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ABSTRACT
This work deals with a physical one- and two-dimensional (1D and 2D) parameters estimation of
a filtration process of slurry, the second stage of phosphoric acidmanufacture. This study focuses
on recursive least square and instrumental variable techniques applied to the (1D) and (2D)mod-
els. Themodel of the rotary drum filter is basedondifferent physical laws involved in the filtration
phase in order to get a simulator of the filtration process. Besides, many physical parameters rise
in the systemmodel and effect enormously the efficiency which should bemodelled with preci-
sion such as permeability, porosity and viscosity. We use a constructive realization procedure for
(2D) systems which may lead to a Fornasini–Marchesini local state-space model to describe the
dynamic of the system states.
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1. Introduction

In recent years, membrane filtration technology and
particularly low pressure membrane technology have
been widely applied in liquid aspiration fields more and
more [1].

For some time, it is well known that membrane
separation processes are considered very beneficial,
advanced and efficient technologies to use in factories.
These methods are used to separate suspended parti-
cles. The filtration technique is classified according to
the size of the pores. So, there are four types of filtra-
tion:macrofiltration,microfiltration, ultrafiltration and
nanofiltration [2]. Filtration processes can be classified
into two categories:

• Discontinuous: The press filter and the Nutshe filter
are most common.

• Continuous: The rotary drum filter and the pass
band filter are most common.

In our case, we are interested in the rotary drumfilter
which ensures the separation between the phosphoric
acid and the phosphogypsum. Few works are dealt with
the modelling of the filtration phases due to its com-
plexity and the number of parameters interfering in the
filtration process. The problem is therefore tomodel the
system to be studied so that the model is as faithful as
possible to the actual behaviour of the system.

Modelling filter is essentially based on the Darcy’s
law treated by [3] that applies to an homogeneous and
isotropic porous environment traversed by a flow at low

speed in order to calculate the rate of phosphoric acid
produced. Darcy’s law is processed also by [4], a similar
strategy has been discussed by [5]. Then a relationship
frequently quoted was proposed by [6] and modified
by [7].

In this research, we describe the dynamic behaviour
of a rotary drum filter by an homogeneous two-
dimensional (2D) model. Fornasini andMarchesini [8]
focus on the importance of (2D) systems. (2D) sys-
tems have attracted attention because of their wide
range of practical projects and significant significance.
(2D) system theory can be used efficiently in many
fields such as digital filtering and batch processes [9,
10]. For instance, investigations on (2D) systems have
been related to state-spacemodel realization and stabil-
ity [11], estimation and observers [12–14] and filtering
[15–17].

More recently, many other interesting contexts
where (2D) systems prove to be the appropriate setting
for carrying on a thorough and successful analysis have
been illuminated [18, 19]. Indeed, in the (1D) context,
there has been a long stream of research, which origi-
nated in the 70s and flourished in the 80s [20, 21], but
still represents a very important research topic. During
the last years, research focused on the (2D) system the-
ory and it have been interested in most of the classical
topics already investigated in the (1D) setting [22–25].
Generally, the main interesting point of the (2D) sys-
tems is its dependence on two variables which are the
time and the space. However, there are many (2D) sys-
tems such that none of their variables is time or spatial
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[26–29].Moreover, one of the fundamental issues in the
(2D) systems theory is the realization of a given transfer
function or transfermatrix by a certain kind of the (2D)
local state-space model, typically by Roesser model or
Fornasini–Marchesini second (FM-II) model.

Our contribution is mainly based on the modelling
of a rotary drum filter using physical laws and particu-
larly concerned with the realization problem for a given
(2D) MIMO system by the (FM-II) model. As well as a
(2D) least squares identification is applied and it has a
great importance in a huge range of applications [30].
However, the special structure of the (2D) data set gives
rise to the development of cost-effective algorithms for
the sequential determination of parameters [31, 32].

This paper is organized as follows: Section 2 pro-
vides the characteristics of the rotary drumfilter subject
of steady with its different running modes. Section 3
describes the (1D) nonlinear modelling of the filter
using several laws. Section 4 presents the linearization
of the (1D) system. Section 5 describes the implementa-
tion of (FM-II)model on our system and the algorithms
used. Section 6 represents parameter estimation with
the recursive least square (RLS) method in the case
(1D) and (2D ). Finally, concluding remarks are made
in Section 7.

2. The rotary drum filter

There aremainly two vacuum-operated devices that are
rotary drum filters and band filters. They have the same
applications but the band filters deal thicker slurries
(50% solids). Among the continuous filters which are
considered, we find the rotary drum filter. The rotary
drum filter is constituted by two coaxial cylindrical
drum and a outer drum carries a filter canvas.

2.1. Characteristics

Our filter has a huge toric surface which has a value
close to 262m2. This filter (Figure 1) is composed by
36 flat cells covered by 36 membranes with 36 tubes.
Each tube is connected to a cell, a vacuum box and a
driving motor which is responsible for the transition of
the slurry by five sectors which are: the pre-sector, the
strong acid sector, the acid medium sector, the weak
acid sector and the sector of wash canvases. Figure 2
shows a sketch [33] of the filter. The outputs of the filter
are the strong acid which goes to storage, the gypsum
which goes to outer area and the medium acid which
returns to the reactor [34]. Tables 1 and 2 gathers the
different characteristics of the filter.

The cake (slurry) reaches a certain thickness and by
the end of the cycle, the gypsum is removed from the fil-
ter by scraping system. A cycle of wash and spin is often
assistant. These filters provide greater investment but
they have a lower cost of operation: they are therefore
suitable for large productions.

Figure 1. Photo of the rotary drum filter.

Figure 2. Functional block of the rotary drum filter.

Table 1. Nomenclature of parameters.

Symbol Designation Value (IS)

SO Peripheral filter surface 262.314m2

SI Internal filter surface 42.754m2

DO Overall filter diameter 18.280m
DI Internal filter diameter 7.380m
Sn Surface of one nacelle 6.098m2

SF Surface of the fort compartment 24, 395m2

SM Surface of the medium compartment 48, 784m2

SFW Surface of the fabric wash compartment 24.395m2

SW Surface of the weak compartment 60.98m2

SG Surface of the gypsum compartment 60.98m2

In continuous filtration, a cake stand (or filtermedia)
moves slowly to the suspension. When the cake is thick
enough (or clogging of the mass is large enough), we
shall remove the cake with, where appropriate, an inter-
mediate steps of washing and dewatering of the cake.

2.2. Runningmodes

Themembrane filtration can be used in twomain oper-
ations: frontal filtration (dead end) and tangential flow
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Figure 3. Operating principle of frontal and tangential filtration.

