Mikrobiološka ispravnost kuhinjske soli na tržištu

Ana-Marija Bartol1, Nevijo Zdolec2, Mima Mrkonjić Fuka3, Lidija Kozačinski4

Sažetak

Kako je sol sastojak većine prehrambenih proizvoda, odličan konzervans, a najveći dijelom začin za dosoljavanje gotovo svakog jela, cilj istraživanja ovog rada bio je ustanoviti mikrobiološku ispravnost kuhinjske soli plasirane na hrvatsko tržište. Mikrobiološke analize provedene su na deset uzoraka soli različitih domaćih i stranih proizvođača, a uzorkovani su u maloprodaji. Uzorci soli su prema nacionalnim mikrobiološkim kriterijima za hranu pretraženi na ukupni broj aerobnih mezoofilnih bakterija i ukupni broj pljesni. Niti jedan pretraženi uzorak morske, kamene soli, himalajske soli i cvijeta soli nije bio sukladan propisanim kriterijima.

Ključne riječi: kuhinjska sol, aerobne mezoofilne bakterije, pljesni

Uvod

Kuhinjska sol ili natrijev klorid nezaboravljena je dodatak gotovo svakoj hrani. Još od davnina prepoznata je kao začin i sastavni dio čovjekove prehrane, a potom i kao konzervans zbog svog inhibirajućeg djelovanja na određene aerobne i anaerobne bakterijske vrste u hrani. Osim što sol poboljšava okus hrane, neophodna je za normalno funkcioniranje mnogih fizioloških procesa u organizmu, pri čemu je potreban oprez jer prekomjerna upotreba kuhinjske soli utječe negativno na rad krvi i srčanog sustava, bubrega te niz metaboličkih funkcija i reakcija u tijelu (Kolovrat, 2007.; Anon, 2014.). Tome treba pridodati činjenicu da se sol unosi u organizma kao „skrivena“ sol koja se koristi u proizvodnji industrijske hrane, na što veoma malo možemo utjecati (Kaić-Rak i sur., 2009.).

Sol se koristi u proizvodnji hrane kao konzervans, začin, agens za održavanje boje, teksture te u svrhu reguliranja fermentacije zaustavljajući rast bakterija, kvasaca i pljesni (Doko Jelinić i sur., 2010.). Prema Pravilniku o soli (Anon., 2011.), sol je proizvod kristalizacije koji se pretežno sastoji od natrijevog klorida (NaCl), a može sadržavati i magnezijevu i druge soli u različitim količinama ovisno o podrijetlu i postupku proizvodnje. Sol se plasira na tržište pod nazivom „sol“, a potrebno je navesti i informacije o
Materijal i metode rada

U okviru ovoga rada obavljene su mikrobiološke analize u svrhu procjene mikrobiološke ispravnosti kuhinjske soli na tržištu. U malo- prodaji je uzorkovano 10 uzoraka soli, i to morska (krupna i sitna sol), kamena sol, himalajska sol, te cvijet soli različitih proizvođača koje su prema odredbama Pravilnika o soli (NN 89/11 i 141/13) plasirane na tržište. Uzorci soli potjecali su od domaćih i stranih proizvođača koji svoju soli stavljuju na tržište Republike Hrvatske.

Mikrobiološka ispitivanja ispravnosti soli

Tablica 1. Mikrobiološki parametri koji se pretražuju u uzorcima soli (Anon., 2011a)

Table 1 Microbiological parameters in salt samples (Anon., 2011a)

<table>
<thead>
<tr>
<th>Hrana / Food category</th>
<th>Mikroorganizmi / njihovi toksimi i metabolit / Microorganisms / toxins and metabolic products</th>
<th>Plan uzorkovanja / Sampling plan</th>
<th>Kriteriji / Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>c</td>
</tr>
<tr>
<td>Kuhinjska sol i pojačači aroma / (glutamat, inozinat, guanilet i dr.) / Salt and flavor enhancers</td>
<td>Aerobne mezofilne bakterije / Aerobic mesophilic bacteria</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Plijesni / Moulds</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

