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Abstract: Due to wide-ranging and successful aplication of linear modal analysis (LMA), not 
only in the structural dynamics, but practically in all areas of natural and engineering 
sciences, its simple concept strives to extends to nonlinear dynamical systems. This has led 
to the formulation of nonlinear modal analysis (NMA), which has a potential to become 
powerful tool in the analysis of real dynamic systems. This paper presents a comparison of 
simple linear and nonlinear systems, and the concept of nonlinear normal modes (NNM). For 
realistic estimation of dynamical parameters experimental modal analysis is neccessary, 
which can then, in combination with nonlinear analysis, give real results. 

Keywords: linear modal analysis, nonlinear modal analysis, nonlinear normal modes, 
experimental modal analysis 

KONCEPT NELINEARNIH NORMALNIH MODOVA I 
NJIHOVA PRIMJENA U DINAMICI KONSTRUKCIJA 

Sažetak: Zbog široke i uspješne primjene linearne modalne analize (LMA), ne samo u 
dinamici konstrukcija, već praktično u svim područjima prirodnih i tehničkih znanosti, nastoji 
se njezin jednostavan koncept protegnuti na nelinearne dinamičke sustave. To je dovelo do 
formulacije nelinearne normalne analize (NMA), koja ima potencijal da postane snažan alat u 
analizi realnih dinamičkih sustava. U ovom radu je prikazana usporedba jednostavnih 
linearnih i nelinearnih sustava, te koncept nelinearnih normalnih modova (NNM). Za realnu 
procjenu dinamičkih parametara nužna je eksperimentalna modalna analiza, koja zatim u 
kombinaciji s nelinearnom analizom može dati realne rezultate. 

Ključne riječi: linearna modalna analiza, nelinearna modalna analiza, nelinearni normalni 
modovi, eksperimentalna modalna analiza 
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1. Introduction 

Linear modal analysis (LMA) is a well known and effective method for obtaining responses 
of linear dynamic systems with multiple degrees of freedom. It is based on linear normal 
modes (LNM). Each LNM is an intrinsic structural property representing the synchronous 
vibration of the structure at resonance. The linear normal mode is characterized by three 
parameters, modal shape (structural deformation), natural frequency and damping. One 
important mathematical property of LNMs is their mutual orthogonality. The finite element 
method (FEM), LMA and other linear methods have become standard procedures for solving 
structural dynamics problems. When the accuracy of the solution is not very important, 
systems can still be treated as linear, although they are mainly not. However, when the 
accuracy of the predicted response is of vital importance, or when the nonlinear effects are 
high, a linear analysis becomes unreliable. Expectations in terms of high accuracy of the 
response become increasingly higher with great advances in the development of computers. 

Most engineering structures exhibit nonlinear behavior, which is often of a local character 
(supports, connections, change in geometry etc.). Solutions of simpler nonlinear problems 
can be obtained relatively easily using some of the numerical methods. However, when it 
comes to systems with many degrees of freedom, such computations can take extremely 
long and are impractical for real situations. Real problems are usually solved by linear 
methods, while their nonlinear properties are in most cases covered by a simple 
approximation. This is partly due to the absence of a single theory that can cover general 
nonlinearity cases [1]. However, in order to obtain real behavior of a system, it is necessary 
to use nonlinear methods. The concept of nonlinear normal mode (NNM) provides a solid 
theoretical basis for interpretation of the dynamics of nonlinear systems. In early 1960s, the 
papers [2,3] presented a concept of nonlinear normal modes resulting from extension of the 
concept of linear normal modes, which provides a clear conceptual relation between them. 
While there are many system nonlinearity sources, the NNM literature mainly deals with 
localized stiffness nonlinearities and distributed (geometrical) nonlinearities. The first 
numerical method related to NNM is presented in paper [4]. More advanced approaches 
appear later [5]. The NNM concept was extended to nonconservative systems in 1990s [6,7]. 
Using analytical methods, NNMs were obtained for systems with linear and nonlinear 
damping [8]. Recently, different interpretations of the NNM definition resulted in the 
formulation of several numerical methods for their determination [9]. 

