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High-performance programmable grounded resistor and its applications

Charu Rana, Dinesh Prasad and Neelofar Afzal

ECE Department, Jamia Millia Islamia, New Delhi, India

ABSTRACT
Programmable resistor and analog computational circuits are essential for many applications
such as analog signal processing units, automatic gain control, neural, fuzzy and instrumenta-
tion systems. A high-performance programmable grounded resistor (PGR) using complementary
metal oxide semiconductor (CMOS) technology is proposed in this paper. A highly linear CMOS
resistor with equivalent resistance ranging from 9.4 to 1.5 k� is obtained by cancelling the non-
linear term present in the current equation of an MOSFET working in the linear region. The
proposed resistor operates on both positive as well as negative input voltage. The inherited fea-
tures of PGR are simplicity, extensive control voltage range, wider bandwidth and low-power
dissipation. Additionally, analog computational units such as multiplier, squarer and divider are
also discussed as applications of the PGR. All circuits are implemented and simulated using TSMC
0.13 µm CMOS technology in SPICE.
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Introduction

Resistor is one of the basic elements of analog sig-
nal processing applications [1,2]. Programmable resis-
tors with accurate resistance value are imperative to
on-chip-based systems and specific applications where
variable resistance value is required. Unfortunately,
the use of resistors has reduced in the field of inte-
grated circuits due to the non-availability of accu-
rate and programmable resistors. Many configurations
have been proposed to implement programmable resis-
tors using different techniques. Several resistors have
been realized [3–12] using complementary metal oxide
semiconductor (CMOS) technology and can be pro-
grammed externally. Few resistors are implemented
using current conveyors, operational transconductance
amplifier (OTA) arrays and the floating-gate metal
oxide semiconductor transistor (FGMOS) technique.
The drawbacks of these proposed resistors are short
range of programmability, large silicon area and high
power dissipation. Various applications of CMOS resis-
tors are current to voltage converters, current mode
dividers [12–14], multipliers [13,15–17,19–21], filters
[22–24] and automated measurement systems [25].
These analog computational blocks which are imple-
mented using these reported resistors lack high perfor-
mance.

A simple CMOS-based programmable grounded
resistor (PGR) is proposed in this paper which is oper-
ating on minimal power of only 34.1 μW. The other
salient characteristics of the presented block are broad
control range, high linearity, wider bandwidth, less sili-
con area and ability to operate on both positive and neg-

ative input voltage values which proves it to be themost
appropriate for various signal processing applications.
Three simple and programmable analog computational
blocks based on PGR, namely analog amplitude mod-
ulator (using multiplier), squarer and voltage divider
have been suggested. These proposed circuits are most
appropriate for analog systemswhere accuracy and pro-
grammability are crucial.

The paper is organized as follows: the second section
presents proposed PGR. Second-order effects are con-
sidered in the third section. An amplitude modulator
and squarer are presented in the fourth section in addi-
tion to voltage mode divider. The fifth section validates
the theoretical results from simulation outcomes to
confirm the effectiveness of proposed circuits. Lastly,
the paper is concluded in the sixth section.

Proposed PGR

The proposed PGR and its symbol are shown in Fig-
ures 1 and 2. It consists of two N-type metal oxide
semiconductor (NMOS) transistors M1 and M2, oper-
ating in linear region. V in and Iin are the input voltage
and current, respectively and Vc is the control voltage
to tune the resistance of the circuit.

According to the square law relation, the drain cur-
rent of M1 operating in the triode region is given by
Equation (1).

I1 = k1
(

(Vc − Vtn1)Vin − V2
in
2

)
. (1)
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Figure 1. Symbol of PGR.

Figure 2. Proposed PGR.