*cfu/ml - (eng. colony forming unit) broj kolonija u mililitru
n = broj elemenatarnih jedinica uzorka koje čine uzorak / n = number of units comprising the sample;
c = broj jedinica uzorka, u kojima se dobivene vrijednosti ispitivanja mogu nalaziti između “m” i “M”, pri čemu se uzorak smatra prihvatljivim, ukoliko je dobivena vrijednost ispitivanja u ostalim jedinicama uzorka jednaka “m”; ili manja od “m” / c = number of sample units giving values over m or between m and M — sample is acceptable, if a maximum of c/n values are between m and M, and the rest of the values observed are < m
m = granična vrijednost ispod koje se svi rezultati smatraju zadovoljavajućim / limit value - results are satisfactory if all the values observed are < m
M = granična dopuštena vrijednost iznad koje se svi rezultati smatraju nezadovoljavajućim / limit values > M — results are unsatisfactory*
provedena su u mikrobiološkom laboratoriju Zavoda za higijenu, tehnologiju i sigurnost hrane, Veterinarskog fakulteta Sveučilišta u Zagrebu.

Uzorci su analizirani sukladno preporučenim mikrobiološkim parametrima (Tablica 1.) i kriterijima Vodića o mikrobiološkim kriterijima za hranu (Anon., 2011.a).

Kako je pretražen samo po jedan uzorak soli od svakog proizvođača, srednja vrijednost rezultata je interpretirana prema kriteriju m (Tablica 1.).

Opis uzoraka

Uzorci soli bili su ambalaži koja nije bila oštećena. Svaki je uzorak bio deklariran, a u tablici 2. su prikazani podaci s deklaracije, grupirani ovisno o vrsti soli.

Tablica 2. Svojstva i kemijski sastav uzoraka soli (podaci iz deklaracija)

<table>
<thead>
<tr>
<th>Proizvođač/Producer</th>
<th>Naziv proizvoda / Product</th>
<th>Opis proizvoda / Product description</th>
<th>Kemijski sastav / Chemical composition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitna i krupna morska sol / Sea salt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Kuhinjska morska sol / Kitchen sea salt</td>
<td>morska, sitna, jodirana / sea salt, fine, iodised</td>
<td>Sadržaj NaCl na suhu tvar / NaCl content to the dry matter > 93 % 0,04 % Ca; 0,02 % Mg 0,10 %; K<0,5; H 2O</td>
</tr>
<tr>
<td>2</td>
<td>Kuhinjska morska sol / Kitchen sea salt</td>
<td>morska, sitna, jodirana / sea, coarse, iodised</td>
<td>97,11 % NaCl; 0,33 % Ca; 0,36 % Mg; 0,12 % K; 0,3 % H 2O; 15 – 23 mg/kg l; 2,06 % ostalih minerala; 2 – 10 mg/kg E-536 (tvar za sprečavanje zgrudnjavanja) / 2,08 % other minerals; 2 – 10 mg/kg E-536 (anticaking agent)</td>
</tr>
<tr>
<td>3</td>
<td>Kuhinjska morska sol / Kitchen sea salt</td>
<td>morska, sitna, jodirana / sea, coarse, iodised</td>
<td>Kemijski sastav na 100 g soli / Chemical composition 100 g salt 0,016 % Ca; 0,046 % Mg; 0,058 % K; 25,5 – 38,5 mg/kg KIO 3; E-536 (tvar za sprečavanje zgrudnjavanja / E-536 (anticaking agent)</td>
</tr>
<tr>
<td>4</td>
<td>Kuhinjska morska sol / Kitchen sea salt</td>
<td>morska, sitna, jodirana / sea, coarse, iodised</td>
<td>97,11 % NaCl; 0,33 % Ca; 0,36 % Mg; 0,12 % K; 0,3 % H 2O; 15 – 23 mg/kg l; 2,06 % ostalih minerala; 2 – 10 mg/kg E-536 (tvar za sprečavanje zgrudnjavanja) / 2,08 % other minerals; 2 – 10 mg/kg E-536 (anticaking agent)</td>
</tr>
<tr>
<td>Kamen sol – Table salt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Kuhinjska sol / Kitchen salt</td>
<td>sitna, evaporirana, jodirana / fine, evaporated, iodised</td>
<td>NaCl (99 – 99,5 %); aditiv E-536 / additive E-536</td>
</tr>
<tr>
<td>6</td>
<td>Kuhinjska sol / Kitchen salt</td>
<td>kuhinjska, jodirana / kitchen, iodised</td>
<td>Kuhinjska sol; Kalijev jodid; E 535 (sredstvo protiv zgrudnjavanja) / Kitchen salt; Potassium iodide; E 535 (anticaking agent)</td>
</tr>
</tbody>
</table>