Table 2. Nomenclature of parameters.

Symbol Designation Unit

Qe Flow of strong acid m3 · s−1

z vertical displacement m
along the height of the cake

P Loss of pressure Pa
Ps Solid pressure Pa
Pl Liquid pressure Pa
wf filter Speed RPMn
S Surface of the strong acid m2

compartment
V Volume flow filtration m3

K Permeability m2

h Height of the cake m
μl Liquid viscosity Pas · · · s
μ Viscosity Pas · s
�ϑ filtration Speed m · s−1

Vb Volume of slurry m3

t Time s
L Length of the portion of the cake m
r Radial displacement m
qb Flow rate of slurry m3 · s−1

ε Porosity of particles of phosphate Dimensionless
θ Opening angle of the R

nacelle of the filter
θ0 Initial opening angle of the R

nacelle of the filter
E ratio of lateral and normal stress Dimensionless

filtration (cross flow) (see figure 3). These two modes
are very important and correspond to two technologies
and two completely different approaches to filtration.

In our case, we have a frontal filtration because the
slurry is injected in a perpendicular way in the filter.
For this mode of running, the fluid flows vertical to the
membrane by causing a shear which allows the accu-
mulation of material. All the material retained accu-
mulates on the membrane. Nevertheless, this type of
filtration increases a little the occurrence of clogging
phenomenon. The frontal filtration is the best solution
but it requires a washing step to avoid the phenomenon
of clogging. In general, the filtration can be operated

at constant pressure or constant flow. In our case, we
have a constant pressure. The pressure gradient may be
generated by the operation of a pump that circulates
the liquid above the membrane. When the pressure of
the vacuum pump decreases, the thickness of the cake
increases along the axis of the membrane [35]. Due to
the coriolis effect, the thickness of the cake has tendency
to move to the outer edge which decreases the height
of the edge. This phenomenon is neglected in our case
because the speed of the rotation of the filter is so low.

3. (1D) nonlinear modelling of the filter

The literature distinguishes two types of approach to
model filtration: macroscopic models based on the
material conservation equations and a filtration rate
determined empirically as well as amicroscopicmodels
describing the grain transportation process. Concern-
ing macroscopic models, these types are not based on a
physical modelling of particle deposition mechanisms.
The parameters of thesemodels do not necessarily have
a clear physical meaning but its results are usually close
to the experimental results.

Developing a model requires first to write mathe-
matical equations that relate state variables descriptive
of physical process. Compared to other procedures,
fixed cultures, the filtration system has the comple-
mentary particularity to include an additional model
of physical filtration, which increases the difficulty of
resolution and integration of system equations. For
activated sludge processes like the filter, the problem
of the complexity of the models make them control
possibilities in practice very limited cases [36].

Themodel we are looking for is amodel for a control
objective. So wewill look for the physical equations that
contain the state variables X and control variables U.
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Figure 4. Decomposition of a filter cell.

The state variables are the height of the slurry in the
filter which denoted h and the volume of the filtrate acid
denoted V . The two actuators involved in the process
are the pump providing slurry which is regulated to a
prescribed volumetric flow qb, and the motor for rotat-
ing the filter which is regulated to the described angular
speed wf .

3.1. The state variable calculation

3.1.1. The height of the cake h
According to the mass balance, the quantity of the
slurry in the filter is equal to the difference between the
quantity of slurry injected in the filter and the quantity
of acid gotten from the slurry:

Mb = Mfilter + MA, (1)

whereMb is themass of the slurry injected into the filter,
Mfilter is the mass of the slurry after filtration andMA is
the mass of the phosphoric acid filtrated.

The mass of the slurryMb injected from the reactor
to the filter is modelled by the volume of the slurry Vb
injected into the filter:

Mb = ρbVb, (2)

where ρb is the volumetric density of the slurry and Vb
is the volume of slurry filled the nacelle.

The mass of the slurryMfilter after filtration is mod-
elled by the height of the cake h and the surface S of the
nacelle:

Mfilter = ρbSh. (3)

The mass of the filtrated acidMA is modelled by the
volume of this acid V :

MA = ρAV , (4)

where ρA is the volumetric density of the phosphoric
acid P2O5.

Replacing (2), (3) and (4) into (1), we get

ρbVb = ρbSh + ρAV . (5)

If we divide (5) by ρb and we suppose that
ρA/ρb = mρ , we find the following formula:

Vb = Sh + mρV . (6)

Then the filter has the shape of a ring with external
radius R1 and internal radius R2 as shown in Figure 4.
So the surface S of the nacelle ismodelled by the angle θ :

S = 1
2
(R21 − R22)θ . (7)

If we introduce (7) into (6), we obtain

Vb = 1
2
(R21 − R22)θh + mρV . (8)

If we derivate (8) with respect to time, we obtain

dVb

dt
= 1

2
(R21 − R22)θ

dh
dt

+ 1
2
(R21 − R22)h

dθ
dt

+ mρ
dV
dt

.
(9)

In fact, the angular deviation with respect to time
dθ/dt is equivalent to the angular speed of the filter wf ,
and the slurry volume deviation with respect to time
dVb/dt is equivalent to the volumetric flow of the slurry
qb, so we obtain from (9) the following equation:

qb = 1
2
(R21 − R22)θ

dh
dt

+ 1
2
(R21 − R22)hwf + mρ

dV
dt

.
(10)

We take dV/dt = qAF. From (10), we can get the height
deviation with respect to time dh/dt:

dh
dt

= 2(
R21 − R22

)
θ
qb − h

θ
wf − 2mρ(

R21 − R22
)
θ
qAF.