This drain current is valid for the condition given in
Equation (2) where k1 is the transconductance param-
eter of M1.

|Vin| = VDS1 < (VGS1 − Vtn1). (2)

The value of Vc should be selected greater than the
threshold voltage V tn1 for proper operation of circuit.
The gate voltage applied to transistor M2 is V in +Vc
and the corresponding drain current is

I2 = k2
(

(Vin + Vc − Vtn2)Vin − V2
in
2

)
. (3)

According to Figure 2, the input current Iin is summa-
tion of I1 and I2

Iin = I1 + I2. (4)

Since the drain to source voltages of both transis-
tors are equal and it is fair enough to assume that
threshold voltages are the same, V tn1 = V tn2 = V tn
in addition to the same transconductance parameters;
k1 = k2 = k, the current expression is rewritten as

Iin = 2k((Vc − Vtn)Vin). (5)

Hence, input resistance can be given as

Req = Vin

Iin
= 1

2k(Vc − Vtn)
. (6)

It can be seen that the non-linear term of Equation (1)
is cancelled by current I2, entailing the proposed circuit
to behave as a linear resistor.

Bias voltage V in +Vc is generated by the summa-
tion circuit consisting of transistors M3, M4, M5 and
M6 as shown in Figure 3. NMOS transistors M3 and
M4 are working in the saturation region, whereas P-
type metal oxide semiconductor (PMOS) M5 and M6

Figure 3. Bias circuit for V in + Vc.

are biased to act as a current mirror. The drain currents
of I3 and I4 are equal with assumption that transcon-
ductance parameters and threshold voltages of PMOS
andNMOS transistors are equal respectively. Thus, gate
to source voltages of M3 and M4 are also same and can
be given as

Vin − Vss − Vt4 = Vx − Vt3, (7)

where Vss = −Vc and V t3 = V t4 for the desired oper-
ation.

Thus,

Vo = Vin + Vc. (8)

Second-order effects

It is necessary to consider second-order effects on the
proposed circuits to analyse non-idealities [26].

Mobility degradation

The carrier’s mobility decreases under high electric
field circumstances and is given by the expression:

μ = μ0

1 − θ(VGS − Vtn)
. (9)

The equivalent resistance equation will be modified by
factorm and is expressed by

Req = 1
m∗k∗2(Vc − Vtn)

. (10)

k is µ0CoxW/L and m is 1/1 − θ(Vin − Vtn) and the
value mobility degradation parameter of θ ranges from
0.001 to 0.1V−1. The errors due to extremely small
value of degradation parameter θ are insignificant.
Thus, the output function will be slightly affected,
except the voltage mode divider circuit which is inde-
pendent of this factor.

Temperature variation

The relationship between the mobility of carriers and
the temperature is given below:

μ(T) = μ(Tc)∗
(
T
Tc

)γ

. (11)



AUTOMATIKA 73

It is known that the temperature variation affects the
transconductance parameter β . Mobility is calculated
at Tc to analyse the temperature variation where T is
the absolute temperature (300K). The value of con-
stant parameter γ ranges from 1.5 to 2. The mobility
decreases bymaximum 6.3% (γ = 2) andminimum by
4.7% for γ = 1.5.

The interconnect resistance of MOSFET also gets
affected by temperature variations and is expressed as
below:

Ri = R0(1 + α(Ti − T0)), (12)

where Ri is a resistance at temperature Ti and the value
of α is an empirical temperature coefficient of resis-
tance with value 0.004 for copper wire and 0.0043 for
aluminium wire. R0 and T0 are reference resistance
and temperature, respectively. Suppose R0 is 30 k� at
20°C, the value of Ri at 30°C is 30.12 k� for copper and
30.129 k� for aluminium after using Equation (12) and
results in an increase of 4% and 4.3%, respectively. It can
be seen that the variations in interconnect resistance
and mobility due to temperature will almost nullify
each other. Thus, proposed circuits are less prone to
error due to temperature variations.

Mismatch effect

The mismatches in threshold voltages of transistors in
the PGR circuit can add a DC offset to expression of
equivalent resistance which can be nullified by offset
applied externally. Second, the inequality of transcon-
ductance parameters can also cause deviation from the
desired result. Assume that the k1 is transconductance
parameter of M1 and k1 + �k1 of M2 of PGR. The cur-
rent expression given in Equation (4) can be rewritten
as follows:

Iin = I1 + I2 + �I2, (13)

�I2 = �k1
(

(Vin + Vc − Vtn2)Vin − Vin
2

2

)
. (14)

The value of�k1 ismuch smaller to affect the expres-
sion given in Equation (14) by a considerable amount.
Moreover, a DC offset current added to circuit can
nullify this mismatch.