The complexity of nonlinear modal analysis (NMA) results from the following facts: 

• localized nonlinearity can have a significant effect on the entire structure, while 
some of its parts remain in the linear domain, 

• nonlinear effects are usually contained in only a few modes, while the rest behave 
linearly, 

• there is a lack of standardized parameters that can define the degree of 
nonlinearity in an objective way, 

• there is not a simple and approachable way to present a nonlinear response in the 
form of a well-defined algebraic function. 

Due to the absence of a unified nonlinear theory, nonlinear parameters are usually included 
in the linear frame (LMA). Such an approach ensures compatibility with LMA, but it is not 
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 necessarily the best way. There are serious questions [10] on the validity of extending the 
linear concept to nonlinear systems. For example, bifurcating nonlinear modes are 
essentially a nonlinear motion, and cannot be considered as an analytical extension of any 
linear mode. Furthermore, NNMs can be stable and unstable, unlike LNMs, which are always 
in a state of neutral equilibrium [11]. 

2. Comparison of linear and nonlinear responses on simple examples 
 

The dynamic response of a linear and nonlinear system with one and two degrees of 
freedom of movement is observed, as shown in Figure 1. In the case of a nonlinear system 
with a single degree of freedom (SD), motion is described by the Duffing motion equation 
 

3 sin ,mu cu ku u f tβ+ + + = Ω                                                                                      (1) 

where nonlinear stiffness is represented by the term 3uβ , where β  is a nonlinear stiffness 
coefficient. If 0β = , Equation (1) becomes linear. In both cases these are forced damped 
oscillations. The type of forcing is harmonic, with frequency Ω . 

In the case of a system with two degrees of freedom, motion is described by the 
following equations 

( ) ( ) ( )
( ) ( ) ( )
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As in the case of a SD system, previous equations become linear for 0β = . 

 
Figure 1. Oscillation systems with single and two degrees of freedom 

Stationary solutions of equations (1) and (2) can be obtained e.g. by using the harmonic 
balance method [11], where the solution is shown by Fourier harmonic series for each 
degree of freedom.  

( ) ( )
1

( ) sin cos .i in in
n

u t a n t b n tω ω
∞

=

=  +  ∑                                                                         (3) 

The fundamental frequency corresponds to the forcing frequency. Truncating the previous 
series and assuming only the fundamental harmonic, an approximate solution for each 
degree of freedom can be written in the form 
 

( ) sin cos ,i i iu t a t b tω ω= +                                                                                         (4) 

where ia  and ib  are unknown coefficients. 
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 Since this is an approximate method that does not take into account all terms of the 
series, there is a residual. Residual orthogonalization (Galerkin weighted residuals) in the 
interval ( )0, 2 /π ω  gives a system of 2n algebraic equations, whose unknowns are 

coefficients ia  and ib , which are functions of parameter ω . The solution of this system is a 
frequency response curve of forced oscillations, and a set of free periodic undamped 
motions, which represents the modes. This solution can be obtained as a series of points for 
discrete values of frequency ω . The Newton-Raphson method is most commonly used to 
solve this system of nonlinear algebraic equations. 

Two examples of the analysis of linear and nonlinear oscillations of systems with one 
and two degrees of freedom are given below. 

Figure 2 shows the frequency response of a linear SD system, with parameters 

1.0, 4.0, 0.25, 1.0, 0,m k c f β= = = = =  

while Figure 3 shows the frequency response of a nonlinear SD system, with parameters 

1.0, 4.0, 0.25, 1.0, 5,m k c f β= = = = =  

Its natural frequency is 1/ 0.318f T Hz= = . 

 
Figure 2. Frequency response of a linear SD system (FRD) 

 
Figure 3. Frequency response of a nonlinear SD system (FRD) 
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 In the case of a linear system, the frequency of free periodic oscillations does not 
depend on displacement amplitudes or energies, so the modal curves are the vertical lines 
shown on these diagrams. In linear systems, resonance occurs near natural frequencies, 
while in nonlinear systems it shifts relative to these frequencies. This shift can be to the right 
or to the left, depending on the sign of the nonlinear parameter β . This shift, or bending of 
the frequency response curve of nonlinear systems indicates that there exists an interval of 
forcing frequencies between the natural frequency and a certain smaller/greater frequency, 
where bifurcation points occur. Stability analysis of these stationary solutions, in this 
frequency interval, would show that the solutions with the largest and the smallest response 
amplitude are stable, while the intermediate solutions are unstable. For any other forcing 
frequency outside this interval, the stationary solution is unique and stable [11]. 