(11)
Finally, we get

dh
dt

= f1(X(t),U(t)), (12)

where X = [h qAF]′ and U = [qb wf ]′.
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3.1.2. Volume flow rate of the phosphoric acid qAF
To describe the flow of a fluid through a porous
medium, we use the Navier Stokes law and the Darcy’s
law. The Darcy’s law is a relation between the flow of a
fluid and the pressure. Permeability is a physical char-
acteristic that represents the ease of a material to allow
the transfer of fluid through a connected network. The
Darcy’s law makes it possible to connect a flow rate
to a pressure gradient applied to the fluid thanks to a
characteristic parameter of the crossed place: the per-
meability k. The mass conservation equation coupled
to the fluid motion equation yields the incompressible
Navier Stokes equations and themain unknownparam-
eters in this equation are the mass density, the velocity,
the pressure and the temperature, but this list could
be longer depending on the case being studied. The
purpose of this part is to describe the corresponding
fundamental solution for the equations that model an
incompressible fluid in the exterior of a rigid body that
is rotating at a constant velocity and rotation [37]. The
Navier Stokes equation is:

ρ
∂ϑ

∂t
+ ρ(ϑ ·�)ϑ = −∇P + μ ·�ϑ (13)

∇ · ϑ = 0 (14)

with ϑ is the velocity field, P is the pressure, ρ is the
fluid density, μ is the kinematic viscosity, t is the time
and� is Laplace operator.� = ∑1

j=1 ∂
2/∂z2j stands for

the Laplace operator.
If we multiply (13) by S, we obtain

ρ
∂ϑ · S
∂t

+ ρ · ϑ · ∂ϑ · S
∂z

= −S · ∂P
∂z

+ μ · ∂
2ϑ · S
∂z2

.
(15)

If we take ϑ · S = qAF, so we find

∂qAF
∂t

= −ϑ · ∂qAF
∂z

− S
ρ

· ∂P
∂z

+ μ

ρ
· ∂

2qAF
∂z2

. (16)

Now we should calculate the following two terms:
∂qAF/∂z, ∂2qAF/∂z2.

To find these two terms, Darcy’s law is used which
has the following formula:

�ϑ = K�PS
μz

.

The strong acid flow (28%P2O5) is characterized by
a �ϑ , according to the Darcy’s law, is proportional to
the pressure �P and the permeability K and inversely
proportional to the dynamic viscosity μ of the fluid.

First, we will express the pressure drop across the
filter. The term is derived from the Darcy’s law.

qAF(z) = K(P0 − P(z))S
μ · z

= KP0 · S
μ · z − KS

μ

P(z)
z

= β1

z
− β2

P(z)
z

(17)

with β1 = (K · P0 · S)/μ and β2 = K · S/μ are two
constants.

If we derivate the previous equation, we obtain

∂qAF
∂z

= β1

z2
− β2

∂P(z)
∂z
z

− P(z)
z2

. (18)

If we derivate (18), we get (19)

∂2qAF
∂z2

= 2β1
z3

+ β2

∂P(z)
∂z
z

− 2
P(z)
z2

− β2

(
∂2P(z)z
∂z2

− ∂P(z)
∂z

)
. (19)

Replacing (18) and (19) in (16), we find

∂qAF
∂t

= ∂P(z)
∂z

(
ϑ · β2
z

− S
ρ

+ μ · β2
ρ · z + μ · β2

ρ

)

− υ

(
β1

z2
+ β2

P(z)
z2

)
+ μ

ρ

(
2
β1

z3
− 2

P(z)
z2

)
.

(20)

The overall pressure P in the slurry mixture is the sum
of the pressure of the solid particles Ps and the pressure
of the fluid Pl such as

P = Ps + Pl.

The differential of the pressure with respect to the z
axis:

∂P
∂z

= ∂Ps
∂z

+ ∂Pl
∂z

. (21)

The expressions of Ps and Pl are given by the follow-
ing relations:

∂Ps
∂z

= Qe

2πKz2
(1 − E)

Ps
z

+ (ρs − ρ l)w2
f z,

∂Pl
∂z

= −μlQe

K
+ μlw2

f z,

where Qe is the speed of strong acid (ms−1); ρs is the
solid density (dimensionless); ρl is the liquid density
(dimensionless); μl is the liquid viscosity (Pas.s ); E is
the ratio of lateral and normal stress (dimensionless ).
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So, the overall pressure is the sum of the liquid and
solid pressure:

∂P
∂z

= Qe

2πKz2
(1 − E)

Ps
z

+ (ρs − ρ l)wf
2z

− μlQe

K
+ μlw2

f z. (22)

If we replace ∂P(z)/∂z by its expression, we obtain

lim
z→h

∂qAF
∂t

= 1
h4
(
Qe · Ps · S(1 − E)

2π · K
+ Qe · Ps · μ · β2(1 − E)

2π · K · ρ )

+ 1
h3
(
−Qe · Ps · ϑ · β2(1 − E)

2π · K · ρ
+ Qe · Ps · β2 · μ(1 − E)

2π · K · ρ + 2 · μ · β2
ρ

)

+ 1
h2
(ϑ · β2 − ϑ · β2 · P − 2

μ · P
ρ
)

+ 1
h
(
−Qe · μl · ϑ · β2

K
− −Qe · μl · μ · β2

K · ρ )

+ wf
2(ρs − ρ l + μl)β2(ϑ + μ

ρ
)

+ wf
2 · h(ρs − ρl + μl

ρ
)(μ · β2 − S)+ μ · Qe · S

K · ρ ,

(23)

finally, we get

dqAF
dt

= f2(X(t),U(t)). (24)

3.2. The (1D) nonlinearmodel

The nonlinear model obtained from (12) and (24) is as
follows:

dh
dt

= f1(X(t),U(t)),

dqAF
dt

= f2(X(t),U(t)).
(25)

For controlling such systems, it is quite necessary to
take into account the nonlinear phenomena. The sim-
ulation of the nonlinear system gives the two following
outputs:

• The height of the cake, h (cm).
• The volume flow rate of the strong acid, qAF (m3 ·

h−1).

We note that the thickness of the cake increases over
timeuntil it reaches 6 cm.The volumeflowof the filtrate
increases to a value close to 74m3 · h−1. These results
are close to the real system.

4. Linearization of the (1D) model

In this section, we make linearization around an oper-
ating point (X̄, Ū).

Wewill linearize the terms: 1/h, 1/h2, 1/h3 and 1/h4.
We make for h a linear approximation with the first-

order Taylor’s formula:

1
h

→ h
h20

;
1
h2

→ h
h30

;
1
h3

→ h
h40

;
1
h4

→ h
h50

with h0 is a small variation of the height of the cake. So,
we obtain

∂qAF
∂t

=

⎛
⎜⎜⎝
⎛
⎜⎜⎝Qe · Ps · S(1 − E)

2π · K.h50
+

Qe · Ps · μ·
β2(1 − E)

2π · K · ρ · h50

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝−Qe · Ps · ϑ · β2(1 − E)

2π · K · ρ · h40
+

Qe · Ps · β2·
μ(1 − E)

2π · K · ρ · h40

+2 · μ · β2
ρ · h40

)
+
(
ϑ · β2
h30

− ϑ · β2 · P
h30

− 2
μ · P
ρ · h30

)

+
(−Qe · μl · ϑ · β2

K.h20
− −Qe · μl · μ · β2

K · ρh20

))
h

+ (ρs − ρl + μl)β2

(
ϑ + μ

ρ

)
w2
f

+
(
ρs − ρl + μl

ρ

)
(μ · β2 − S)w2

f · h + μ · Qe · S
K · ρ

(26)

We suppose that:

α =
((

Qe · Ps · S(1 − E)
2π · K.h50

+ Qe · Ps · μ · β2(1 − E)
2π · K · ρ · h50

)

+

⎛
⎜⎜⎝−Qe · Ps · ϑ · β2(1 − E)

2π · K · ρ · h40
+

Qe · Ps · β2·
μ(1 − E)

2π · K · ρ · h40

+2 · μ · β2
ρ · h40

)
+
(
ϑ · β2
h30

− ϑ · β2 · P
h30

− 2
μ · P
ρ · h30

)

+
(−Qe · μl · ϑ · β2

K.h20
− −Qe · μl · μ · β2

K · ρh20

))
.

