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ABSTRACT
We present a coarse-to-fine stereo matching optimization applicable to methods utilizing the
Disparity Space Image (DSI) structure. With the Three-dimensional Recursive Search algorithm
(3DRS), a coarse disparity seed is obtained first, with minimal computational effort. The coarse
disparity seed is then used as a guidance to locally compute the DSI disparity space with a
reduced number of disparity hypotheses, yielding significantly shorter execution times for the
disparity computation. The method performance was measured on the well-known Dynamic
Programming (DP) DSI-based method and the images from the Middlebury set. The DP method
with the DSI optimization applied maintains or improves the overall level of disparity map accu-
racy while delivering a near sevenfold speed-up of execution in comparison to DP alone. We
furthermore show that the optimized method’s performance does not depend on the expected
input disparity range, which is commonly restricted, or expected to be defined upfront, for
DSI-based stereo matching methods.
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1. Introduction

Computation of dense disparitymaps is one of themost
researched problems in computer vision, specially in
the area of 3Dmodeling and reconstruction. Themeth-
ods used are generally divided into active, employing a
camera combined with structured light [1] or LIDAR,
and passive methods, focusing on finding correspon-
dences within two or more stereo images. A taxon-
omy of dense, two frame, passive stereo methods has
been proposed [2] generally dividing passive meth-
ods into local, which generate disparity maps through
local matching cost aggregation, or global, which aim
to minimize a global energy function. Global meth-
ods, such as Graph Cuts [3] or Belief Propagation [4]
generally outperform the local in terms of accuracy,
but the execution time of global methods is signifi-
cantly inferior,making them a poor choice for real-time
applications required by recent applications such as
autonomous vehicles. Therefore, usually faster but less
accurate global methods such as Dynamic Program-
ming or hybridmethods such as Semi-GlobalMatching
[5] are a more common choice for real-time implemen-
tations.

Dynamic programming (DP), introduced for edge-
based stereo estimation with one of the first meth-
ods by Ohta and Kanade [6], has been identified as a
sufficiently fast global approach to solving the stereo
matching problem, used in real-time solutions [7]. Our
work focuses on a pixel-based stereo DP algorithm as

described by Cox et al. [8] and further expanded by
Bobick and Intille [9] with the introduction of the Dis-
parity Space Image (DSI) concept and Ground Control
Points (GCPs). Veksler [10] proposed the use of tree-
based structures for matching as opposed to scan-lines.
Other tree-based methods were proposed afterwards
[11]. Real-time implementations have been explored
with CPU [7] and GPU [12] hardware. Coarse-to-
fine DP approaches were also explored [13], as well
as guided approaches [14]. Methods have also been
defined to address the scanline inconsistencies. Some
of them include using a tree-like structure which spans
multiple scanlines [10], aggregating the matching cost
across scanlines [15], reusing calculated paths [7] or
performing a second DP pass in the vertical direction.

While many research endeavors have tried to
improve upon the accuracy of DP-based methods,
these approaches have generally yielded an increase
in computational complexity, which has been in turn
addressed by high-performance hardware architectures
[12]. Semi-global matching [5] (SGM), widely used
in many real-time and real-world applications, makes
extensive use of DP to compute the disparity for each
pixel in the image by estimating the disparity for mul-
tiple paths intersecting for every pixel of the image.
For each image pair a tensor of all possible disparities
is computed, and for each path at each pixel a DSI is
formed as a cross-section of the tensor in the path direc-
tion (horizontal, vertical, or diagonal). For methods

CONTACT Miroslav Rožić miroslav.rozic@gmail.com Zagrebačka Banka d.d., Samoborska cesta 145, Zagreb HR-10000, Croatia

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2018.1503137&domain=pdf
mailto:miroslav.rozic@gmail.com
http://creativecommons.org/licenses/by/4.0/


132 M. ROŽIĆ AND T. PRIBANIĆ

such as SGM and many methods derived from it, opti-
mizing the DP and DSI computation would yield sig-
nificant improvements in execution time and memory
footprint.

The goal of our research was therefore chosen to
improve upon the performance of Dynamic Program-
ming by reducing its computational load, in order to
facilitate its use in real-time applications and within
embedded systems. In this work, we will demonstrate
a hybrid approach to DP which utilizes a coarse block-
matching algorithm (3DRS) [16] as a pre-processing
step to determine the range of disparities to be searched
with DP. The 3DRS algorithm has been introduced
by De Haan et al. as a motion estimation method
for de-interlacing and frame rate up-conversion in
high definition digital televisions. It has been further
enhanced with hierarchical computation and penalized
predictors [17]. It was shown by Hendriks and Marosi
[18] that 3DRS can be applied to obtain disparity maps.