Figures 4 and 5 show the frequency response of a linear system with two degrees of 
freedom, whose parameters are  

1 2 1 2 1 2 1 21.0, 1.0, 1.0, 1.0, 0.2, 0.0, 1.0, 0.0, 0.0,m m k k c c f f β= = = = = = = = =  

while Figures 6 and 7 show the frequency response of a nonlinear system with two degrees 
of freedom, with parameters  

1 2 1 2 1 2 1 21.0, 1.0, 1.0, 1.0, 0.2, 0.0, 1.0, 0.0, 0.5.m m k k c c f f β= = = = = = = = =  

The nonlinear frequency response of the system with two degrees of freedom is analogous 
to the system with one degree of freedom. It is evident in Figures 4 and 6 that, between the 
two resonances, there is a frequency at which the amplitude of the first mass is zero. The 
total energy is therefore contained in the motion of the second mass and damping. This 
phenomenon is called tuning and has a significant application in mechanical vibration control. 
In nonlinear systems, energy can be transferred from one mode to another, leading to their 
change (localization) [12]. An important property of nonlinear systems is that the response 
can contain harmonics and subharmonics, which means that the response can contain 
frequencies different from the excitation frequencies. This does not hold true for linear 
systems, where the response and excitation frequencies are equal. 

 

Figure 4. Frequency response of a linear system with two degrees of freedom (stage one) 
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Figure 5. Frequency response of a linear system with two degrees of freedom (stage two) 

 

Figure 6. Frequency response of a nonlinear system with two degrees of freedom (stage 
one) 

 

Figure 7. Frequency response of a nonlinear system with two degrees of freedom (stage two) 
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 3. The concept of nonlinear normal modes 

In the linear theory, proper forms (modes) of discrete or continuous systems are used to 
uncouple systems of motion equations so that each of them can be separately solved in a 
space of modal coordinates. Free or forced oscillations of a linear system with multiple 
degrees of freedom can be then obtained by superposition of modal responses. The number 
of normal modes (NM) of a linear system cannot be greater than the number of degrees of 
freedom, while this does not hold true for nonlinear systems due to the occurrence of normal 
mode bifurcations. 

In the case of linear systems, normal modes are independent and there is no energy 
exchange between them, while in nonlinear systems energy is transferred from one mode to 
another. 

The first definition of NNMs is given by Rosenberg [2]. He defined NNMs as 
synchronous periodic oscillations, where all degrees of freedom oscillate at the same 
frequency and the same displacement ratio. This means that all degrees of freedom of the 
system must reach extreme values at the same time. This definition has two disadvantages. 
The first is that it cannot apply to nonconservative systems. The second disadvantage lies in 
the fact that this definition does not cover the possibility of occurrence of internal resonance. 
This disadvantage can be amended if the definition is extended to non-necessarily 
synchronous periodic motion, because in the case of internal resonance the motion is still 
periodic. 

The second definition of NNMs, with the extension to damped systems, is given by Shaw 
and Pierre [6]. They defined NNMs as 2D invariant manifolds (surfaces) in the phase space, 
which are tangent to the linear planes at the equilibrium position [12].  

There are a number of analytical and numerical methods for determining NNMs. 
Analytical methods worthy of note are the harmonic balance method, a formulation based on 
energy, the invariant manifold approach, multiple scales method. Numerical methods are 
more useful than analytical ones because analytical methods are limited to simpler systems 
with few degrees of freedom and low nonlinearity. The most commonly used numerical 
methods are Runge-Kutta and Newmark methods, as well as the continuation methods. 

