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ABSTRACT
As a solution to the distributed multi-agent coordination, the problems of consensus or agree-
ment have been widely explored and studied in the literature. This document provides an
overview of consensus problems in multi-agent cooperative control with the goal of exposing
the related literature and promote the research in this area. The document presents the theo-
retical results concerning the search for consensus in the involved topologies with information
exchange that is invariant in time and change dynamically. Applications related to consensus
protocols are studied for the cooperation of multi-agent systems. The presentation includes as
well open problems and offers future research direction.
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1. Introduction

In recent years, the consensus problem in multi-agent
systems (MAS) has become an attractive research area
of interest, due to the potential applications in such
broad areas as in control of unmanned aerial vehi-
cles (UAVs), sensor networks, distributed computing in
computer science,medicine, environmental controlling
system and military observation [1–8]. The aim is to
control a group of agents connected by a communica-
tion network so as to reach an agreement on common
static value [9–13].

A typical field coordination problem for distributed
MAS is the consensus problem,which entails the design
of a distributed control policy based on local infor-
mation gained by each agent, so that all agents can
reach an agreement on certain quantities of interest in
negotiating with their respective neighbours [14–17].
In general, all these problems have agents in a group
communicating with one another to exchange infor-
mation [11]. In most of the current research works on
consensus associated problems, the agreement between
the agents is obtained through their cooperation [12].
The complexity is usually the result of the topology and
the nature of the interactions between agents that are
often stochastic [18]. A multi-agent in the most gen-
eral sense is defined as a network system of several
local interactions of autonomous agents. Each agent is
assumed to hold a state regarding a certain quantity of
interest according to the contextual agents’ states which
could be related to opinions, values, beliefs, positions,
speed, among others [19].

The application of consensus can be found in many
research areas. In biology, the dynamic of consen-
sus is studied for instance in the flocking aggregation
behaviour of fish and bird schools [20]. Consensus
models can be used to analyze, predict and elucidate the
behaviour of flocking. In robotics and control, consen-
sus problems come to light in coordination and coop-
eration of agents in robots and sensors, where this is an
important matter in the network environmental appli-
cations [21,22]. In economics, the consensus is used
to determine agreement on a common confidence in
the price decision process. In management science, the
consensus problem has been studied for community
management decision [23]. In sociology, it is employed
for a common language in primal societies and for the
dynamics of opinion formation in social networks [24].
In computer science, it has been a widely researched
and explored subject of interest [25].

Generally, interest in distributed systems is moti-
vated by coordinate and control of multi-agents in the
large-scale networks by accessing shared information
to reach upon an agreed decision (value), or consen-
sus convergence on a common point of interest. Many
results have been achieved in this area. Another work
on distributed computing over networks was also pre-
sented in the research of Borkar and Varaiya [26].
In parallel computing, the problem of asynchronous
computation was considered and studied by Tsitsiklis
[27]. Fax and Murray [28] on the other hand, offered
the steadiness study of multivehicle formation con-
trol in dynamic system for their realization of desired
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trajectories. In another work, a theoretical framework
for solving the problem of consensus was introduced
by Olfati-Saber and Murray [29]. Later on, Cao et al.
[30] addressed a graphical approach of a linear model
for consensus in a dynamically changing environment.
The consensus issue was then explored further in
[31], where the authors studied the problem of stress
consensus in MAS to dynamically change asymmet-
ric networks with communication delays. Additionally,
Hendrickx et al. [32] discussed a linear consensus in
finite time by stochastic matrix with positive diago-
nals. Most recently, Hu et al. [33] investigated a gen-
eral linear dynamics consensus of MAS controlled by
event-triggered scheme with some required features of
a distributed environment.

However, the studies mentioned above are all con-
structed on the conjecture that the dynamics relating to
the consensus of agents are linear protocols. This con-
jecture cannot always be satisfied because of the fact
that physical systems of engineering are of a special type
of consensus problem [34]. For these physical systems,
it is not appropriate to accept that their behaviour can
be changed via an unbounded value. This in effect, rec-
ommends developing consensus protocols which guar-
antees that the general initial statuses are bounded [34].
Further, the yield protocol runs can be used to improve
the performance of dynamic consensus algorithm or
to satisfy other restrictions [35]. From these reasons,
the work at hand is motivated to present an overview
of linear, nonlinear protocols of some researches, and
propose a nonlinear protocol for consensus problem in
MAS.

Yu-Mei and Xin-Ping [36] proposed nonlinear con-
sensus protocols and presented the related simulations
of their new protocols. In their work, the authors’
results demonstrated that the new proposed method is
more effective and serves as an improvement compared
to the linear protocols for the formation control of the
agents. Wang et al. [37] mentioned that in cases where
the dynamic agents are physical models, then the pro-
posed nonlinear protocol to control the MAS under a
fixed network topology is appropriate to avoid a pos-
sible loss of power during consensus controls if there
are uncertainmeasurements. The nonlinear protocol to
the problem of consensus has a better performance and
robustness than that of linear characteristics [38].