This work is organized as follows. Section 2 intro-
duces the DP and 3DRS methods, as well as the com-
bined hybrid method. Section 3 describes the imple-
mentation details and the obtained results. A discus-
sion of the obtained results is given in Section 4. We
present the conclusion of our work and future areas of
investigation in Section 5.

2. Methods

2.1. Dynamic programming

Global stereo matching approaches aim to minimize a
global energy function,

E(d) = Edata(d)+ λEsmooth(d) (1)

by establishing the disparity function d which mini-
mizes E. In Equation (1), the data term Edata accounts
for the matching cost of the image pair, whereas
the smoothness term Esmooth accounts for the desired
smoothness assumptions about the disparity image.

Edata can be defined as

Edata(d) =
∑
(x,y)

C(x, y, d(x, y)), (2)

using the disparity space formulation, where C is
the matching cost disparity space image (DSI). The
smoothness term is usually restricted to measurement
of the disparities between neighboring pixels

Esmooth(d) =
∑
(x,y)

ρ(d(x, y)− d(x+ 1, y))

+ ρ(d(x, y)− d(x, y+ 1)), (3)

and assigns a penalty to the discontinuities in the dis-
parity map. The 2D optimization of Equation (1) has
been shown to be NP-hard [2] for common classes
of smoothness functions. However, the 1-dimensional
case can be computed in polynomial time with DP,
providing a global minimum for individual scanlines.

The algorithm operates under assumptions of
uniqueness – that a single feature in the left image maps
to a single feature in the right image, and monotonic-
ity (also referred to as the Ordering constraint [8]), that
the relative ordering of pixels on a scanline remains the
same between the two views. Based on those assump-
tions, the algorithm computes the disparity by calcu-
lating the minimum matching cost path through the
DSI (x,disparity) image for a pair of scanlines. The cal-
culation of the shortest path is performed within the
DSI as shown in Figure 1. Occlusions are explicitly han-
dled by assigning a group of pixels from one image to
a single pixel in another image, which corresponds to
a discontinuity or a gap in the optimum path. The path
which satisfies the ordering constraint traverses theDSI
using three principal moves: a match, which moves in
the x direction keeping a constant disparity, a verti-
cal occlusion corresponding to a right image occlusion
and decreasing the disparity, and a diagonal occlusion
which moves both in the x direction and increases the
disparity, corresponding to a left occlusion.

Figure 1. Computed disparity map and the corresponding DSI matching cost matrix structure. The computed path for the disparity
scan-line highlighted in the left image is traced in white. The position x is assigned to the horizontal axis, while the disparity d is
assigned to the vertical axis. The values in the structure represent the pairwise matching costs and are shown using a Jet color map.
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The DSI is generated by Algorithm 1, in a com-
mon first forward pass of DP approaches which calcu-
lates the cost optimum. To obtain the actual disparities,
the Algorithm 2 backtracks through the computed DSI
along the optimum path, outputting a resultant pixel of
the dense disparity map at each step.

Algorithm 1 DP DSI computation
Require: DSI image with the size Xmax , dmax + 1
Require: Match image with the size Xmax , dmax + 1
procedure ComputeDSI(Il , Ir , y,DSI,Match)

for i = 0 to Xmax − 1 do
dhigh ← i < dmax ? i : dmax ;
DSI(i, 0)← i ∗ OccCost;
DSI(i, dhigh)← i ∗ OccCost;

end for
for i = 0 to Xmax − 1 do

dhigh ← i < dmax ? i : dmax ;
for j = dhigh to 1 do

DiagCost← DSI(i− 1, j− 1)+ OccCost;
VertCost← DSI(i, j+ 1)+ OccCost;
MatchCost← DSI(i− 1, j)+ C(Il(i, y), Ir(i− j, y));
MinCost← min(DiagCost,VertCost,MatchCost);
DSI(i, j)← MinCost
if MinCost = DiagCost then

Match(i, j)← DiagMove
else if MinCost = VertCost then

Match(i, j)← VertMove
else if MinCost = MatchCost then

Match(i, j)← MatchMove
end if

end for
end for

end procedure

Algorithm 2 DP DSI backtracking
Require: Computed Match image with the size Xmax , dmax + 1
procedure Backtrack(D, y,Match)