(27)

So the linear model of the rotary drum filter is given
by the two following equations:

f1(X(t),U(t)) = dh
dt

= 2 · ρg(
R21 − R22

)
θ
qb − h

θ
wf + 2(

R21 − R22
)
θ

· qAF (28)
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f2(X(t),U(t)) = dqAF
dt

= α · h + (ρs − ρl + μl)β2

(
ϑ + μ

ρ

)
w2
f

+
(
ρs − ρl + μl

ρ

)

× (μ · β2 − S)w2
f · h + μ · Qe · S

K · ρ . (29)

The equations of the model contains the product of a
state variable and a control variable. In order to linearize
the model, we must use the Jacobian linearization. We
will select an operating point at steady-state P(X̄, Ū)
such as f (X̄(t), Ū(t)) = 0. Moreover, if we suppose that
Ū = 0, so the operating point is:

⎛
⎝
⎡
⎣μlQeS

Kρα
0

⎤
⎦ ,

[
0
0

]⎞⎠

The model is as follows:

Ẋ = FxX + BuU
Y = GxX,

(30)

where Fx, Bu are the Jacobian matrices of the partial
derivatives of f (X,U)with respect to X andU, the state
and the input variable of the system, respectively, which
measured at point P(X̄, Ū). The twomatrices Fx and Bu
change according to the operating point.

At steady-state, we have

X̄ =
(

h̄ + δh
q̄AF + δqAF

)
, Ū =

(
q̄b + δqb
w̄f + δwf

)

Fx =

⎛
⎜⎜⎝
∂f1
∂h

∂f1
∂qAF

∂f2
∂h

∂f2
∂qAF

⎞
⎟⎟⎠ =

(
Fx11 Fx12
Fx21 Fx22

)

Bu =

⎛
⎜⎜⎝
∂f1
∂qb

∂f1
∂wf

∂f2
∂qb

∂f2
∂wf

⎞
⎟⎟⎠ =

(
Bu11 Bu12
Bu21 Bu22

)

Gx =
(
1 0
0 1

)

with Fx11 = ∂f1/∂h = −w̄f /θ ; Fx12 = ∂f1/∂qAF =
−2mρ/((R21 − R22) · θ) ; Fx21 = ∂f2/∂h = α + ((ρs −
ρl + μl)/ρ)(μ · β2 − S)w̄2

f ;Fx22 = ∂f2/∂qAF = 0 ;Bu11
= ∂f1/∂qb = 2 · ρg/((R21 − R22)θ); Bu12 = ∂f1/∂wf =
−h̄/θ ; Bu21 = ∂f2/∂qb = 0; Bu22 = 2(ρs − ρl + μl)

β2(ϑ + μ/ρ)w̄f
+ 2((ρs − ρl + μl)/ρ)(μ · β2 − S)w̄f · h

Figure 5. Evolution of the inputs of the filter.

So, the final Jacobian matrices of the state-space are

Fx =
(
Fx11 Fx12
Fx21 Fx22

)
, Bu =

(
Bu11 Bu12
Bu21 Bu22

)

Gx =
(
1 0
0 1

)
.

Validation of the model is the process of determining
the degree to which a simulation model and its asso-
ciated data are an accurate representation of the real
world from the perspective of the intended uses of the
model.

In order to investigate the filter and its changing
states, our system was modelled and simulated by
“MATLAB” which is among the most developed soft-
ware for the simulation of production systems. We
suppose that the rotary filter on the TCG factory
is a multi-input multi-output nonlinear system (See
Figure 5), which has as inputsU1 flow rate of the slurry
and U2 speed of the filter, and outputs Y1 height of the
cake and Y2 the volume of the filtrate.

Also we have

X =
(
X1
X2

)
, Y =

(
Y1
Y2

)
, U =

(
U1
U2

)
.

The Figure 6 has the output Y1 = Yr, which corre-
sponds to the thickness of the cake as well as the output
of the model Ym are almost constant. The relative error
between the output of the real system Yr and the output
of the model Ym belongs to ±20% (see Figure 8)

The mean squared error isMSE = 0.4%.
The Figure 7 describes the output Y2 = Yr, which

corresponds to the flow rate of the filtrate and the out-
put of the model Ym are almost constant. The relative
error between the output of the real system Yr and the
model Ym belongs to ±0, 47%, see Figure 9. The mean
squared error is MSE = 0.313%. We note that there is
a gap between the real output and the output of the
model, this difference is due to the variation of the
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Figure 6. Calculated and estimated output of the height of the
cake.

Figure 7. Calculated and estimated output of the flow rate of
the filtrate.

physical parameters of the system during the filtration
phase.

5. 2Dmodelling of the rotary drum filter
based on (FM-II) method

Consider the linear 2D system described by the follow-
ing (FM-II) model:

X(d + 1, k + 1) = A1X(d, k + 1)+ A2X(h + 1, k)

+ B1U(d, k + 1)+ B2U(d + 1, k)

Y(d, k) = CX(d, k), (31)

where X(d, k) ∈ Rn,U(d, k) ∈ Rl and Y(d, k) ∈ Rm are,
respectively, the local state, input and output vectors, d
is the time t and k is the angle 1/θ andA1,A2,B1,B2 and
C are real system matrices of suitable sizes. The system
is also conventionally denoted by (A1, A2, B1, B2, C).

Figure 8. The relative error between the calculated and esti-
mated values of the height of the cake.

Figure 9. The relative error between the calculated and esti-
mated values of the flow rate of the filtrate.

Definition 5.1: The (2D) linear system (31) is said to
be asymptotically stable if:

lim
i→∞

‖x(i)‖ = 0

under

sup
k

‖x(0)‖ < ∞

where x(i) = {X(d, k), d + k = i} and ‖x(i)‖ =
supX∈x(i) ‖x‖.