This background in turnmotivated and triggered the
design of nonlinear consensus protocols for consensus
problems in MAS. However, there still exists consid-
erable difficulty in constructing a concrete Lyapunov
function for a nonlinear system, which also motivates
this work to seek for a more suitable tool for judging
the stability of nonlinear systems. Hence, the difficul-
ties in building a nonlinear system require research
effort, which serves as an incentive for exploring and
investigating further the stability of nonlinear systems.

Many research works have also attempted to con-
sider nonlinear protocols in developing the consensus
convergence for consensus problem in MAS. The non-
linear system poses difficult challenges in studying the
consensus problem of a static graph for the nodes [39].
Indeed, the early-related research is nonlinear control
theory of the stability which proved to be construc-
tive [40]. Olfati-Saber andMurray [41] proposed linear
and nonlinear protocols for consensus agreement in
distributed and cooperative systems. It is argued that,
the analysis of nonlinear consensus protocols has to be
considered in a case where the applications of dynamic
agents are physical models taking the input constraints
into account. Additionally, Bauso et al. [42] has con-
sidered nonlinear consensus protocols for networks of
dynamic agents under an undirected network of fixed
topologies. The nonlinear framework of discrete time
was then proposed by Moreau [43]. A new technique
via nonlinear dynamics was then established in the
works of Yu et al. [44] for the consensus problem of
cooperative agents in a network environment. Another
work based on nonlinear operator has been presented
in [45] for convergence of the individual agents in net-
work connectivity to reach a common value. In yet
another consideration, Hui and Haddad [46] designed
nonlinear protocols for consensus problems that guar-
antee convergence for multi-agent dynamical systems
and at the same time addressed the Lyapunov’s sta-
ble equilibrium. Zhu and Martínez [47] on the other
hand, have proposed a class of discrete-time dynamic
approach where the output stability properties are reck-
oned for convergence. Moreover, Meng et al. [48]
obtained an iterative learning control by an agent’s
interaction with respective neighbours and through the
use of stochastic matrices to reach a convergence for-
mation control of nonlinear MAS. The approach uses
optimistic optimization to control the behaviour of
agents and simplify a black box with unknown non-
linearities in mathematical form [49]. A different work
by Ajorlou et al. [50] studied nonlinear consensus class
of continuous time for convergence. In this case, each
agent is controlled by its state of combination with its
neighbour’s information in the graph. The consensus
algorithm is also provided where some sufficient condi-
tions are guaranteed for the convergence of the agents
at a common point.

The traditional approach to controlling consensus
problem is often based on linear models, which take its
origin from DeGroot’s model [23]. Nonetheless, vari-
ous researchers in recent times have proposed nonlin-
ear models owing to the fact that linear models con-
verge slowly, with higher number of iterations, and
being incapable of converging to optimal consensus.
Nonlinear models on the other hand, converge faster,
with lesser number of iterations and to approximate
optimal consensus [51–56].
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Despite their advantage, the downside of nonlinear
models is that, they are often characterized by higher
complexity and are setup with restricted conditions.
The present concern is to investigate possible nonlinear
models with faster convergence to optimal consensus,
and yet with relatively low complexity andmore flexible
system conditions.

2. Consensus problem

In many literatures, the consensus or agreement prob-
lem is defined as the convergence to a common value
[10]. The most famous and more action challenges for
MAS are: operate, negotiate and reach an agreement
[9]. Themain problem often focused in distributed sys-
tems is a consensus problem. The consensus problem
depicts how several autonomous agents (MAS) con-
verge to reach agreements through their local interac-
tions. Further, the expression of common agreement
means that all the cases of the autonomous agents are
equal [39]. This work’s interest in distributed systems is
motivated by coordination and control of multi-agents
in the large-scale networks and through access of infor-
mation to reach an agreed upon decision (value) or
convergence to a common consensus.

The consensus problem has a long history in the
work of DeGroot [57] and the necessary and suffi-
cient conditions of DeGroot’s model were addressed
by Berger [58]. A consideration in terms of distributed
computing over networks has also been presented in
the research of [26]. The collocation issue is yet another
study related to the consensus problem which was then
explored by Jadbabaie et al. [22].

The interactions among agents can either be self-
ish as in the (for instance in a free market economy)
or cooperative as in the (for example in an ant colony)
[59].

3. Overview

Over the past few years, a lot of research has been
carried out in the field of cooperative control and
with respect to distributed systems. These studies have
examined andwell explored the related problemof con-
sensus among agents within such a distributed system.
In the process, such works have attempted to guar-
antee that a consensus is reached by the said agents
through proposed linear consensus systems. Consensus
problems have a long history involving groups, man-
agement science and statistics, starting from a “Pari-
mutuel” linear method for agreement to a consensus of
individual distributions for subjective probability dis-
tribution [60]. Similarly, DeGroot [23] proposed a solu-
tion to address the linear consensus problems using
stochastic matrix along with a feasible model called the
“DeGrootModel”. Thismodel covers all possibilities by
individuals to reach a certain point of agreement despite