Dx ← Dmax ;
x← Xmax − 1;
while x > 0 and Dx > 0 do

Move← Match(x,Dx);
if Move = DiagMove then

Handle Left Occlusion
x← x− 1;
Dx ← Dx − 1;

else if Move = VertMove then
Handle Right Occlusion
Dx ← Dx + 1;

else if Move = MatchMove then
D(x, y)← Dx ;
x← x− 1;

end if
end while

end procedure

An important factor in the execution of Algorithm 1
is theOccCost parameter, or the occlusion cost, which is
the cost assigned to occluded pixels and greatly impacts
the output results of the algorithm as it directly affects
the decision whether the pixel is a match or occluded.
The described DPmethod is repeated for each scanline
to obtain the complete disparity map.

2.2. Three-dimensional recursive search (3DRS)

The 3DRS algorithm is a block-matching algorithm; the
input source image is divided into blocks, for each of
which the location of a best-matching block is searched
in the reference image.A two-dimensional vector defin-
ing the distance between the original block position
and the position of the matching block in the refer-
ence image is assigned. The map of vectors for all of the
image blocks describes either the motion or disparity.

For disparity estimations of rectified stereo pairs, the
vertical component can be ignored.

The blocks are matched through a matching cost
function, such as the sum of absolute differences (SAD).
The proper matching block is determined by finding
the extreme value of the matching cost function. To
find the extreme an optimization method is usually
applied, where the 3DRS algorithm reduces the num-
ber of required candidate blocks (or candidate vectors)
by making two principal assumptions: first, that the
objects or features in the image are larger than blocks,
and second, that objects have inertia. The first assump-
tion implies that the vectors of the neighboring blocks
provide a good predictor for the block vector which
is currently being estimated. The second assumption
implies that a temporal predecessor – a previously esti-
mated motion vector, is also a good candidate for the
new vector. The application of these assumptions to the
estimation process significantly reduces the number of
candidates which have to be evaluated. To introduce
variation, update vectors which are either generated
randomly, from a distribution, or from a predefined
set, are added to a subset of the predictors. The vari-
ation introduced by the update vectors ensures that the
algorithm will progress towards a solution regardless
of the initial conditions. The typical initial conditions
are that the vector field contains only zero vectors. An
example of the update vector set is

Uv =
{[±2k

0

]
,
[

0
±2k

]}
k = 0, 1, 2, 3, . . . , kmax (4)

Sequentially for every block in the image, 3DRS
selects the output motion (or disparity) vector from a
set of prediction vectors chosen from a spatio-temporal
neighborhood, additionally applying updates in order
to evaluate alternate solutions, as seen in Figure 2. For
an individual block, the matching cost function is eval-
uated for each predictor. The predictor with the best
matching cost is then assigned as the new vector for
the current block, which in turn becomes a part of the
candidate set for the next location, as the estimation
progresses to the adjacent block.

The temporal aspect of 3DRS implies the reuse of a
previous estimation. The initial state of the 3DRS vector
field is that all vectors are set to zero, from where they
converge towards a solution by aggregating update vec-
tors during the estimation process. Between algorithm
iterations on one or more pairs of images, the 3DRS
vector field is not reset, enabling the reliable estimate
calculated for the current pass to be used as a starting
point in the next pass. The neighbourhood of vec-
tors always contain the spatial candidates (estimated
within the current iteration) and temporal candidates
(estimated in the previous iteration).

The block evaluation order is defined by the scan-
ning direction as shown in Figure 3. The most common
order is from top-left to bottom-right, with each line
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Figure 2. The spatio-temporal neighborhood used in the 3DRS estimation. The vector for the block at (0,0) is currently being esti-
mated. Vectors for the blocks at (−1,−1), (0,−1), (1,−1) and (−1,0) have already been estimated for this image. The remainder of the
blocks used are from a previous estimation, making them temporal predictors. The predictors coming from the blocks marked with
a “+” are additionally modified with update vectors.