The following lemma gives a sufficient condition for
the asymptotic stability of the (2D) system in term of an
LMI.
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Lemma 5.2 ([38]): The (2D) system is asymptotically
linear if there exist matrices P 	 0 and Q 	 0. Thus, we
introduce the equation of “Bézout” in matrices P(z1, z2)
and Q(z1, z2) such that:

IX = [Q(z1, z2) P(z1, z2)]
[
IX − A1z1 − A2z2

C

]
(32)

where
∏

=
(
P − Q − 2R R

RT Q

)
, F =

(
F1
F2

)
and

A =
(
A1
A2

)T
.

Lemma 5.3 ([39]): The (2D) system is asymptotically
stable if there exist matrices P 	 0, Q 	 0, R = RT 	=
0,
∏ 	 0, F ∈ R2n·n and G ∈ Rn·n such that:(

−
∏

+FA + ATFT −F + ATGT

∗ P − G − GT

)
	 0 (33)

where
∏

=
(
P − Q − 2R R

RT Q

)
, F =

(
F1
F2

)

and A =
(
A1
A2

)T
The different stages of the (2D) mod-

elling are:

(1) The transfer matrix of the previous model is:

ψ = diag {ψ1, . . . ,ψl}
where ψi is the column vector defined as:

ψi =
[
zki2 , z

ki−1
2 , z1 · · · z2zki−1

1 , zki1 , . . .

z2z1, z21, z2, z1
]

and diag is a diagonal matrix.
(2) Write D(z1, z2) and N(z1, z2) in the form of:

D(z1, z2) = DHT · ψ , (34)

N(z1, z2) = NHT · ψ , (35)

where:

DHT =

⎛
⎜⎝
D11 . . . D1l
...

. . .
...

Dl1 · · · Dll

⎞
⎟⎠ ,

NHT =

⎛
⎜⎝
N11 . . . N1l
...

. . .
...

Nm1 · · · Nml

⎞
⎟⎠ ,

We have F(z1, z2) =
(
N(z1,z2)
D(z1,z2)

)
where DHT and

NHT are real matrices with sizes conformable to ψ .

(3) Construct the matrices Ai0,Bi; i = 1, 2 such that:

ψ = (I − A10z1 − A20z2)−1(B1z1 + B2z2) (36)

(4) The realization is finally obtained as:

Ai = Ai0 + BiDHT , Bi, i = 1, 2 and

C = NHT .

By thoroughly investigating the structural proper-
ties of (FM-II) model, using the relations (34), (35)
and (36), a realization can be obtained.
ψ has to satisfy the following conditions:

(1) Condition 1: ψi contains all the power products
occurring in the polynomial entries of the ith col-
umn of F(z1, z2).

(2) Condition 2: ψi contains z1 or z2, or both z1 and
z2.

(3) Condition 3: Let ni(i = 1, . . . , l) be the dimen-
sion of ψi. For every entry ψi(j) (j ∈ 1, . . . , ni)
except for the entry that is either z1 or z2, there
exists another entryψi(d) (d ∈ 1, . . . , ni) such that
ψi(j) = z1ψi(d) or ψi(j) = z2ψi(d).

The above realization procedure produces a state-space
description (A1,A2, B1, B2,C) which have the following
properties:

• [I − A1z1 − A2z2B1z1 + B2z2] is full rank in C2

• det(I − A1z1 − A2z2) = detD(z1, z2)

Starting from the initial ψi (i = 1, . . . , l), the following
algorithm is given below for constructing the final ψi
(i = 1, . . . , l) which has to satisfy the conditions of (2)
and (3).

Once ψ1, . . . ,ψl are constructed by Algorithm 1,
ψ = diag{ψ · · ·ψ}, can be readily obtained. ψ is now
of size n × l, where n = ∑l

i=1 ni. Note that n will be
smaller than n’ if some power products are absent in the
polynomial entries of F(z1, z2). This will be illustrated
by a non-trivial example in the next section. Next,
express D(z1, z2) and N(z1, z2) in the form D(z1, z2) =
DHTψ , N(z1, z2) = NHTψ , with Dij ∈ R1nj and Dij ∈
R1nj are row vectors whose entries are the coefficients
of the (i, j)− indexed polynomial in D(z1, z2) and
N(z1, z2), respectively. The system matrices A1, A2, B1,
B2 and C can then be constructed by the Algorithm 2.

Calculation of the transfer matrix M
The state vector of the rotary drum filter has the

following form:

Fx =
(
Fx11 Fx12
Fx21 Fx22

)
(37)
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Algorithm 1 Calculation of the matrix: ψ
1: i = 0
2: i = i + 1; j = 0. If i 	 l, exit. Otherwise, proceed to

Step 3.
3: j = j + 1, r = 1. Check whether there exists an

entry ψ(h) ( j < h ≤ ni) such that condition (3) is
satisfied. If yes, repeat Step 3. Otherwise, proceed
to Step 4.

4: : If j = n(i − 1), check whether ψ(j) = z2
5: If j = n(i), check whether ψ(j) = z1 or ψ(j) = z2.

If the answer is yes, return to Step 2, and if the
answer is no, go to Step 7. If j �= ni, proceed to Step
6.

6: r = r + 1. Check whether there exists an entry
ψ(k) for j < k ≤ ni that satisfies either ψi(j) =
zr1ψi(k) or ψi(j) = zr2ψi(k). If the answer is yes,
insert either zr−s

1 ψi(k) or zr−s
2 ψi(k) at an appro-

priate position according to the descending order
of power products in ψ for s = 1, ..., r − 1. Let
ni = ni + (r − 1) and return to Step 3. In the
case that the answer is no, check whether r ≺
deg

{
ψ(j)2

}
. If yes, repeat Step 6. Otherwise, pro-

ceed to Step 7.
7: Check whether steps 1 and 2 and that

degz1
{
ψ(j)

} ≥ degz2
{
ψ(j)

}
. If yes, insert

z−1
1 ψi(k), while if no, insert z−1

2 ψi(k), into ψi
according to the descending order of power
products. ni = ni+1.

8: return to Step 3.

with:

Fx11 = ∂f1
∂h

= − w̄f

θ
;

Fx12 = ∂f1
∂qAF

= − 2mρ
(R21 − R22) · θ ;

Fx21 = ∂f2
∂h

= α +
(
ρs − ρl + μl

ρ

)
(μ · β2 − S)w̄2

f ;

Fx22 = ∂f2
∂qAF

= 0.