differences of opinion. It utilizes transition matrix
(stochastic matrix) to prove how consensus is reached.
The adaptive linear control of the Markov chain was
then proposed to converge by the interaction among the
parameterization under the feedback rule [61]. Mean-
while, Berger [58] improved on DeGroot’s [23] lin-
ear model and proved that reaching a consensus also
depends on vector columns (initial values) that rep-
resent opinions on the DeGroot model. Tsitsiklis [21]
and [27] on the other hand, presented an agreement-
based protocol in form of a distributed linear algorithm
for asynchronous problems in parallel computing. Vic-
sek et al. [20] in turn, conducted a linear model study
for a specific situation on the movement of indepen-
dent agents at the same constant speed andmaintaining
their positions in the closest neighbour. Furthermore,
generalization concepts of distributed linear algorithms
for fixed-topology networks were presented by Lynch
[62]. Later on, Olfati-Saber and Murray [41] intro-
duced linear and nonlinear consensus protocols using
undirected graph theory for distributed systems. The
author’s protocols in this case are capable of solving
an average consensus problem by analysing nonlin-
ear protocols for constructed disagreement and mini-
mizing the costs of the distributed system. Meantime,
Jadbabaie et al. [22] provided a theoretical explana-
tion of linear consensus for Vicsek’s work in flocking
behaviour cohesion and speedwhere it is determined in
both cases, and observed in a convergence test. More-
over, Olfati-Saber and Murray [29] presented a con-
sensus protocol and established the convergence anal-
ysis for fixed/switching topology of directed and undi-
rected networks with time-delays communication. The
authors proposed a consensus algorithm that operates
in such a way that, each agent combines its value lin-
early with the neighbouring agent’s values received in
a varying time manner. In another study conducted for
vehicles in place of agents as an application area, a lin-
ear system was proposed for the cooperation problem
among a collection of vehicles. The vehicles in this setup
shared tasks and communicated amongst each other to
coordinate their actions. In the process, an approach of
decentralized information exchange between the vehi-
cles was proposed to achieve a dynamic system. The
dynamic system in this scenario provides each vehicle
with a common reference to use for their related coop-
erative movements [63]. In their study, Lin et al. [64]
studied a linear consensus control to coordinate groups
of several autonomous agents to converge at the same
point, where each agent relied on the information avail-
able at the local level. Blondel et al. [65] in turn, intro-
duced an agreement algorithm of synchronism without
the communication delays, where each agent starts with
a scalar value updated by the linear equation with the
stochastic matrix in discrete time.What is special about
this model is that it is symmetric, whenever an agent
communicates with a neighbour, then the neighbour
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gets as well similar communication in a reciprocat-
ing manner. Furthermore, Olfati-Saber et al. [66] have
provided an analysis of a theoretical framework for
linear consensus algorithm in MAS with a directed
dynamic topology network. It has been explained that
there are applications of flocking, formation control,
fast consensus in small-world networks, Markov pro-
cesses, load balancing in networks and distributed sen-
sor in sensor networks. Another study by Lin and Jia
[67] investigated a linear consensus formulti-agent net-
works based on the Lyapunov-Krasovskii theory with
the sufficient conditions derived to guarantee the aver-
age consensus. An alternative view was given based
on a stochastic matrix graph in linear control for con-
sensus problems considered in dynamically changing
environments. This view was presented by Cao et al.
[30] who also considered another modified control of
the Vicsek problemwherein each agent updates regard-
less of the position in a time controlled by its own
clock. Nedić andOzdaglar [68] provided a sub-gradient
method for solving optimization of a distributed lin-
ear computation model. In this method, each agent
minimizes its own objective function while its infor-
mation is updated locally with other agents in a time-
varying manner. In particular, it is used in two models:
an information exchange model to describe the evolu-
tion of the information of agents and an optimization
model to minimize own local objectives. The objec-
tive of such models is to achieve the optimal solu-
tion. However, the doubly stochastic matrix is one way
to reach a consensus on the optimal solution of the
problem. Same authors [69] have studied the resolu-
tion of a consensus problem for a distributed system
of agents in time-varying scenario with delay and by
way of an algorithm that operates asynchronously. The
proposed analysis reduced the consensus problem with
delay to a problem without delay by including new
agents for each delay element. Moreover, the algorithm
for convergence of the consensus problem was used
to show the evaluation of agents via linear dynamic
model of stochastic matrix. Olshevsky [70] has shown
existing results closely related to the consensus prob-
lem by introducing an averaging linear algorithm. This
was further advanced in [71] where it was mentioned
that the averaging problem could be solved with the
appropriate assumptions by iterative algorithms of the
form of a linear model. Moreover, Dal Col et al. [72]
designed a dynamic linear feedback control to guaran-
tee a local convergence rate for consensus problem in
MAS through linear matrix inequality.