Himalajska sol – Himalayan salt

| 7 | Himalajska sol / Himalayan salt | sol iz podnožja Himalaja / Salt from the foot of the Himalaya | nije navedeno / not specified |
| 8 | Himalajska sol / Himalayan salt | himalajska, ružičasta, krupna, kamena sol / himalayan, pink, coarse, table salt | Sastojci / Ingredients 100 % himalajska sol / Himalayan salt |

Cvijet soli – Flower of salt (Fleur de sel)

| 9, 10 | Cvijet soli / Flower of salt | morski „kaviar“ soli, pojavljuje se na površini mora kao tanki sloj listića soli, poput latica cvjeća, koji se ubere ručnom / sea „caviar“ of salt, it occurs on sea surface as thin layer of salt „leaves“, like flowers petals, which are harvested by hand | Ne sadržava kemijske aditivne / Does not contain chemical additives |

Rezultati i rasprava

Uzorci krapne i sitne morske soli, kamene soli, himalajske soli i cvijeta soli stavljeni su na tržište sukladno odredbama Pravilnika o soli (NN 89/2011 i 141/13) u pogledu deklaracije proizvoda. Izuzetak je jedan uzorak kamene soli čija deklaracija ne sadrži podatak o kemijskom sastavu.

Rezultati mikrobiološke analize uzoraka soli različitih proizvođača prikazani su tablici 3., a u tablici 4. rezultati su prikazani neovisno o proizvođačima a u odnosu na vrstu soli.

U mikrobiološkoj pretrazi, uzorcii su pretraženi na ukupni broj aerobnih mezofilnih bakterija i plijesni, a interpretirani su i u odnosu na različite proizvođače (Tablica 3.). Tako se u uzorcima morske soli prosječni ukupni broj bakterija, ovisno o proizvođaču, kreće od 25 CFU/g do $5,5 \times 10^3$ CFU/g. Kamena sol je sadržavala prosječno 64 CFU/g odnosno $2,5 \times 10^3$ CFU/g. U uzorcima himalajske soli taj je broj iznosio $2,0 \times 10^3$ CFU/g, odnosno $8,4 \times 10^2$ CFU/g u uzorcima koji su potjecali od drugog proizvođača. U uzorcima cvijeta soli ukupni broj bakterija bio je podjednak i iznosio 31 CFU/g, odnosno 32 CFU/g.

Plijesni nisu utvrđene samo u uzorcima himalajske soli jednog proizvođača, dok su uzorci sljedećeg proizvođača sadržavali plijesni u broju 15 CFU/g. U uzorcima morske soli različitih proizvođača plijesni su utvrđeni u broju od najmanje 10 CFU/g do najviše 20 CFU/g, dok je najveći broj plijesni utvrđen u cvijetu soli i iznosio 23 CFU/g.

Zaključno, niti jedan pretraženi uzorak soli u našem istraživanju nije bio sukladan kriterijima iz Vodiča (Anon. 2001.a) u pogledu ukupnog broja bakterija i broja plijesni, što dovodi u pitanje mikrobiološku ispravnost soli. Riječ je o strogoj kriteriju Vodiča (Anon., 2011.a) zbog samo jedne elementarne jedinice analiziranog uzorka. Uzorak koji čini pet elementarnih jedinica je prihvatljiv jedino ukoliko su u dvije jedinice dobivene vrijednosti ispitivanja između “m” i “M”, dok su dobivene vrijednosti ispitivanja u ostalim jedinicama uzorka jednake “m” ili manje od “m” (tablica 1.).