According to Vakakis, Kerschen and other authors, results of numerical analysis of 
NNMs are presented graphically (FRP), Figures 9 and 14. They present NNMs as sequences 
of discrete points representing NNMs. In the following examples, the software NNMcont [13, 
14, 15] was used to obtain NNMs. The NNMs have paths in the phase space that can be 
presented in two ways. The first way is with modal curves (Figures 10, 12, 15 and 17), and 
the second way is by using a graph showing the development of NNMs for any degree of 
freedom (Figures 11, 13, 16 and 18).  

An example with two degrees of freedom is analyzed here, the motion of which is 
described by equations 

( ) ( )
( ) ( )

3
1 1 1 1 2 2 1 2 1

3
2 2 2 2 1 2 1

0

0.

m u k u k u u u u

m u k u u u u
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                                                                   (5) 
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Figure 8. Oscillation system with two degrees of freedom  

System parameters are 

1 2 1 21.0, 1.0, 1.0, 1.0, 0.5.m m k k β= = = = =  

Figure 9 shows the first NNM branch, Figure 10 shows the modal curve for point 1, 
while Figure 11 shows the time development of displacement and displacement 
amplitude for the same point. It is visible that lower-energy modes coincide with 
linear normal modes. The masses oscillate in phase and there is no transfer of 
energy from one mass to the other, which is evident in Figure 11. Red dots in Figure 
9 represent unstable modes, with bifurcation points. In this area, there is more than 
one mode relative to the linear mode, which is a consequence of internal resonance. 

 

Figure 9. First NNM branch (FRP) 

 

Figure 10. Modal curve for point 1 (first NNM) 
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Figure 11. Development of displacement and amplitude in time for point 1 

Figure 12 shows the modal curve for point 2 (Figure 9). It is evident that it becomes nonlinear 
with increasing mode energy. The masses oscillate out of phase, and energy is transferred 
from the first to the second mass. 

 

Figure 12. Modal curve for point 2 (first NNM) 

 

Figure 13. Development of displacement and amplitude in time for point 2 
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 Figure 14 shows the second branch. Since stiffness in this example is adopted using 
hardening law, the frequency of free periodic oscillations increases with increasing 
amplitude. 

 

Figure 14. Second NNM branch (FRP) 

All modes on this branch are stable and symmetrical. Figure 15 shows the modal curve for 
point 1, from Figure 14, in the phase space. As with the first branch, it is evident here too that 
linear and nonlinear modes coincide at low energies. It is visible in Figure 16 that both 
masses oscillate periodically, out of phase, and that there is a transfer of energy from the first 
to the second mass. 

 

Figure 15. Modal curve for point 1 
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Figure 16. Development of displacement and amplitude in time for point 1 

 

Figure 17. Modal curve for point 2 

 

Figure 18. Development of displacement and amplitude in time for point 2 

Figure 17 shows the modal curve, in the phase space, for point 2 from Figure 14. In this 
situation, the total energy of the system is in the first stage, while the amplitude of the second 

Kožul M., Džolan A., Ivanković M V.                                                                                       83 
 



 

                                                                                               Number 17, June 2019. 
 
The concept of nonlinear normal modes and 

their application in structural dynamics                                                                                         

 stage equals zero, as can be seen in Figure 18. On the second branch there are no 
bifurcation points, and thereby no new branches. Oscillations of both masses are out of 
phase, while their fundamental frequency increases, which leads to a decrease of minimum 
period. 

4. Conclusions 
 

In the field of structural dynamics, nonlinear modal analysis (NMA) has emerged as a set of 
methods that represent the extension of classical linear modal analysis (LMA) for analysis of 
nonlinear dynamic systems. The development of experimental and analytical modal analysis 
is keeping pace with each other, and it is desirable to use their combination to obtain 
dynamic response. Experimental analysis can provide a good estimation of nonlinear 
parameters (stiffness and damping), which is a basic precondition of any nonlinear analysis, 
whether it is analytical or numerical. Nonlinear modal analysis represents an interesting field 
of research that is constantly expanding and bringing new insights and results. It is gradually 
entering a practical field of application due to its potential in nonlinear modeling of real 
dynamic systems. 
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