The applications and motivations of the consensus
problem and averaging algorithms have been amply
explained in the literature. In particular, Olfati-Saber
and Murray [29] and Xiao and Boyd [73] used doubly
stochastic matrices to briefly compare the two meth-
ods. The outcome was that doubly stochastic matrices
gave rise directly to an averaging algorithm. Moreover,

what is important is the view that the doubly stochas-
ticmatrix is in agreement with the averaging algorithm.
However, it was established that convergence of agents
to a common opinion in a convex combination of
the initial opinions is needed for the matrix to be
stochastic and reaching a consensus problem for a dis-
tributed system of agents in time-varying with delay.
The robust linear consensus protocols mentioned in
[74] for the synchronization problem of multi-agent
networks under the transfer matrices in additive uncer-
tain perturbations is bounded. In [75], a linear model
reduction scheme was derived for synchronization and
stabilization of MAS in which the dynamic range of the
agent is reduced while the graphics are unchanged and
communication is established.Hendrickx et al. [32] dis-
cussed the possibility of reaching a consensus in finite
time via linear iterations where the transition matrix
should be a stochastic one with a positive diagonal. The
positive diagonal means that when agents update their
states they send positive values to them-selves. In [31],
a linear distributed protocol of first-order and second-
order integrals for MAS with communication noises
was studied.Hendrickx et al. [32] discussed a consensus
reached in finite time by linear iterations, with addi-
tional restrictions to be updated by stochastic matrices
with positive diagonal and consistent under a certain
graphic structure. Hu et al. [33] studied general linear
dynamics control for consensus problem in MAS by a
novel scheme of the event-triggered scenario with some
required distributed features.

Many different models have been proposed to
achieve the agreement of autonomous agents. A new
control algorithm was tested for controlling the sen-
sors and processes in UAV by Jaimes et al. [76]. Chan
and Ning [77] achieved the consensus convergence in
dynamic networks where each time step is updated by
the node with the neighbour’s old values. The results
of the authors’ experimental investigation on dynamic
network observed fast convergence behaviour. The
consensus problem for MAS based on impulsive differ-
ential equations is studied in [78]. It has been concluded
that the convergence speed of the proposed algorithm
by impulsive systems is faster than the standard con-
sensus algorithm. The improvement of communication
delay and the convergence speed for consensus pro-
tocol are achieved by the weighted average prediction
in [79]. Moreover, LeBlanc et al. [80] have provided
an approach for reaching consensus of normal nodes,
although the influence of malicious nodes under dif-
ferent assumptions is a threat. These conditions are
applied for robust network of a novel graph-theoretic
approach. The exact rate of convergence is produced
in [81] for the average agreement by using stochastic
matrices in probability. The analysis of this conver-
gence is based on the connection of random matri-
ces. A basic theory is reviewed for random consensus
dynamics to be applied in many applications [18]. A
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distributed dual averaging algorithm is proposed by
Wang et al. [82] to solve the cooperative optimization
problem encountered in a computational multi-agent
network with delay. The convergence of stochastic opti-
mization in a numerical result of this algorithm is inves-
tigated. In [83], the equilibrium of initial opinions of
the agents is examined based on local interactions, net-
work structure, initial opinions and the extent of agents
stubbornness. The fast time convergence of the func-
tion to achieve the equilibrium has also been studied.
In the work of Priolo et al. [84], a novel distributed
algorithm is addressed to solve the average consensus
problem of discrete-time over any strongly connected
weighted digraph. The scenario here is more general
where the communication between agents is depicted
on a directed graph. Lin and Ren [31] studied the prob-
lem of stress consensus in MAS to dynamically change
asymmetric networks with communication delays. On
this basis, it was also demonstrated that the original sys-
tem, finally reached a consensus asymptotically even
if communication delays were defined arbitrarily. Ren
et al. [10] conducted earlier, a very significant sur-
vey of consensus problems in multi-agent cooperative
control and indicated the dynamic exchange informa-
tion between agents for consensus under time-invariant
environment. Furthermore, it was a classification of
applications of consensus seeking multi-agents’ sys-
tems. One of the most interesting open problems pro-
posed for further research was on the complications of
nonlinear dynamics for a team of agents.

Linear consensus has some limitations in physical
systems, where it is not that their behaviour can be
changed via an unbounded value [34,36], andwhere the
nonlinear protocol consensus has improved the perfor-
mance of dynamic consensus algorithm as well as linear
consensus protocols [35]. The fast reaching to a con-
sensus by nonlinear control has been proved in [85].
There has been much motivation to design a nonlin-
ear protocol for consensus problem in MAS. The early
research in nonlinear control theory of the system’s sta-
bility was constructive [40]. Olfati-Saber and Murray
[41] provided linear and nonlinear protocols to agree
in distributed and cooperative systems. The analysis of
nonlinear consensus protocols has to be considered in a
case where the applications of dynamic agents are phys-
ical models to take the input constraints into account.
The nonlinear framework of discrete time in this case
was approached by Moreau [43]. Meanwhile, Lin et al.
[39] proved that the consensus of nonlinear subsystems
can be achieved only when agents have a connection
with sufficient dynamic interactions. The idea of this
approach is that, the consensus is achieved when each
agent interacts with the set of its neighbours of the con-
vex hull for all iterations. The existing literature shows
that the number of research works that have studied
the nonlinear update rules for the consensus problem
is only a few. The nonlinear system is one of the most

difficult challenges in the study of the consensus prob-
lem of a static graph for the nodes [39]. An algorithm
based on nonlinear update protocol has been presented
in the research of Georgopoulos and Hasler [86]. It has
been proven that the fast convergence rate is exploited
by using a nonlinear function. Furthermore, the overall
result of this nonlinear algorithm has better perfor-
mance against the linear model. The new technique via
nonlinear dynamics was established by Yu et al. [44] for
the consensus problem of cooperative agents in a given
network. The nonlinear class of discrete-time dynamic
algorithms [47] was studied to reach an agreement for a
group of agents from their initial values. It is necessary
to investigate the stability of an average consensus of
algorithms in this case, which has a strong connection
with agents over a bounded period.