Applications

Proposed analogmultiplier and squarer

An analog voltage multiplier can be implemented using
two proposed PGRs as depicted in Figure 4. The gate
voltages of VG1a and VG2a are Vc +V2, and V1 +Vc
and input voltages for VG1b and VG2b are Vc and
Vc − V1, respectively. This analog multiplier can be
utilized to realize amplitude modulating function.

Figure 4. Configuration of analog multiplier.

After simplification using Equations (1)–(6), the
currents Ia and Ib are as follows:

Ia = V1∗V2 + 2∗(Vc − Vtn)∗V1, (15)

Ib = 2∗((Vc − Vtn)∗V1). (16)

Thus, Iout is found to be Ia + Ib and is given by

Iout = k∗(V1∗V2). (17)

Hence, the above expression results in the multipli-
cation of two input voltages with the assumption of
matched transistors. Thus, it can be used to realize
analog amplitude modulator.

For squarer, if V1 = V2 = V in is chosen then the
configuration shown in Figure 4 will function as a
amplitude squarer with expression given below.

Iout = k∗V2
in. (18)

Bias voltages V1 +Vc, V2 +Vc and –V1 +Vc are gen-
erated using the bias circuit shown in Figure 3.

Proposed analog voltage divider

A new voltage mode divider is shown in Figure 5 and
implemented using two PGRs and one NMOS tran-
sistor M3 operating in the saturation region. Using
Equations (1)–(6), the current I1 can be given as

I1 = 2(Vc∗V1) = Iout. (19)

The expression for Iout is

Iout = 2(V2∗Vout). (20)

The output voltage Vout can be obtained from Equa-
tions (19) and (20) and expressed as

Vout = Vc∗V1

V2
. (21)

Thus, the function of voltage division is achieved which
can be programmed by control voltage Vc.

Bias voltages Vc +V th and V2 +V th are obtained
from the circuit mentioned in Figure 3 with Vss =
−V th. Vc +V1 and Vout +V2 are achieved using the
bias circuit shown in Figure 3 again when the source
of the M3 of Figure 3 is connected to V th instead of
ground.
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Figure 5. Proposed voltage divider.

Simulation results and comparisons

All the circuits proposed in this paper are validated
through simulations using T-Spice in 0.13 μm TSMC
BSIM3, CMOS technology with level 49. The aspect
ratios of all transistors are chosen to be 1:1.Vdd andVss
vary as the value of Vc varies from 0.5 to 1.5. Figure 6
shows I–V characteristics where the input current is
applied to the circuit and corresponding voltage V in
is measured for different values of control voltage Vc.
The respective values of Req are shown in Table 1. It
can be seen that it is validating the analytical analysis
that it functions as a linear resistor programmable byVc
with equivalent values of resistance, Req ranging from
9.46 k� to 1.5 k�. The effect of temperature on Req is
analysed and shown in Figure 7. Req varies from 9.8 k�
to 9.0 k� for temperature ranging from 50°C to −50°C
leading to minor deviations.

In Figure 8, distortion analysis of PGR is measured
for different values of sinusoidal input current of mag-
nitude up to 50 μA at a frequency of 1MHz. Maximum
total harmonic distortion (THD) measured is 2.7% at
Iin = 50 μA. The power dissipation observed for the

Figure 6. DC characteristics of PGR for different values of Vc.

Table 1. Req for different values of Vc.

Vc (V) 0.5 0.6 0.7 0.8 1.0 1.25 1.5 2.5
Req (k�) 9.41 5.52 4.17 3.68 2.76 2.2 1.87 1.5

Figure 7. Variation in V in with respect to temperature.

Figure 8. THD analysis of PGR at Vc = 1.

Figure 9. Frequency response of PGR.

circuit shown in Figure 2 is 946 nW which is remark-
ably low. The total power dissipation of PGR includ-
ing bias circuit for V in +Vc is 34.1 μW at Vc = 1V,
which is again low. The frequency response of PGR
for Req = 9.4 K� at Vc = 0.5V is shown in Figure 9
with constant magnitude of equivalent resistance up to
130MHz. The transient analysis and fast Fourier trans-
form characteristics of the proposed PGR is given in
Figure 10 for current input signal ofmagnitude 45 μA at
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Figure 10. Transient and fast Fourier transform response of PGR for Req ∼ 2 k� when sinusoidal input current of 45 μA amplitude
is applied.