Figure 3. Various scanning orders for 3DRS. The shaded areas represent the progression of newly computed estimates. (a) Top to
bottom, left to right. (b) Bottom to top, Right to left. (c) Meandering.

beginning on the left. This order defines which of the
predictors are spatial, and which also have a tempo-
ral component, as seen in Figure 2. It also defines the
direction in which the newly estimated, “good” values
propagate within the image. An important aspect of
3DRS is the property of convergence [19], which is a
measure of how fast the algorithm reaches the correct
estimate. As estimated values propagate throughout the
image, with the variation introduced by the update
component, individual estimates may require several
algorithm iterations, and updates, to reach the “cor-
rect” value. This is especially critical at the start of the
estimation where all vectors start from a defined ini-
tial state. Selecting a particular update set can improve
on this property, but can also introduce noise. Chang-
ing the scanning order from bottom-right to top-left
on each new image, or alternating the scanning direc-
tion in a boustrophedonic or meandering way as shown
in Figure 3(c), yields the propagation of good estimates
in all four directions, helping the 3DRS to quickly con-
verge on the final vector map. For the correct estimates
to propagate even faster, multiple scans can be done
for one image pair, alternating the direction and the
meander of the scan on each pass.

The search range of the 3DRS algorithm is con-
strained in practice only by specific implementation
details and available buffer memory. For a general soft-
ware implementation, we can assume that the search
range is constrained to the maximum allowed by the
image horizontal resolution, which is the maximum
disparity that can be detected. The iterative nature of

the algorithm, the constant evaluation of new candi-
date vectors and propagation of previous good esti-
mates throughout the image ensure that, given a suf-
ficient number of iterations, any disparity which can
be detected in the image pair shall be correctly esti-
mated, as the algorithmwill naturally converge towards
a correct matching vector. The convergence speed can
be further tuned by the number of iterations and the
selection of the update set. Therefore, it can be assumed
that 3DRS will converge towards a coarse disparity
solution in deterministic time (fixed number of iter-
ations) given any disparity range within the scene,
without the need to test all of the possible dispari-
ties as with winner-take-all methods. This property of
the algorithm allows us to efficiently pre-determine the
search range for a subsequent fine estimation step, such
as DP.

2.2.1. Formal 3DRS definition
The 3DRS algorithm analyzes two images: the source
image IS and the reference image IR shown in Figure 4.

The source image IS is divided into a rectangular grid
of M×N blocks of n×n pixels as shown in the figure.
For each block Bij, i denotes the row index and j denotes
the column index of the block. A motion vector �dij is
assigned to each block.

The pixel position vector �pij for each block in IS is
defined as

�pij = n ·
[
i
j

]
(5)
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Figure 4. 3DRS image space and coordinate system.

This vector points from the origin to the upper-left pixel
of each block.

The 3DRS algorithm consists of the following
steps:

(1) For each block Bij in IS, form a set of predictors:

P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�dij
�di+k j
�di j+l
�di+k j+l + �uv

k = −1, 1; l = −1, 1 (6)

In the set above, �uv is the update vector, and a new
one is selected either randomly or from a prede-
fined set, for each of the predictors it is applied
to.

(2) Evaluate the matching cost for each of the pre-
dictors, and assign to �dij the predictor with the
minimummatching cost.

�dij = arg min
�dP∈P

(MC(�pij, �pij + �dP)) (7)

whereMC(�s,�r) is the aggregated matching cost for
the compared blocks.

MC(�s, �r) =
n−1∑
y=0

n−1∑
x=0

C
(
IS

(
�s+

[
x
y

])
,

IR
(
�r +

[
x
y

]))
(8)

(3) Repeat the previous two steps for every block
in the image based on the selected scanning
direction.

2.3. 3DRS-guided dynamic programming (3GDP)

The 3DRS motion estimator is extremely applicable in
coarse-to-fine hierarchical approaches due to its short
execution time and the ability to produce coarse dis-
parity maps. The initial assumption of many stereo
matching methods is that the stereo image pairs have
been previously rectified to satisfy the epipolar con-
straint [2]. Under these conditions the matching can
be performed between image scanlines. Applied to the
3DRS estimator, this constraint removes the need for
the estimation of the y component of the vector. Fur-
thermore, as the disparity values, unlike motion vec-
tors, are highly unlikely to be negative, the output of the
disparity estimation can be clipped to address only the
positive values. A 3DRS estimator with the described
modifications is used as the initial step of our proposed
method, named 3DRS-guided Dynamic Programming,
or 3GDP. Figure 5 shows the output of the 3DRS esti-
mator. The estimates are largely correct, with spurious

Figure 5. The result of the 3DRS disparity estimation. (a) Left image of the stereo pair. (b) The 3DRS disparity map. (c) Ground truth
disparities.
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outliers where the algorithm was not able to converge
due to occlusions.