In [2], a novel nonlinear approach was then devel-
oped to solve the problem of average consensus. The
numerical simulations of this novel algorithm achieved
the best convergence behaviour in the dynamic scenar-
ios. The necessary and sufficient conditions play a big
role to achieve a convergence of problem consensus. All
researches that have studied the convergence of consen-
sus problem have relied upon suggested sufficient con-
ditions. The stochastic system also improves the speed
of convergence. The properties of linear convergence of
consensus problem are used for a communication net-
work modelled by a random graph based on a Markov
process [87]. The related work has provided mathe-
matical proof on necessary and sufficient conditions
for achieving an average consensus. The mathematical
techniques use the theory of the stability of the Markov
systems, and together with the results of matrix the-
ory and the graph data structure can be used to test
the results of convergence for consensus problem in
a stochastic framework. Meng et al. [48] obtained an
iterative learning control algorithm by an agent’s inter-
action with the neighbours and using stochastic matri-
ces to reach a convergence for nonlinear MAS. Further
consideration include the nonlinear operator that is
represented in [45] for convergence of the individual
agents in network connectivity. The novel algorithm
and convergence results for distributed consensus are
introduced in this work to reach a common value.
A generic consensus condition with nonlinear agent
dynamic was designed for consensus problem in MAS.
The approach uses optimistic optimization to control
the behaviour of agents and simplify a black box with
unknown nonlinearities in mathematical form [49].

Additionally, nonlinear rules for consensus based
on the traditional Lyapunov function have been evalu-
ated in many researches. Olfati-Saber and Murray [41]
introduced linear and nonlinear consensus protocols
for networks of dynamic agents that allow the agents to
agree in a distributed and cooperative fashion. The con-
sideration is done for the cases of networks with com-
munication time-delays and channels that have filtering
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effects. Hayashi et al. [88] described a problem of con-
sensus in discrete time nonlinear functions. This is
done based on interpretation of the dynamic evolution
of communication topologies where; each agent has a
value of performance based on their status inside infor-
mation exchange and the value of performance with
other agents. This in turn makes it possible to reach a
consensus with sufficient conditions for a global con-
sensus while utilizing the theory of algebraic graph.
Hui and Haddad [46] designed nonlinear protocols
that guarantee convergence for consensus problems for
multi-agent dynamic systems and the stable equilib-
rium of Lyapunov is addressed as well in the process.
In [36], a protocol on nonlinear dynamic network con-
sensus controlMASwith fixed and switching topologies
was discussed. The authors’ discussion was based on
the technical base reduction centres collector where, it
is shown that a group of agents can reach a consensus
value which is the value of the group decisions rang-
ing from the maximum values of the initial states of
the agents to minimal values. Li et al. [35] introduced
a nonlinear feedback control protocol to coordinate
the value related to consensus of MAS for the inter-
nal information state so as to reach consensus based
on Lyapunov theory. In [89], a mathematical analy-
sis by nonlinearities of multiple random controllers for
distributed synchronization principles of multi-agent
networks was given and had a significant impact on the
convergence speed and force control terminal using the
Lyapunov function technique. The nonlinear dynamic
here is derived by algebraic theory, matrix theory and
Lyapunov control approach. In the case of nonlinear
models, the averaging algorithmsworkwith coefficients
update dynamically based on the evolution process
for the network [19]. Zhang et al. [90] on the other
hand, studied the synchronization problem in a class of
nonlinear dynamic networks with heterogeneous pulse
delay for MAS by means of Lyapunov function.

Otherwise, nonlinear consensus under first and sec-
ond orders has been investigated in the context of
agents’ reaching a consensus based on complex proto-
col computation. Bauso et al. [42] proposed a stationary
distributed non-linear protocol that reaches consensus
using some simple first-order dynamics in making the
problem of the agents’ states to converge on a deci-
sion value of interest. Yu et al. [44] later on, consid-
ered a nonlinear dynamic for second-order consensus
problem of MAS where the problem refers to how the
group of agents reaches an agreement. This protocol
method is controlled by second-order dynamics such
as the direction and speed. A connectivity-preserving
of nonlinear second-order consensus algorithm inmul-
tiple dynamic mobile agents was investigated in [91].
The investigation was done by assuming that the
initial network is connected and provides local adap-
tation strategies for both the weights of the force feed-
back speed, browsing speed, and coupling, allowing all