The command vector of the rotary drum filter has the
following form:

Bu =
(
Bu11 Bu12
Bu21 Bu22

)
(38)

with:

Bu11 = ∂f1
∂qb

= 2 · ρg
(R21 − R22)θ

;

Bu12 = ∂f1
∂wf

= − h̄
θ
;

Algorithm 2 Calculation of parameters: Ai, bi, ci
1: Introduce ni × ni matrices A(i)10 and A(i)20 , i = 1, ..., l

which are determined in the following way. Set
initially all entries of A(i)10 and A(i)20 to zero.
For k = 1, ..., ni , let only A(i)20(k, dk) = 1 if there
exists certain hk (k ≺ dk ≤ ni) such that ψi(k) =
z1ψ(dk), and let only A(i)20(k,mk) = 1 if condition
(1) step 7 does not hold and there exists certain
mk (k ≺ mk ≤ ni) such that ψi(k) = z2ψi(mk). It
is obvious that A(i)10 and A(i)20 are upper triangular
matrices and have at most only one entry equal to
1 in the same row of A(i)10 and A(i)20 .

2: For k = 1, 2, construct column vector B(i)k ∈ Rni ,
i = 1, ..., l, by setting initially all the entries of B(i)k
to zero. If there exists some h such that ψi(h) = zk
, change the h − th entry of B(i)k to 1.

3: Construct the n × nmatrices A10, A20 and the n ×
lmatrices B1, B2 as follows.

Ak0 = diag{A(1)10 ,A
(2)
10 , ...,A

(l)
10}

Bk = diag{B(1)10 ,B
(2)
10 , ...,B

(l)
10}

with k = 1, 2.
4: To check the stability conditions of the (2D) sys-

tem, it is easy to see that

(I − A10z1 − A20z2)ψ = (B1z1 + B2z2)

and it can be shown, in the same way of [40], that

ψD−1
R (z1, z2) = (I − (A10 + B1DHT)z1 − (A20

+ B2DHT)z2)−1(B1z1 + B2z2)

Bu21 = ∂f2
∂qb

= 0;

Bu22 = 2(ρs − ρl + μl)β2

(
ϑ + μ

ρ

)
w̄f

+ 2
(
ρs − ρl + μl

ρ

)

× (μ · β2 − S)w̄f · h.

det(p · I2 − Fx) = p2 + w̄f

θ
· p + 2mρ

(R21 − R22) · θ · Fx21

Throughout this part, we denote by p the Laplace
operator.

At first, we calculate the determinant of Fx:

p · I2 − Fx =
(
p 0
0 p

)
−
(
Fx11 Fx12
Fx21 Fx22

)

det(p · I2 − Fx) = p2 + w̄f

θ
· p + 2mρ

(R21 − R22) · θ · Fx21.
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Using the previous determinant, we calculate the
adjugate matrix of Fx to obtain the final transfer matrix
M(t, 1/θ).

GX(com(p · I2 − Fx)T) · Bu

=
(

p · Bu11 p · Bu12
Fx21 · Bu11 Fx21 · Bu12 + (p − Fx11)Bu22

)

M(p,
1
θ
) =

(
M1 M2
M3 M4

)
(39)

with

M1

(
p,

1
θ

)
=
(
p2 + w̄f

θ
· p + 2mρ

(R21 − R22) · θ · Fx21
)
,

(40)

M3

(
p,

1
θ

)
= Fx21 · Bu11

p2 + w̄f
θ

· p + 2mρ
(R21−R22)·θ

· Fx21
, (41)

M2

(
p,

1
θ

)
= p · Bu12

p2 + w̄f
θ

· p + 2mρ
(R21−R22)·θ

· Fx21
, (42)

M4

(
p,

1
θ

)
= Fx21 · Bu12 + (p − Fx11)Bu22

p2 + w̄f
θ

· p + 2mρ
(R21−R22)·θ

· Fx21
. (43)

We have p = z1 and 1/θ = z2
so,

M(z1, z2) =

⎛
⎜⎜⎝

b1z1z2
z21 + a1z1z2 + a11z2

b3z2
z21 + a3z1z2 + a33z2

b2z1z2
z21 + a2z1z2 + a22z2
b4 + b44z2 + b444z1
z21 + a4z1z2 + a44z2

⎞
⎟⎟⎠

with b1 = Bu11; b2 = Bu12; b3 = Fx21 · Bu11; b4 = Fx21·
Bu12; b44 = Fx11 · Bu22; b444 = Bu22; a1 = a2 = a3 =
a4 = w̄f /θ . a11 = a22 = a33 = a44 = (2mρ/
((R21 − R22) · θ))Fx21.

From the transfer matrix, we can formulate the fol-
lowing matrices:

DR(z1, z2)

=
(
z21 + a11z1z2 + a12z2 0

0 z21 + a11z1z2 + a12z2

)

NR(z1, z2) =
(
b11z1z2 b12z1z2
b21z2 b0 + b22z2 + b222z1

)

F(z1, z2) =
(
N(z1, z2)
D(z1, z2)

)

=

⎛
⎜⎜⎝

b11z1z2 b21z2
b12z1z2 b0 + b22z2 + b222z1

z21 + a11z1z2 + a12z2 0
0 z21 + a11z1z2 + a12z2

⎞
⎟⎟⎠

Thus the column degrees of columns 1 and 2 in
F(z1, z2) are k1 = 1 and k2 = 2, and the power products
occurring in the polynomial entries of the columnswith
non zero coefficients are {z2, z1} and {z2, z1, z21, z2z1},
respectively. The initial column vectors ψ1 and ψ2 sat-
isfying condition (1) are: ψ1 = (z1z2 z2 z1)T; ψ2 =
(z1z2 z21 z2 z1)

T

Applying now the 1,ψ1 andψ2 should satisfy condi-
tions (2) and (3).