To compute the dense disparities from the coarse
map we apply the DP algorithm. The computational
cost of the DP method is directly proportional to the
range of disparities being estimated. To reduce the
computational cost, the coarse disparity map is used
as a reference for piece-wise limitation of the dispar-
ity range within the DSI, which is divided into seg-
ments with width matching the width of the 3DRS
blocks. Each segment has an assigned disparity range
(dmin

s , dmax
s ), which can be determined from the coarse

disparity value plus or minus a range constant, an
algorithm parameter. However, this does not account
for the discontinuities in the optimum matching path.
Use of varying estimated values obtained from the
coarse disparity map, especially with the presence of
unmatched outliers, may result in disconnected ranges,
which would effectively prevent proper DSI traversal
and backtracking in the DP step of the method. In
order for the estimation to work, a fully end-to-end
connected DSI structure must be ensured.

To achieve this, we re-apply the 3DRS assumption
that the spatial neighborhood of the estimated block
provides a good predictor for that block. By building
the disparity range for a particular segment based on
the values of neighboring segments with an additional
clearance constant ROff , we ensure that each of the seg-
ments is connected to its neighboring segments while
retaining space for potential deviations from the coarse
block disparity.

To generate a connected DSI, the dmin
s and dmax

s are
computed for each segment as shown in Equation (9).

dmin
s (x, y) = min(d3drs(x+ i, y+ j))− ROff

dmax
s (x, y) = max(d3drs(x+ i, y+ j))+ ROff

i = −1, 0, 1
j = −1, 0, 1 (9)

The resultant segmentedDSI is shown inFigure 6(b).
Using the segmented DSI, the DP algorithm produces
a dense disparity map. The comparison of the DP and
3GDP DSI structures demonstrates the reduction of

required computational effort provided by the coarse
3DRS disparities.

2.4. Matching cost

The proper selection of a matching cost function is
vital for all passive stereo correspondence methods.
In practice, the selected matching cost should provide
the best possible matching accuracy under radiomet-
ric variations of input images, such as exposure differ-
ences, vignetting, varying lighting or noise [20]. In our
hybrid approach, the matching cost quality is especially
important for the coarse 3DRS step, as its output con-
strains theminimum cost path search area for the dense
DP step. Evaluations [21] have shown that the Census
[22] non-parametric matching cost provides the overall
best performance. We have evaluated the SAD, ZSAD
and Census matching cost with the 3DRS algorithm to
determine which one has the best characteristic in our
method.

3. Experimental results

The 3DRS, DP and the proposed hybrid 3GDP
algorithm have been implemented within StereoTest, a
visual evaluation environment we have developed for
the purpose of evaluating stereo algorithms. The moti-
vation for designing our own simulation environment
was to reduce the dependency of the tested methods on
external libraries as much as possible, with the ultimate
goal of developing a real-time hardware implementa-
tion for the testedmethods. All computation and image
encoding is performed using integer and fixed-point
arithmetic, with integer parameters. The environment
does not implement a sub-pixel disparity refinement
step after the optimization, as the goal of the evaluation
was to compare the raw results of the disparity compu-
tation methods. The environment is coded in C# and
operates under Microsoft’s .Net Framework 4.5.2.

In our implementation we have tested the SAD,
SSD, Zero-mean SAD, and Census cost functions. The
comparison of the 3DRS results with different match-
ing costs is shown in Figure 7, with a quantitative

Figure 6. DSI structures and computed paths for DP and 3DRS-guided-DP algorithms. Shaded areas represent computed matching
costs. The value of the cost is shown using the jet color map. (a) DP with the full disparity range. (b) 3DRS-guided DP.
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Figure 7. 3DRS coarse disparity maps for the “Teddy” test image based on different matching costs. (a) Sum of Absolute Differences
(SAD). (b) Zero-mean SAD (ZSAD). (c) Census transform. (d) True disparities.

Table 1. Comparison of error rates for various matching costs
using the 3DRS algorithm, considering all pixels. Lower is better.

Set SAD (%) ZSAD (%) Census (%)

Tsukuba 12.61 14.40 21.44
Venus 8.23 7.37 6.85
Teddy 30.26 24.58 20.65
Cones 26.70 22.50 16.22
Average 19.45 17.21 16.29

Note: Bold values highlight the final result of the proposed algorithm.

analysis provided in Table 1, showing that the census
cost achieves the lowest matching error rate. Based on
the results, we have selected the Census as thematching
cost to be used as the block matching cost in the 3DRS
step, as well as the pixel-wise matching cost in the DP
step.