agents to be synchronized with the virtual leader, even
if only officially reported, without requiring knowl-
edge of the dynamics of the agent. Andreasson et al.
[92] considered a kind of consensus protocol on non-
linear dynamics of first-order and second-order with
sufficient conditions for sufficient consensus, which
were calculated for stationary communication topolo-
gies in the dynamics of single and double integrators.
Zheng and Wang [93] on the other hand, introduced
a nonlinear consensus of first order and second order
with fixed topology for consensus problem in MAS
utilizing nonnegative matrix theory of the graph the-
ory. In [94], the problem of regulation of production
cooperation for a class of heterogeneous multi-agent
second-order uncertain nonlinear systems was stud-
ied through greater state law with distributed feed-
back control, which led to the solution of the original
problem of consensus for MAS. Nonlinear consensus
algorithms for multi-agent networks with a higher-
order dynamic agent variable topology in time were
studied in [95] where the conditions of convergence
of these algorithms were obtained by the Kalman-
Yakubovich Popov lemma and technical absolute stabil-
ity. Li et al. [96]meanwhile, described the second-order
dynamic random consensus on directed switched net-
works where the theoretical results are limited only to
local consensus, although several sufficient conditions
were established to reach consensus for second local
order and are derived for the case without delay time.
The inherent nonlinear dynamic systems were exam-
ined by Liu et al. [97] for the problem of multi-agent
consensus under first-order and second-order systems
with conditions for sufficient feedback gains been given
on the basis of a Lyapunov function method. Yu and
Long [98] in turn, examined the distributed consensus
problem of finite-time ofMAS in second-order consen-
sus with the presence of bounded disturbances where
the protocol of integral sliding mode was developed
to achieve exact finite-time consensus despite interrup-
tions. In another study by Feng et al. [99], the consen-
sus values of all agents was established via a proposed
nonlinear consensus protocol of first-order and second-
order dynamic systems with necessary and sufficient
conditions based on the matrix theory for consensus
problem in the context of heterogeneous MAS. Zhao
and Jia [100] on the other hand, studied the problem
related to consensus probability of multi-agent second-
order stochastic finite time with non-identical nonlin-
ear dynamics setup. Their study was based on the the-
orems of finite time stochastic stability and adding an
integrator technical power where the control algorithm
is distributed for multi-agent stochastic that can ensure
all agents converge to a consensus in finite time sys-
tems. Inmost recent work of [101], the feedback control
of nonlinear dynamics consensus protocol of second-
order was designed forMAS under the cases of strongly
connected networks using local and available sampling
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data for the update managers. On other hand, Macel-
lari et al. [102] have addressed second-order average
consensus for a group of double-integrator agents with
prescribed transient behaviour. Nevertheless, a frac-
tional calculus order was derived also from the con-
sensus problem in MAS from an earlier work. In this
case, a nonlinear model of a general fractional-order
coordination was derived and sufficient conditions of
the interaction among agents were derived to guarantee
consensus coordination [103].

4. The nonlinear stochastic control for
consensus problem inMAS

The consensus protocol for MAS in this study is
traced back to the theories of dimensional sim-
plex, doubly stochastic matrix, majorization concept,
quadratic stochastic operators (QSO), doubly stochas-
tic quadratic operators (DSQO) and extreme doubly
stochastic quadratic operators (EDSQO). The concept
of these theories will be presented as follows.

4.1. Dimensional simplex

A simplex is defined as the set of points, comprising the
convex hull of a set of linear independent points. The
(m − 1)-dimensional simplex is defined (see Figure 1)
as follows [104, 105].

Sm−1 = {
x = (x1, x2, . . . , xm) ∈ Rm : xi ≥ 0,

× ∀i ∈ 1,m,
m∑
i=1

xi = 1

}
,

where the set int Sm−1 = {x ∈ Sm−1 : xi ≥ 0}is called
the interior of the simplex, while the points
ek = (0, 0, · · · , 1︸︷︷︸

k

, · · · , 0) are called the vertices of

the simplex and the scalar vector
( 1
m ,

1
m , . . . ,

1
m

)
is the

centre of the simplex. As shown in the Figure 1, the
first figure has only one point (m = 1) so the dimen-
sion (D) here is equal to 0 (D = m − 1 = 1 − 1 = 0D),
the second figure has two points (m = 2) so the dimen-
sion (D) in this case is equal to1 (D = m − 1 = 2 − 1 =
1D), the third figure has three points (m = 3) so the
dimension (D) here is equal to 2 (D = m − 1 = 3 −
1 = 2D), and so on.

4.2. Majorization

When considering two vectors say x and y, then the
term majorization is closely depicted by the fuzzy
notion relating the components of the two vectors. That
is, ymajorizes x entails the components of the x-vector
with “less diffusion” or “closer equal” to the compo-
nents of the y-vector. For that, the appropriate accurate
statement can be addressed which is “x is majorized by
y” and written as x ≺ y. The history of majorization is
appropriately referred back to the works of [106–110].
Such works introduced the type of theory which is very
important from the economic standpoint, leading to
shortcomings in the distribution of income. There are
also many important contributions which were estab-
lished by other researches. In particular, Ando [111]
provided a survey of the generalization on majoriza-
tion and doubly stochastic matrix from various point
of views. Olkin and Marshall [112] presented a wide
discussion of the majorization theory and its related
applications. In [113,114], the authors explored and
examined the theory of majorization for QSO to pro-
duce simpler and desirable nonlinear operators of QSO
called DSQO.

The concept of majorization is the extension of
inequalities. It is obvious that the elementary inequali-
ties can be formed as follows:

ϕ(x1, . . . , xn) ≤ ϕ(y1, . . . , yn),

where x1, . . . , xn is required not for all components
being equal, and that is for it only be “less spread out”
(y1, . . . , yn).