Figure 11. Output of summation circuit.

frequency of 1MHz. The value of Req is set to approxi-
mately 2 k� to get both the responses.

The output of the summation circuit is also shown in
Figure 11 to verify the implementation given in Figure
2. Figure 11 depicts the linear increase in the output,
V in +Vc when V in is varying and Vc is constant at a
value of 1V.

Table 2 compares the proposed PGR with exist-
ing resistors available in the literature. The presented
CMOS resistor is linear due to cancellation of non-
linear terms of drain equations of both NMOS transis-
tors. It works on positive as well as negative values of the
input voltageV in(V in > 0 andV in < 0), whereasmany

reported resistor realizations operate only for positive
values of V in. It is evident that the proposed PGR
achieved wider bandwidth of 130MHz and provides
broad range of programmability using control voltage
Vc varying from0.5 to 2.5V. It also dissipates less power
up to 34.1 μW when compared to the reported cir-
cuits. THD observed is 2.7% which also low. Thus, the
proposed PGR is most suitable for high-performance
analog applications demanding low-power dissipation,
tunablility, linearity and less silicon area.

The operation of the analog amplitude modulator
using the proposed voltage multiplier is analysed with
inputwaveforms ofV1(t) = 100mV sin(2π × 105) and
V2(t) = 200mV sin(2π × 106) shown in Figure 12.
The aspect ratio chosen for all transistors is 6.5 μm/
0.13 μm. The modulated output waveform is depicted
in Figure 13 for given input signal. For squarer function,
Figure 14 depictsV1 = V2 = 100mV sin(2π*106) and
the output waveform is given in Figure 15 justify-
ing the analytical analysis. The bandwidth measured
is 79.9MHz with a linear range of input voltage from
+0.6V to−0.6V. TheDC simulation results of the pro-
posed voltage divider are shown in Figure 16 when V1
is varied from 0 to 800mV for different values of V2
ranging from 0.6 to 1V. The aspect ratio of all tran-
sistors chosen for the voltage mode divider circuit is
1:1 except M3 which is 10:1. The bandwidth of the
voltage divider is found to be 89MHz and depicted in
Figure 17.
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Table 2. Comparison of proposed PGR with reported literature.

Parameters [3] [4] [5] [6] [7] [8] [9] [26] Proposed work

No. of transistors 5 9 2 2-MOS 3-FGMOS 1, 3-R, 1-CCII 3 22, 2-R 2-MOS 6
No. of biasing voltage/currents 1 2 2 1 1 1 3 0 0
Technology (μm) – – – 0.25 – 0.25 0.35 2 0.13
Supply voltages (V) ±5 ±5 ±5 ±0.75 ±2.5 ±1.25 ±1.65 +5 Vdd ± V in + Vc, Vss = −Vc
Resistance range (k�) – 200 to 60 – 4 to 2 – < 2.63 15 to 5 2.2 to 5.7 9.46 to 1.5
Power dissipation (μW) – – – 254 – 440 2600 – 34.1
Bandwidth (MHz) – – – – – > 100 100 – 130
Control voltage range (V) 2.4 to 3.3 0.10 to 0.75 – 0.65 to 2.5 00, 10, 01 8 to 15 0.50 to 2.5
THD (%) – – 2.5 – – – 0.02 2.7

Figure 12. Input signalsV1 andV2 for four-quadrantmultiplier.

Figure 13. Output waveform of four-quadrant multiplier.

Figure 14. Input waveforms of squarer.

Figure 15. Output waveforms of squarer.

Figure 16. Variation in Vout with respect to V2.

Figure 17. Frequency response of voltage divider.
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Conclusion

This paper proposed a new high-performance PGR
and its applications in analog arithmetic circuits such
as analog amplitude modulator, squarer and voltage
mode divider. The power dissipation of PGRmeasured
is 34.1 μW which is quite low. Wider bandwidth and
broad programmability range are achieved. All circuits
exhibit simplicity while validating the claimed theoret-
ical results from simulation results. These blocks are
believed to be beneficial for low-power analog appli-
cations such as analog fuzzy hardware, artificial neural
networks and automated measurement systems.
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