So, for ψ1 a new term z21 has to be inserted into ψ1,
so, ψ1 = (z1z2 z21 z2 z1)T. This new ψ1 now satisfies
conditions (2) and (3); therefore, we have

ψ = diag{ψ1,ψ2}

=
(
z1z2 z21 z2 z1 0 0 0 0
0 0 0 0 z1z2 z21 z2 z1

)

For ψ constructed above, it is ready to calculate that

D(z1, z2) = DHTψ ; N(z1, z2) = NHTψ

where

DHT =
(
0 0 a11 1 0 0 0 0
0 0 0 0 a22 1 0 0

)

and

NHT =
(
0 0 b11 0 0 0 b12 0
0 0 b21 0 0 0 b22 b222

)

Since only ψ1(1) = z1ψ1(3) holds for ψ1, its follows
from Algorithm 2 that

A(1)10 =

⎛
⎜⎜⎝
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , A(1)20 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Calculation of Ai and Bi
On the other hand, for ψ2(1) = z2ψ2(4),

Algorithm 2 produces

A(2)10 =

⎛
⎜⎜⎝
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , A(2)20 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

It is easy to obtain

B(1)1 = (0 0 1 0)T; B(1)2 = (0 0 0 1)T;

B(2)1 = (0 0 1 0)T; B(21)2 = (0 0 0 1)T.
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Since ψ1(3) = z2, ψ1(4) = z1, ψ2(3) = z2, ψ2(4) = z1

A10 = {A(1)10 ,A
(2)
10 }

A10 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A20 = 0

B1 =
(
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

)T
,

B2 =
(
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

)T
,

A1 = A10 + B1DHT

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 a11 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 a22 1 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A2 = A20 + B2DHT

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 a22 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C = NHT =
(
0 0 b11 0 0 0 b12 0
0 0 b21 0 0 0 b22 b222

)T

6. RLS identification: study case (1D) and (2D)

6.1. RLS for the (1D) system

RLS algorithms for parameter estimation are usually
described in relation to the batch-type least squares
algorithms, minimizing a quadratic error criterion.
This error is the difference between the estimated and
the observed values of the process output [41]. Con-
sider the following linear process with slowly time-
varying parameters, described by the following differ-
ence equation:

N∑
i=0

aiyk−i =
M∑
j=0

bixk−j, a0 = 1. (44)

The signal yk is the process output and xk is the
input. For a notation most practical a parameter vector
is defined: �t = (b0, b1, . . . , bM ,−a1,−a2, . . . ,−aN)
and a signal vector:ut = (xk, . . . , xk−M , yk−1, . . . , yk−N)

uk,� ∈ Rp, p = M + N + 1 (44) can be rewritten as
follow:

yk = utk�. (45)

The parameter vector of the filter is estimated by anm-
vector �̂. An error criterion is established:

J(�̂, k) = ηk(�̂k −�0)+
k∑

i=1
ηk−i(yi − uti�̂k)

2,

(46)
where η is an exponential forgetting factor η ∈]0, 1] and
�0 contains initial values of �̂0. Q ∈ Rm×m is a pos-
itive definite matrix. Note that usually in the normal
RLS algorithms the first term on the right-hand side
of equation (51) is omitted By setting ∂J/∂�̂ = 0 it is
readily calculated that

�̂k =
(
ηkQ−1 +

k∑
i=1

ηk−iuiuti

)−1

×
(
ηkQ−1�0 +

k∑
i=1

ηk−iuiyi

)
. (47)

In this equation, a matrix Pk is introduced where

P−1
k = ηkQ−1 +

k∑
i=1

ηk−iuiuti

= η

(
ηkQ−1 +

k−1∑
i=1

ηk−1−iuiuti

)
+ ukutk

= ηP−1
k−1uku

t
k (48)

which is a recursive algorithm; P0 = Q

Pk = 1
η

(
Pk−1 − Pk−1ukutkPk−1

η + utkPkuk

)
(49)

P0 = Q using Pk defined in (48), (50) can be written as
follows:

�̂k = Pk

(
ηkQ−1�0 +

k∑
i=1

ηk−iuiyi

)

= �̂k−1 + (ηPk − Pk−1)

×
(
ηkQ−1�0

k−1∑
i=1

ηk−1−iuiyi

)

+ Pkukyk (50)
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Figure 10. Transfer matrix of the model.

with P0 = Q, it is seen that �̂0 = �0. Substituting (50)
yields

�̂k = �̂k−1 − Pk−1uk(utk�̂k−1 − yk)
η + utkPk−1uk

(51)

.�̂0 = �0

6.1.1. Simulation results for the (1D) linear system
At the end of the modelling, we obtained a transfer
matrix consisting of four transfer functions M1, M2,
M3 and M4. These transfer functions are arranged as
in Figure 10.

From the filter-state representation, we got a transfer
matrix which is as follows:

M(p) =
(
M1(p) M2(p)
M3(p) M4(p)

)
. (52)

with

M1(p) =

⎛
⎜⎝ p · Bu11
p2 + w̄f

θ
· p + 2mρ

(R21−R22)·θ
· Fx21

⎞
⎟⎠ (53)

M2(p) =

⎛
⎜⎝ p · Bu12
p2 + w̄f

θ
· p + 2mρ

(R21−R22)·θ
· Fx21

⎞
⎟⎠ (54)

M3(p) =

⎛
⎜⎝ Fx21 · Bu11
p2 + w̄f

θ
· p + 2mρ

(R21−R22)·θ
· Fx21

⎞
⎟⎠ (55)

M4(p) =

⎛
⎜⎝ Fx21 · Bu12 + (p − Fx11)Bu22
p2 + w̄f

θ
· p + 2mρ

(R21−R22)·θ
· Fx21

⎞
⎟⎠ . (56)

The performance of the RLS method was tested by
computer simulation. Now, we want to look for the
estimation vectors θ̂1, θ̂2, θ̂3 and θ̂4 which correspond
respectively to the transfer functions M1(p), M2(p),

Table 3. Estimation vector of θ̂1.

θ̂1 Calculated parameters Estimated parameters

â1 −0.2501 −0.2331
â11 −0.4500 −0.4344
b̂1 −0.0133 −0.0034

Table 4. Estimation vector of θ̂2.

θ̂2 Calculated parameters Estimated parameters

â2 −0.2501 −0.2090
â22 −0.4500 −0.3899
b̂2 −0.1535 −0.0015

Table 5. Estimation vector of θ̂3.

θ̂2 Calculated parameters Estimated parameters

â3 −0.2501 −0.1771
â33 −0.4500 −0.7584
b̂3 −0.1155 −0.0187

Table 6. Estimation vector of θ̂4.

θ̂2 Calculated parameters Estimated parameters

â4 −0.2501 −0.1425
â44 −0.4500 −0.7754
b̂4 −1.6004 −2.2350
b̂44 −0.1955 −0.0226

M3(p) andM4(p). The calculated parameters are found
directly from the physical parameters of the rotary fil-
ter with a tolerance of ±10%. In the following, we will
apply the RLS estimation method on the rotary drum
filter. So we obtain four estimation vectors, which are
cited in Tables 3, 4, 5 and 6:

Using these tables, we notice that θ̂ and θ are close,
which validates the performance of the (1D) RLS iden-
tification method.