For examples:

(3, 5)�≺(4, 4) ≺ (5, 3)

(5, 3)�≺(4,4) ≺ (3,5)

(3, 5) ≺ (5, 3) ≺ (3, 5)

Theorem (Hardy–Littlewood –P´olya, p. 45–49): For
x, y ∈ R, x ≺ y if and only if there is a doubly stochastic
matrix D such that x = yDwhere this matrix D is exactly
an exchange or transfer operator of yto x.

Furthermore, one of the bestmethods for solving the
optimization problem is the greedymethod. The greedy

Figure 1. The dimensional simplex.
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method has provided an algorithm to rate the opti-
mal solution [115]. Unfortunately, the greedy method
was not generalized to deal with all the optimiza-
tion problems. The motivation of using the concept of
majorization in the optimization solution stems from
the work of Parker and Ram [116] who have shown
that themajorization theory can be related to the greedy
method in immediate direction of the related problem
solution. Conceptually, in the greedy method, solution
for the given problem is solved by repeating the selec-
tion of the best possible exchange. In the majorization
concept however, the approach solves the optimization
problem with respect to ≺ operator, where the start-
ing point is with the preordering and followed up with
the related sorting of elements through the appropri-
ate exchanges in the vectors [116]. All the formulations
given above have used a linear operator. In the case of
DSQO and EDSQO on the other hand, the approach
has considered the majorization concept as a nonlinear
operator.

4.3. Stochastic matrix and doubly stochastic
matrix

A stochastic matrix is defined as a square matrix
P = (aij)where all entries (aij) are nonnegative and rep-
resenting some probabilities. However, the matrix is
called doubly stochastic if all its entry elements are non-
negative and each column or each row sums up to one
[112]. It is also termed as probability matrix, transi-
tion matrix, stationary matrix, substitution matrix, or
Markov matrix.

The conditions of stochastic matrix and doubly
stochastic are:

P =

⎡
⎢⎣
a11 · · · a1n
...

. . .
...

an1 · · · ann

⎤
⎥⎦

aij ≥ 0,
n∑
i=1

aij = 1,
n∑
j=1

aij = 1, i, j = 1, . . . , n,

The following is an example for stochastic matrix P1:

P1 =
⎛
⎝1/2 1/3 1/6
1/4 1/4 1/2
1/3 2/3 0

⎞
⎠ .

Examples of doubly stochastic matrices can be given
by P2 and P3 as follows:

P2 =
⎛
⎝1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

⎞
⎠P3 =

⎛
⎝1/2 0 1/2

0 1 0
1/2 0 1/2

⎞
⎠ .

4.4. Quadratic stochastic operators

The history of QSO can be attributed to [117]. The
main result of QSO on 2DS was investigated by [118].

However, the study of QSO on 1DS was completed by
[119]. Further exploration on the subject was then car-
ried out by [120] who studied the dynamics of QSO on
infinite-dimensional simplex. There are various classes
ofQSOwhich have already been addressed in the litera-
ture such as volterra, dissipative and doubly QSO [121].
Moreover, a new subclass of QSO has been investigated
in the work of [122]. The QSO can be interpreted as
an operator of population evolution, which is consid-
ered for m species and the x0i = (x0i , . . . , x0m) as the
probability of individual’s distribution for the initial
generations, where the 0’z is the initial generation and
the ‘i’ represents the number of distribution. There is a
probability of interbreed Pij,k between the probability of
individual distribution of x0i from ith to jth to produce
an individual k.

To produce the state of the first generation
x′
i = (x′

i, . . . , x
′
m) x0i → x′

i can be defined by the follow-
ing evolution operator V [121,123]:

V(xk) = x′
k =

m∑
i,j=1

Pij,kx0i x
0
j , i, j, k = 1, . . . ,m. (1)

The description of this equation for MAS in this sense
means that the xk represent agents (x1, x2, x3, . . . , xk)
where kis the number of agents. Nevertheless, Pij,k is
the distribution matrix which portrays the interactions
among the agents from i to j the k identify the respec-
tive agent’s matrix. The dimension or simply the size of
the matrix is given by m. Finally, the x0i and x0j are the
states of the agent starting from the initial state 0, where
i and j are the states of the agents in row and column
cases, respectively, as shown in the following equation.
The symbol of (′) in x′ stands for the next state for x,
where it has the same meaning of xt+1 = xt .

x′ = x(t+1) =
m∑

i,j=1
x(t)
i pij,kx

(t)
j

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
x(t)
1 x(t)

2 . . . x(t)
m

)
⎛
⎜⎜⎜⎝
p11,1 p12,1 · · · p1m,1
p21,1 p22,1 . . . p2m,1
...

...
. . .

...
pm1,1 pm2,1 . . . pmm,1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x(t)
1
x(t)
2
...

x(t)
m

⎞
⎟⎟⎟⎟⎠

(
x(t)
1 x(t)

2 . . . x(t)
m

)
⎛
⎜⎜⎜⎝
p11,2 p12,2 · · · p1m,2
p21,2 p22,2 . . . p2m,2
...

...
. . .