Zanemarimo li činjenicu da su soli potjecale od različitih proizvođača možda je interesantno iznijeti prosječne vrijednosti

Tablica 3. Prosječni broj aerobnih mezofilnih bakterija i plijesni u uzorcima soli različitih proizvođača

<table>
<thead>
<tr>
<th>Proizvođač/Proizvod</th>
<th>X AMB, CFU/g</th>
<th>X Plijesni / Moulds, CFU/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitna i krupna morska sol / Sea salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=3)</td>
<td>$2,5 \times 10^2$</td>
<td>$1,3 \times 10^4$</td>
</tr>
<tr>
<td>2 (n=3)</td>
<td>$2,8 \times 10^2$</td>
<td>$2,0 \times 10^2$</td>
</tr>
<tr>
<td>3 (n=3)</td>
<td>$5,5 \times 10^2$</td>
<td>1×10^3</td>
</tr>
<tr>
<td>4 (n=3)</td>
<td>$4,3 \times 10^2$</td>
<td>1×10^4</td>
</tr>
<tr>
<td>Kamena sol - Table salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=3)</td>
<td>$6,4 \times 10^2$</td>
<td>$1,7 \times 10^4$</td>
</tr>
<tr>
<td>2 (n=3)</td>
<td>$2,5 \times 10^2$</td>
<td>2×10^4</td>
</tr>
<tr>
<td>Himalajska sol - Himalayan salt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=3)</td>
<td>$2,0 \times 10^2$</td>
<td>$1,5 \times 10^3$</td>
</tr>
<tr>
<td>2 (n=3)</td>
<td>$8,4 \times 10^2$</td>
<td>0</td>
</tr>
<tr>
<td>Cvijet soli - Flower of salt (Fleur de sel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (n=3)</td>
<td>$3,1 \times 10^2$</td>
<td>$1,3 \times 10^3$</td>
</tr>
<tr>
<td>2 (n=3)</td>
<td>$3,2 \times 10^2$</td>
<td>$2,3 \times 10^3$</td>
</tr>
</tbody>
</table>

*AMB = aerobne mezofilne bakterije / Aerobic mesophilic bacteria

$0 = < 10$ CFU bakterija/plijesni po ml uzorka / $0 = < 10$ CFU bacteria/moulds in 1 ml
Tablica 4. Rezultati mikrobiološke pretrage prema vrsti soli

<table>
<thead>
<tr>
<th>Utvrda</th>
<th>AMB* CFU/g</th>
<th>Plijesni / Moulds CFU/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morska sol / Sea salt</td>
<td>n=12</td>
<td>1.4×10^4</td>
</tr>
<tr>
<td>Kamenka sol / Rock salt</td>
<td>n=5</td>
<td>1.5×10^4</td>
</tr>
<tr>
<td>Himalijska sol / Himalayan salt</td>
<td>n=5</td>
<td>1.9×10^3</td>
</tr>
<tr>
<td>Cvjet sol / Flower of salt</td>
<td>n=6</td>
<td>3.2×10^3</td>
</tr>
</tbody>
</table>

*AMB = aerobe mezofiline bakterije / Aerobic mesophilic bacteria

U svojem istraživanju mikrobiološke ispravnosti začina, Sultana i sur. (2014.) su utvrdili u soli ukupni broj aerobnih mezofilnih bakterija od 3.2×10^5 CFU/g, a plijesni 3.7×10^2 CFU/g što su povišene vrijednosti u odnosu na one dozvoljene nacionalnim propisima. Autori ističu da se sol upotrebljava kako bi se hrana zaštitila od onemogućenja mikroorganizama, a njena upotreba kao konzervansa potvrđena je kao učinkovita u sprečavanju razmnožavanja i/ili ubijanja bakterija. U njihovom istraživanju aktivnost soli je smanjena, a navedenu prevlajciju bakterija i plijenski autori su povezali sa slabom antibakterijskom aktivnošću.