The 3DRS implementation does not include advan-
ced optimizations such as hierarchical processing or
penalties [17], but supports multiple iterations to
improve algorithm convergence on static images. SAD,
ZSAD, and Census [23] cost functions can be utilized
for block matching.

Our DP implementation follows the algorithm
described in Section 2.1. As the computation of each
scanline is individual, this introduces scanline incon-
sistencies visible as streaking artifacts. One of the noted
approaches [7] is to reuse the costs and computed path
from a previous pass with an applied weighting fac-
tor, thus constraining the new path to roughly follow
the previously computed path, contributing to vertical
smoothness. Our approach therefore employs a similar

Figure 8. Execution speed and accuracy of implemented methods. (a) Execution times (in milliseconds) of 3DRS for the Middle-
bury set with varying 3DRS block sizes – data from Table 2. (b) Percentage of bad pixels in the 3DRS coarse disparity map shown in
dependency to the number of 3DRS passes – data from Table 3.

Table 2. 3DRS execution time for the Middlebury set, measured in milliseconds, for varying 3DRS Block size.

Blocksize

Set Image size Action 6 8 10 12 14 16

Tsukuba 384×288 Prep+Calc 87.17 85.82 86.76 84.12 86.85 85.19
Calc 22.24 21.65 21.70 20.89 21.51 20.42

Venus 434×383 Prep+Calc 113.24 112.80 113.63 113.42 112.29 113.40
Calc 34.50 33.69 33.59 33.13 32.48 33.12

Teddy 450×375 Prep+Calc 114.65 115.56 112.81 115.66 114.83 116.02
Calc 34.55 33.86 33.03 33.60 33.25 33.68

Baby2 620×555 Prep+Calc 274.35 270.22 271.25 270.18 270.73 269.75
Calc 73.75 71.19 70.02 69.53 69.56 69.57
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Table 3. Accuracy of produced disparity maps (percentage of bad pixels, lower is better) vs. the number of 3DRS passes and elapsed
time. The time is measured in milliseconds.

Number of passes

Set Measure 1 2 3 4 5 6 7 8

Tsukuba Time 89.33 102.08 134.33 158.77 174.91 203.98 226.12 250.37
Bad pixels 22.46% 17.94% 17.64% 17.56% 18.07% 18.41% 19.09% 19.30%

Venus Time 136.24 168.53 203.13 240.88 272.20 305.13 337.91 372.16
Bad pixels 12.05% 4.43% 4.57% 4.72% 4.94% 5.00% 5.23% 5.23%

Teddy Time 134.37 168.57 202.62 236.48 270.21 303.23 337.22 370.04
Bad Pixels 33.95% 21.88% 21.33% 21.18% 21.33% 21.26% 21.47% 21.34%

Cones Time 136.30 169.61 203.42 236.47 271.72 304.60 339.29 374.92
Bad Pixels 32.82% 17.40% 16.79% 16.29% 16.22% 16.19% 16.12% 16.02%

Table 4. Accuracy of generated disparities, expressed as a percentage of incorrect pixels (lower is better); Non-occ – non-
occluded regions only; All – all pixels; Disc – discontinuity regions only.

3DRS DP 3GDP

Set Non-occ All Disc Non-occ All Disc Non-occ All Disc

Tsukuba 16.57% 17.94% 32.79% 5.91% 7.27% 23.29% 6.02% 7.38% 23.29%
Venus 3.12% 4.43% 23.99% 2.89% 4.18% 15.09% 3.45% 4.70% 15.05%
Teddy 14.22% 21.88% 33.51% 8.77% 16.61% 20.09% 8.98% 17.32% 21.11%
Cones 9.16% 17.90% 25.57% 5.22% 13.84% 13.58% 4.84% 13.98% 13.79%
Average 18.42% 11.40% 11.66%

Note: Bold values highlight the final result of the proposed algorithm.

Figure 9. Comparison of accuracy for the computed disparities and method execution times for the images of the Middlebury set.
Lower is better. (a) Accuracy for the computed disparities – data from Table 4. (b) Method execution times – data from Table 5.

vertical smoothing scheme, which adds a weighted cost
from the previous calculated path to the cost of the
current calculated path. We have found that satisfac-
tory results are achieved with the weight parameter set
to 180 (ranging from 0 to 255). The OccCost param-
eter was selected empirically based on the results. For
the Census cost, it was observed that the value of Occ-
Cost=8 performs well for all images. The reduced
influence of the OccCost parameter on the final result
is a result of employing the Census cost, which reduces
the impact of radiometric differences.

For the Roff parameter used to constrain the
DSI path, using a Roff = 5 has shown good results.