6.2. RLS for the (2D) system

This section is concerned with a basic spatial RLS
algorithm for a second Fornasini–Marchesini (2D)
model. Either, x(d, k) is the input and y(d, k) is the
output of the system.

y(d, k) = −
∑

(i,j)∈Ly|i|+|j|�=0

ai,jy(d − i, k − j)

−
∑
(i,j)∈Lx

bi,jx(d − i, k − j). (57)

Ly and Lx denote the support region for the ARX
model. Given an input (2D) signal x(d, k) and a desired
response x̂(d, k), (h, k) ∈ [0, 0].[N1,N2], the optimal
least square (2D ) filter is obtained by minimizing the
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cost function.

z(d, k) =
h−1∑
t1=0

N2∑
t2=0

η(h−t1)N2+k−t2e2(t1, t2)

+
k∑

t2=0
η(k−t2)e2(d, t2), (58)

where e(t1, t2) = x̂(t1, t2, k)− y(t1, t2) is the instanta-
neous error and η ∈ [0, 1] is the so called forgetting
factor. In this section, (2D) support region of gen-
eral shapes are considered for both Ly and Lx. More
precisely, L consists of a union of intervals

L =
t1⋃

i=k1

l(i).

Using the previous notation, equation (49) takes the
form

l(i) = {(i, j) : k2(i) ≤ j ≤ s2(i)}
s1 = max{i : (i, j) ∈ L}
k1 = max{j : (i, j) ∈ L}
s2 = max{j : (i, j) ∈ l(i)}
k2 = max{j : (i, j) ∈ l(i)}

y(d, k) = −
sy1∑

i=ky1

sy2(i)∑
i=ky2(i)|i|+|j|�=0

ai,jy(d − i, k − j)

−
sx1∑

i=kx1

sx2(i)∑
i=kx2(i)|i|+|j|�=0

bi,jx(d − i, k − j). (59)

Let us define the row-wise data vectors and the system
parameters that are attached to the support regions Ly
and Lx. We use the following notation ky2 = 1

(1) Output data corresponding to Ly:

∀i ∈ [ky1, s
y
1]

yly(i)(d, k) = [
y(d − i, k − j)

]
j=ky2(i)···s

y
2(i)

ky2(0)=1

aly(i)(i) = [
ai,j
]
j=ky2(i)···s

y
2(i)

ky2(0)=1

(2) Input data corresponding to Lx:

∀i ∈ [kx1, s
x
1]

xlx(i)(d, k) = [
x(d − i, k − j)

]
j=kx2(i)···sx2(i)

kx2(0)=1

blx(i)(i) = [
bi,j
]
j=kx2(i)···sx2(i)

kx2(0)=1

Then (59) can be expressed as a linear regression

y(d, k) = −�t(h, k)�

The regressor vector �(h, k) is defined in terms of
input–output data

�t(d, k) =
[
YLy(d, k)
XLx(d, k)

]

where

YLy(d, k) = [
yly(i)

]
i=ky1···s

y
1

XLx(d, k) = [xlx(i)]i=kx1···sx1
The parameter vector� carries the system coefficients

� =
[
ALy

BLx

]

where ALy = [aly(i)] and BALx = [blx(i)]
The least square algorithm is as follows:
2D parameter update

�(d, k + 1) = �(d, k)+ w(d, k + 1)ε(d, k + 1),

ε(d, k + 1) = e(d, k + 1)/β(d, k + 1),

e(d, k + 1) = x̂(d, k)�t(d, k)�(d, k),

β(d, k + 1) = 1 −�(d, k + 1)w(d, k + 1).

2D Kalman gain update

w(d, k + 1) = −η−1P(d, k)�(d, k + 1),

P(d, k + 1) = η−1P(d, k)+ w(d, k + 1)wt(d, k + 1)
β(d, k + 1)

.

6.2.1. Simulation results for the (2D) linear system
We consider that θ̂ (2D)1 , θ̂ (2D)2 , θ̂ (2D)3 , θ̂ (2D)4 are the esti-
mated vectors, respectively, of the transfer functions
M1, M2, M3 and M4. We apply the (2D) identification
algorithm in order to obtain the following tables:

From the simulation results presented inTables 7, 8, 9
and 10, we note that the estimated parameters tend to
the calculated parameters with a tolerance of ±10%.
The parameters in (2D) model are closer to calculated
values than those given by a (1D) model. Since the con-
vergence of the parameters is done, we note that the
(2D) (RLS) identification method is more efficient than
the (1D) identification. For example for the (1D) model
we have a1 = −0.2331 whether for the (2D) model
a(2D)1 = −0.2530. So, we note that a(2D)1 is closer to the
calculated value equal to −0.2501. So the convergence
of parameters is performed and the (RLS) identification
method is so effective in the (2D ) case.

Table 7. Estimation vector of θ̂ (2D)1 .

θ̂
(2D)
1 Calculated parameters Estimated parameters

â(2D)1 −0.2501 −0.2530
â(2D)11 −0.4500 −0.4344
b̂(2D)1 −0.0133 −0.0134
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Table 8. Estimation vector of θ̂ (2D)2 .

θ̂
(2D)
2 Calculated parameters Estimated parameters

â(2D)2 −0.2501 −0.2805
â(2D)22 −0.4500 −0.4515
b̂(2D)2 −0.1535 −0.1553

Table 9. Estimation vector of θ̂ (2D)3 .

θ̂
(2D)
3 Calculated parameters Estimated parameters

â(2D)3 −0.2501 −0.1574
â(2D)33 −0.4500 −0.4504
b̂(2D)3 −0.1155 −0.1187

Table 10. Estimation vector of θ̂ (2D)4 .

θ̂
(2D)
4 Calculated parameters Estimated parameters

â(2D)4 −0.2501 −0.2019
â(2D)44 −0.4500 −0.4561
b̂(2D)4 −1.6004 −1.6382
b̂(2D)44 −0.1955 −0.1975

7. Conclusion

In this paper, (2D) model was proposed to describe
the dynamic behaviour of a rotary filter, which is dedi-
cated to the aspiration of various types of acid: strong,
medium and weak.

Therefore, its study requires a deep research in order
to know all the parameters that have an influence on
the normal operation of the filter. Using the parame-
ters that characterize the “AOUSTIN-UCEGO” filter,
we get to find a two dimensions model for the filter. A
constructive state-space realization procedure has been
used for (2D) systemswhichmay produce (FM-II) local
state-space model. An RLS identification is made in
both cases (1D) and (2D) and from which it is noticed
that the results of simulation are near to the real values.
The RLS identification for the (2D) system is more effi-
cient since the parameters in this case depend on the
temporal and spatial variables.
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