550, 860, 940, 760]; σ2

D = [29584, 26244, 23104, 12996, 15376];
σ2
S = [10816, 12100, 29584, 35344, 23104].
Figure 1 shows the cost distribution of the base case for the perishable inventory system

over planning horizon T = 5. The optimal value of the total expected cost of CS problem is
$41 740,98.

As we can see, the purchase cost and shortage cost are the primary cost drivers that account
for nearly 71% and 27% of the total system costs respectively. The holding cost is only 1%, so
in this case, the storage of a significant amount of product seems not critical. This result shows
the important of inventory policy on the total system cost because it affects the purchased
quantity and unmet demand strongly.
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M=2
CS approach SAA Approach

a h p w CPUs E-CS CPUs E-SAA %
250 0.02 10 0.5 41.70 4 292.30 412.22 4 296.62 0.10%
250 0.02 10 1 46.02 4 314.66 416.08 4 320.61 0.14%
250 0.02 20 0.5 37.08 4 624.11 277.45 4 627.32 0.07%
250 0.02 20 1 42.38 4 650.57 278.18 4 651.37 0.02%
250 0.02 100 0.5 21.74 7 168.08 124.52 7 165.30 0.04%
250 0.02 100 1 22.70 7 187.49 124.44 7 189.40 0.03%
250 0.04 10 0.5 50.63 4 310.32 402.67 4 316.87 0.15%
250 0.04 10 1 50.46 4 335.91 404.42 4 340.85 0.11%
250 0.04 20 0.5 44.42 4 643.95 284.44 4 648.22 0.09%
250 0.04 20 1 37.32 4 672.40 284.28 4 672.30 0.00%
250 0.04 100 0.5 20.13 7 190.01 131.28 7 187.21 0.04%
250 0.04 100 1 21.31 7 208.03 137.75 7 211.31 0.05%
500 0.02 10 0.5 40.72 6 045.13 493.51 6 046.23 0.02%
500 0.02 10 1 45.74 6 065.13 471.14 6 070.21 0.08%
500 0.02 20 0.5 35.96 6 376.24 281.32 6 376.38 0.00%
500 0.02 20 1 40.82 6 398.31 281.08 6 400.45 0.03%
500 0.02 100 0.5 23.83 8 917.29 125.89 8 917.31 0.00%
500 0.02 100 1 18.01 8 959.10 126.31 8 941.42 0.20%
500 0.04 10 0.5 44.07 6 061.58 472.26 6 066.87 0.09%
500 0.04 10 1 50.49 6 084.54 478.42 6 090.85 0.10%
500 0.04 20 0.5 35.37 6 396.94 284.28 6 398.14 0.02%
500 0.04 20 1 35.50 6 420.17 283.06 6 422.20 0.03%
500 0.04 100 0.5 21.37 8 929.61 131.20 8 939.28 0.11%
500 0.04 100 1 21.18 8 951.67 131.63 8 963.38 0.13%

Average 35.37 284.91 0.07%

Table 1: Performance of the solution algorithm in case of M=2
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M=3
CS approach SAA Approach

a h p w CPUs E-CS CPUs E-SAA %
250 0.02 10 0.5 55.84 4 266.77 445.58 4 273.36 0.15%
250 0.02 10 1 54.97 4 267.57 444.91 4 274.58 0.16%
250 0.02 20 0.5 47.55 4 604.56 292.38 4 602.29 0.05%
250 0.02 20 1 51.79 4 598.56 292.78 4 603.51 0.11%
250 0.02 100 0.5 22.27 7 118.65 159.28 7 115.32 0.05%
250 0.02 100 1 23.20 7 114.27 159.04 7 116.54 0.03%
250 0.04 10 0.5 45.14 4 289.65 451.54 4 297.92 0.19%
250 0.04 10 1 46.21 4 292.36 453.91 4 299.14 0.16%
250 0.04 20 0.5 32.27 4 623.46 322.44 4 622.92 0.01%
250 0.04 20 1 31.60 4 624.95 320.81 4 624.14 0.02%
250 0.04 100 0.5 19.76 7 141.74 161.24 7 139.52 0.03%
250 0.04 100 1 20.74 7 143.25 162.05 7 140.74 0.04%
500 0.02 10 0.5 48.60 6 017.28 491.71 6 023.72 0.11%
500 0.02 10 1 42.23 6 018.43 490.53 6 024.94 0.11%
500 0.02 20 0.5 32.26 6 349.65 315.73 6 349.74 0.00%
500 0.02 20 1 34.53 6 348.71 313.72 6 350.96 0.04%
500 0.02 100 0.5 23.70 8 874.10 161.54 8 867.33 0.08%
500 0.02 100 1 18.09 8 843.12 161.43 8 868.56 0.29%
500 0.04 10 0.5 43.59 6 041.52 514.15 6 046.52 0.08%
500 0.04 10 1 46.65 6 042.33 516.14 6 047.75 0.09%
500 0.04 20 0.5 34.15 6 371.62 324.92 6 378.35 0.11%
500 0.04 20 1 35.77 6 378.56 324.59 6 379.57 0.02%
500 0.04 100 0.5 19.39 8 881.60 165.02 8 891.59 0.11%
500 0.04 100 1 19.65 8 871.92 164.53 8 892.81 0.23%

Average 35.41 317.08 0.09%

Table 2: Performance of the solution algorithm in case of M=3

We then investigated the impacts of some critical parameters such as ordering cost, unit
purchase price, unit shortage cost on the expected total system cost.

Figure 1b) presents the effect of the unit purchase price on the total cost of perishable
inventory. The horizontal axis represents the various unit purchase price from 80% to 130%
in comparison with its base value. The vertical axis shows the total expected system costs
under different values of the unit purchase price. This result indicates that with the increase in
purchase price, the total system cost will increase rapidly. This confirms the fact that buying
cost plays the most crucial role in this system with 72% of total cost.

Figure 1c) shows that the total system cost grows up slightly as the function of ordering
cost, however, this increases is not as significant as the one of ordering cost from 80% to 130%,
in comparison with its base value. Figure 1d) shows that the total system cost seems to be
sensitive to unit shortage cost. The horizontal axis represents the various unit shortage cost
from 80% to 130% in comparison with its base value. The vertical axis shows the total expected
system costs under different values of unit shortage cost.
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(c) Impact of unit ordering cost
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(d) Impact of unit shortage cost

Figure 1: Analysis of the solution

5. Conclusion

In this paper, we proposed a stochastic model for minimizing the total cost of a perishable
inventory system under stochastic environments in a rolling horizon framework. We also pro-
posed a CS method to solve approximatively the stochastic programming model. The CS
approach seems practical since the computation of the conditional scenarios is comprehensible
and straightforward. It requires only a set of samplings generated from conditional expectations
of random parameters. The CS approach appears a better choice in comparison with the SAA
approach since the former can provide a better solution in a shorter computation time.

For future research, other uncertainties (price, quality) and risk management may be con-
sidered. Moreover, an effective algorithm is required to cope with the complexity and the high
computational challenge of the stochastic inventory problem.
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