Table 5. Comparison of execution times for the 3DRS, DP and
3GDP method. Times are given in milliseconds. The speed-up
ratio is given as a dimensionless quantity.

Set t3DRS tDP t3GDP
tDP
t3GDP

Tsukuba 102.08 1680.5 258.09 6.51
Venus 168.53 2662.7 351.51 7.58
Teddy 168.57 2761.8 440.41 6.27
Cones 169.61 2527.3 465.58 5.43
Average 152.198 2408.1 378.9 6.45

Note: Bold values highlight the final result of the proposed algorithm.

There were no observable differences in quality for
Roff ≥ 4.

In our evaluation of the algorithm, we have mea-
sured two aspects of quality for the implemented
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Table 6. Accuracy of generated disparities for the 3GDPmethod compared with other DP-basedmethods on theMiddlebury stereo
vision web site [24] (lower is better); Non-occ – non-occluded regions only; All – all pixels; Disc – discontinuity regions only.

DP [2] SGM [5] 3GDP

Set Non-occ All Disc Non-occ All Disc Non-occ All Disc

Tsukuba 4.12% 5.04% 12.0% 3.26% 3.96% 12.8% 6.02% 7.38% 23.29%
Venus 10.10% 11.00% 21.00% 1.00% 1.57% 11.30% 3.45% 4.70% 15.05%
Teddy 14.0% 21.60% 20.60% 6.02% 12.20% 16.30% 8.98% 17.32% 21.11%
Cones 10.50% 19.10% 21.10% 3.06% 9.75% 8.90% 4.84% 13.98% 13.79%
Average 13.93% 7.51% 11.66%

Note: Bold values highlight the final result of the proposed algorithm.

Figure 10. Simulation results – Left reference imageand resultantdisparities for threemethods. (a) Tsukuba–Left image. (b) Tsukuba
– 3DRS result. (c) Tsukuba – DP result. (d)Tsukuba – 3GDP result. (e) Venus – Left image. (f ) Venus – 3DRS result. (g) Venus – DP result.
(h) Venus – 3GDP result. (i) Teddy – Left image. (j) Teddy – 3DRS result. (k) Teddy – DP result. (l) Teddy – 3GDP result. (m) Cones – Left
image. (n) Cones – 3DRS result. (o) Cones – DP result. (p) Cones – 3GDP result.

methods. The first is the accuracy of the output results
indicated by the percentage of incorrect pixels

B = 1
N

∑
(x,y)

(|dC(x, y)− dT(x, y)| > δD) (10)

where dC is the estimated disparity map and dT is the
ground truth disparity map [2]. The threshold δD is 1.
The second aspect is the algorithm run-time perfor-
mance, indicated by the computation time. Themethod

was tested on reference images from theMiddlebury set
[24]: “Tsukuba”, “Venus”, “Teddy” and “Cones”.

With the behavior of DP mostly well researched in
previous work, we focused our measurement on the
properties of the 3DRS phase in order to extract the
parameters which would yield the highest quality guid-
ance for the DP step.

The relationship between the 3DRS block size and
the computation time per image is shown in Table 2
and Figure 8(a). The Prep+Calc time involves both the
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preparation of resources and input images (memory
allocation, Census transform of inputs), while the Calc
time measures only the time required to perform a sin-
gle 3DRS pass. The measurement was performed for a
single 3DRS pass, using the Census cost.

Another important property of the 3DRS algorithm
which affects the guidance of theDP step is convergence.
We assume that using a low-confidence guidance map,
which exhibits a greater estimation error, will adversely
affect the final results of the 3GDP method. There-
fore, we measure the accuracy of the 3DRS-produced
coarse disparity map depending on the number of
3DRS passes. The measurement was performed with a
blocksize of 10, using the Census cost. The results are
provided in Table 3 and Figure 8(b). The percentage
of incorrect pixels was calculated using Equation 10,
with δD = 1, using the full image area with defined
disparities (including the occluded areas).

Based on these results, we compare the final out-
puts of 3DRS, DP, and 3GDP in terms of execution
time anddisparitymap accuracy for both full image and
non-occluded areas. Both 3DRS and DP passes employ
the Census matching cost. The 3DRS method per-
forms two passes in all cases (standalone and 3GDP).
The measured accuracy of individual methods and the
combined 3GDP method are provided in Table 4 and
Figure 9(a).