Sol je specifična hrana za koju se veću određeni mikroorganizmi koji mogu opстатi u slanom mediju. Specifična mikroflora soli je halofilna i halotoleranta (Mioković i Zdolec, 2004.). No jednom kada se sol pojavi na tržištu kao hrana, mora zadovoljavati kriterije propisa koji reguliraju njezinu mikrobiološku ispravnost. Sultana i sur. (2014.) ističu da ukoliko se konzervansi promatraju kao nesterilni proizvodi, kao što je i sol iz njihovog istraživanja, tada bi se prihvatljivi kriteriji mikrobiološkog lima trebali odnositi na ukupni broj bakterija i plijesni, ali i na odsutnost specifičnih patogena uključujući fakalne koliforme, Staphylococcus aureus, Escherichia coli, Pseudomonas spp. i Salmonella spp.

Na mikrobiološku kvalitetu soli utjecat će i dobra proizvodna i higijenska praksa u svim fazama tehnološkog procesa proizvodnje, a kasnije i manipulacija s proizvodima koji se nalaze na tržištu, koju SPH moraju primjenjivati kako bi njihovi proizvodi bili sukladni kriterijima i propisima prema kojima se stavljuju na tržište. Tome u prilog govori i način na koji se mikrobiološki kriteriji primjenjuju (tijekom proizvodnje, nakon proizvodnje i tijekom roka trajanja proizvoda). Biango-Daniels i Hodge (2018) ukazuju na mogućnost prisutnosti gljivica u morskoj soli. Autori pojavu gljivica u morskoj soli povezuju s njezinom proizvodnjom koja započinje evaporacijom morske vode u plitkim bazenima, a završava sakupljanjem i pakiranjem soli. To je postupak koji otvara mnogo mogućnosti kontaminacije soli gljivicama. Cilj njihovog istraživanja bio je otkriti sadrži li sol gljivice koje mogu uzrokovati kvarenje ako se morska sol upotrebljava kao dodatak hrani. Svi uzorci soli sadržavali su gljivice u broju od 0.07 do 1.71×10^2 CFU/g. Izolirano je ukupno 85 gljivica pripadnika sedam rodova. U svakoj je soli utvrđena jedna ili više vrste gljivica, a najbrojnije su pripadale rodom Aspergillus, Cladosporium i Penicillium. Autori smatraju da morska sol sadrži mnoge gljivice koje mogu uzrokovati kvarenje hrane, a neke od njih mogu biti mikotoksične. Također ističu da su potrebni mikrobiološki standardi poput onih za plijesni, odnosno metode za smanjenje rizika od morske soli kao izvora kvarenja. To mogu biti jednostavne izmjene u proizvodnji morske soli i primjena dobre proizvodne prakse, kao što je smanjenje kontakta sa zemljistom i poboljšanje uvjeta skladištenja.
U našem je istraživanju sol koja se nalazi na tržištu nesukladna preporučenim kriterijima mikrobiološke ispravnosti. Potrošači neće uvijek koristiti sol za pripremu jela koja se toplinski obrađuju pa ovakav zalaz upućuje na potreban oprez i dodatan kontrolu distribuciji soli. Jednako tako, ukoliko je koriste kao konzervans u proizvodnj domaćih trajnih kобавicina i suhomatesnih proizvoda postoji rizik od smanjenja učinka soli na mikroorganizme, ali i realna mogućnost prenošenja mikroorganizama kvarenja u hranu.

Zaključak

Rezultati istraživanja mikrobiološke kakvoće soli ukazali su na prisutnost prevelikog broja aerobnih mezoofilnih bakterija i plijesni u morskoj, kamenoj, himalajskoj soli i cvijetu soli. Pretraženi uzorci nisu bili sukladni preporukama Vodiča o mikrobiološkim kriterijima za hranu (Anon. 2001.). Možemo preporučiti da proizvođači soli provjeru svoj sustav samokontrole i pojačaju higijenske uvjete proizvodnje soli kako bi ona na tržištu, u maloprodaji, bila mikrobiološki ispravna, a sol stranih proizvođača koja se nalazi na našem tržištu morala bi biti predmetom službenih kontrola.

Literatura

Microbiological safety of kitchen salt on the market

Abstract
Since salt is the main ingredient of most food products, excellent conservative properties, and most of all, the spice for adding to almost every kind of food, the aim of this study was to establish the microbiological safety of kitchen salt on the Croatian market. Microbiological analyzes were carried out on ten samples of salt various domestic and foreign producers, sampled in retail. Samples of salt were tested according to national microbiological criteria for the total number of aerobic mesophilic bacteria, and the total number of moulds. Not a single analyzed sample of sea salt, rock salt, Himalayan salt and flower of salt was consistent with the prescribed criteria.

Key words: kitchen salt, aerobic mesophilic bacteria, moulds

Mikrobiologische Sicherheit von Kochsalz auf dem Markt

Zusammenfassung

Schlüsselwörter: Kochsalz, aerobe mesophile Bakterien, Schimmelpilze

Seguridad microbiológica de la sal común en el mercado

Resumen
Dado que la sal es el ingrediente en la mayoría de los productos alimenticios, un conservante excelente y, sobre todo, la especie para casi cada tipo de comida, el fin de este trabajo fue determinar la seguridad microbiológica de la sal común en el mercado croata. Los análisis microbiológicos fueron hechos en 10 muestras de sal de diferentes productores, tanto nacionales como extranjeros, y las muestras fueron tomadas en la venta al por menor. Las muestras fueron analizadas de acuerdo con los criterios microbiológicos nacionales para la comida para determinar el número total de las bacterias aerobias mesófilas y de número total de los moldes. Ninguna de las muestras de la sal marina, sal triturada, sal del Himalaya ni la flor de sal fue de acuerdo con los criterios prescritos.

Palabras claves: sal común, bacterias aerobias mesófilas, molde
Idoneità microbiologica del sale da cucina in commercio

Riassunto

Poiché il sale da cucina è presente nella maggior parte dei prodotti alimentari, è un ottimo conservante e viene usato per insaporire quasi ogni pietanza, questo studio aveva come obiettivo quello di accertare l’idoneità microbiologica del sale da cucina in commercio in Croazia. L’analisi microbiologica ha riguardato dieci di campioni di sale di differenti produttori nazionali e stranieri. Il procedimento di campionatura è avvenuto nei punti vendita al dettaglio. Secondo i criteri microbiologici nazionali per gli alimenti, l’analisi ha accertato il numero complessivo di batteri mesofili aerobi e il numero complessivo di muffle nei campioni di sale esaminati. Neanche uno dei campioni di sale marino, salgemma, sale himalayano e fior di sale presi in considerazione è risultato conforme ai criteri prescritti.

Parole chiave: sale da cucina, batteri mesofili aerobi, muffle

UPUTE AUTORIMA

U časopisu MESO se objavljaju sve kategorije znanstvenih radova, stručni radovi, autorski pregledi te izlaganja sa stručnih i znanstvenih skupova, kao i drugi tematski prihvatljivi članici na hrvatskom i engleskom jeziku. Navedene kategorije radova podliježu recenziji.

SADRŽAJ I OPSEG RUKOPISA

Našlov rada treba biti što kraći. Ispod našlova navode se imena i prezimena autora. Svaki autor treba navesti: akademski stupanj, naziv i adresu organizacije u kojoj radi, zvanje i funkciju u organizaciji u kojoj je zaposlen. Radi lakšeg kontakta molimo autore da navedu broj telefona, telefaks i elektroničku adresu (e-mail). Brojevi telefona i telefaks neće biti objavljivani u časopisu. Svaki rad mora imati sažetak na hrvatskom i engleskom jeziku. Neposredno ispod sažetka treba navesti tri do pet ključnih riječi.

Autorska citiranja u tekstu navodi se prezime i godina objavljivanja (u zagradi). Ako je citiran rad napisao više od tri autora, navodi se prezime prvog autora uz oznaku i sur. te godina objavljivanja (u zagradi). U popisu literature autori se navode abecednim redom, i to na sljedeći način:

a) rad u časopisu:

b) rad u zborniku:

c) zbornik sažetaka:

d) knjiga:

Rukopis s prilozima (tablice, dijagrami, sheme i crteži) dostavljaju se Uredništvu putem elektroničke pošte na jednu od adresa: e-mail: meso@meso.hr | klijića@vhr | cvrtilla@vhr.hr