Additionally, in Table 6 we compare the accuracy of
our 3GDP method with the accuracies from the refer-
ence DP method implemented in [2], and the accuracy
of the widely used SGMmethod [5].

The execution time of methods is shown and com-
pared in Table 5 and Figure 9(b). The resultant disparity
maps are shown in Figure 10.

4. Discussion

The 3DRS estimation has been shown to operate with
constant time regardless of the selected block size,
depending solely on the input image resolution. As the
3DRS block size rises, the number of matching costs to
calculate per vector increases, but the overall number
of the vectors in the image also decreases as less blocks
cover the image. The results suggest that the actual
number of pixels to be calculated for matching cost,
which is the dominant component in the computation
complexity of 3DRS, does not change significantly with
varying block sizes and is near-constant. The implica-
tions of this fact are that the 3DRS estimation, used
to obtain a coarse disparity map, incurs only a con-
stant, small, resolution-dependent penalty, and that the
coarseness of the produced disparity map, defined by
the block size can be freely tweaked without impacting
performance. In our work we have selected the block
size of 10, which maps well to the features in all tested
images.

The convergence results show that a single 3DRS
pass produces a disparity guidance with visibly lesser
confidence than after multiple passes, however, after
only two passes the confidence improves to the point
where subsequent passes do not improve the confi-
dence further. These results match the expectations
based on 3DRS theory, as the estimation starts from a
zero-initialized state and requires several update cycles
to reach a good estimate, which means that a certain
good estimate will be reached mid-image. As the ver-
tical direction alternates between passes, the second
pass will start from known good estimates and propa-
gate them to the less good estimates from the first pass.
After two meandering passes, we can assume that all
vectors have a solid degree of confidence. Subsequent
passes can improve the result further (although this is
apparently image-dependent), but add constant time
penalties. For this reasons, we have selected a two-pass
3DRS pre-estimation in our 3GDP method.

It is therefore evident from the results that the dispar-
ity estimation obtained from3DRS does not change sig-
nificantly after only two passes. Moreover, the disparity
estimation enables the final accurate disparity compu-
tation via DP, independently from the input disparity
range which is different for the tested pairs of images. In
otherwords, unlike othermethods, the proposed 3GDP
method does not require an explicit definition of the
overall range of disparities within which the algorithm
has to search for the optimum solution. Instead, the
range is locally constrained with the 3DRS coarse
result.

The pure DP method provides the overall best qual-
ity in our evaluation, by a small margin. However, the
execution time required ranges between 1.7 and 2.7
seconds in our implementation. The 3GDP method
produces very close results (off by on average 0.3% of
the absolute score), but the execution time of 3GDP is
6.45 times faster on average. Therefore, with the hybrid
3GDP approach we have obtained a near seven-fold
speedup while maintaining the overall level of accu-
racy. The overall average disparity error of our method
is 11.66%, comparable with the results obtained by
other scan-line DP-based approaches. As compared in
Table 6, our method obtains higher accuracy than the
basic DP method as benchmarked in [2], however, in
DSI-based methods, it is still outperformed by SGM
[5]. The execution speed, on average, exceeds the speed
obtained by [25].

Although the proposed solution does not always
improve on the accuracy of other DSI-based algo-
rithms, this can be attributed to several factors, such
as the omission of the Disparity refinement step (as
defined by the taxonomy of Scharstein and Szeliski [2]).
However, we see the near-sevenfold acceleration and
memory footprint reduction for DSI methods as the
main contribution of our method to the state of the
art, as it shows that the existing DSI based methods



AUTOMATIKA 141

can be significantly accelerated without considerably
decreasing their accuracy.

5. Conclusion and future work

We have presented a novel approach to stereo match-
ing by combining a standard Dynamic Programming
estimation with the 3DRS block-based motion estima-
tor. The resultant method exhibits a nearly seven-fold
increase in performance from the original DP method
in our implementation, while retaining the same level
of quality. The proposed method is also insensitive to
the range of input disparities and is not limited by cal-
culation in a particular disparity range. Overall, the
use of 3DRS as a method of reducing and defining the
DSI space has potential applications to other DSI-based
methods, or othermethods which estimate within fixed
range boundaries. Also, the natural ability of 3DRS
to estimate 2D vectors might provide a guidance with
inputs which do not exhibit perfect epipolar rectifica-
tion, such as the latest Middlebury test sets [26]. In
our future work, we will further explore these meth-
ods, aiming to improve the accuracy of the final result as
well as further improve the speed, with the ultimate goal
of defining an architecture for a real-time embedded
hardware implementation.
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