...
pm1,2 pm2,2 . . . pmm,2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x(t)
1
x(t)
2
...

x(t)
m

⎞
⎟⎟⎟⎟⎠

(
x(t)
1 x(t)

2 . . . x(t)
m

)
⎛
⎜⎜⎜⎝
p11,m p12,m · · · p1m,m
p21,m p22,m . . . p2m,m
...

...
. . .

...
pm1,m pm2,m . . . pmm,m

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
x(t)
1
x(t)
2
...

x(t)
m

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2)

The state of agents starts with a random initial state
x0i , which is then updated to the generation x

′
i = V(x0i ),

followed by the next generation x
′′
i = V(x′

i), then to
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Figure 2. The convergence of QSO.

xi = x′′(Vx′
i), and the sequence of updates continues as

appropriately. TheV operator is as depicted in Equation
(1) and called stochastic quadratic operator (QSO).
This exchanging of states is referred to as a dynamic
system which and described as follows:

x0i → x′
i = V(x0i ) → x′′

i = V2(x0i ) → x′′′
i

= V3(x0i ), . . . , (3)

where the process of the dynamic system of Vn(x0i ) =
V(V(. . .V(x0i )) . . .) indicates the n times iteration of
the evolution operator . . . In [121], it was observed
that the main problem for the dynamic system of
Equation (3) is to study the limit behaviour of the
trajectories of QSO, specifically the limit defined by
lim0→∞Vn(x0i ).

The distribution of the interactions among the
agents is described in matrix case, where the matrix of
Pij,k is distributed to kmatrices (pij,1, pij,2, . . . , pij,k), and
under the following conditions of the matrices:

(1) The matrices are square . . .

(2) All elements of each matrix are non-negative.
(3) The sum of all k matrices is a matrix that has all

elements equal to 1.

For Example:
Let the initial state’s values be:

x01 = 0.678735, x02 = 0.243359, x03 = 0.077905.

and with the following transition distributed matrices:

pij,1 =
⎛
⎝0.35 0.15 0.50
0.25 0.30 0.45
0.40 0.55 0.05

⎞
⎠ ,

pij,2 =
⎛
⎝0.15 0.50 0.35
0.30 0.45 0.25
0.55 0.05 0.40

⎞
⎠ ,

pij,3 =
⎛
⎝0.50 0.35 0.15
0.45 0.25 0.30
0.05 0.40 0.55

⎞
⎠ .

Then using the QSO model, the limit behaviour of the
trajectories of the three agents converges to the cen-
tre

( 1
3
)
(as seen in Figure 2). The number of iterations

to reach a consensus in this case, has been achieved
through four iterations.

The convergence of the QSOmodel goes to the cen-
tre (average) due to the fact that the sum of all the
distributed matrices pij,1, pij,2, pij,3 is a matrix having all
of its elements equal to one.

4.5. Doubly stochastic quadratic operators

The class of DSQO can be traced back to [120]. It
was called the class of bistochastic quadratic operators,
where the theorem with necessary and sufficient con-
ditions were proved for this class. This theorem was
also independently obtained in [124,125]. The concept
of DSQO is associated to the notion of majorization
[112]. TheDSQOmethod of approach has been applied
for the problem in population genetics [120], and is a
sub-class of QSO, where the difference between them
is that the DSQOs are defined by the matrices under
the majorization concept. The matrices by the notion
of majorization are referred to as the welfare operators,
and were applied for specific problems in economics
[112]. The completed works have been studied on the
DSQO on finit diminsion (FD) in [113,126–128].

The distinction between QSO and DSQO can also
be made in that the DSQO refers to the theory of QSO
and including together the concept ofmajorization the-
ory, which is written as Vx ≺ x. The given condition is
defined and interpreted in such a way that the QSOs are
called DSQOs if one necessary condition is satisfied as
follows: If an operator is DSQO, then its matrices must
belong to the set U.
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Figure 3. The convergence of DSQO.

So in FD (where F = (m − 1)), the model will have
m matrices each of size m × m and satisfying the con-
dition (on set U) given by Equation (4) [120]:

U =
⎧⎨
⎩A = (aij) : aij = aji ≥ 0,

∑
ij∈∝

|∝| ,

×
∑
ij∈I

aij = m

⎫⎬
⎭ , (4)

where aij are the elements of the matrix, i the num-
ber of row, j the number of column, and ∝ ⊂ I =
{1, 2, . . . ,m}.

In addition to Equation (4), the matrices should also
satisfy the following conditions:

(1) All elements of each matrix are from 0 to 1.
(2) Each matrix is symmetric.
(3) The sum of elements of each matrix ism.
(4) The sum of sub-block of sizem bym is less or equal

tom.
(5) The sum of all m matrices is a matrix that has all

elements equal to 1.

For Example:
Let the initial values be the same initial values of

QSO:

x01 = 0.678735, x02 = 0.243359, x03 = 0.077905.

And the transition distributed matrices are:

pij,1 =
⎛
⎝ 0.5 0.25 0.25
0.25 0 0.75
0.25 0.75 0

⎞
⎠ ,

pij,2 =
⎛
⎝0.25 0.25 0.5
0.25 0.50 0.25
0.5 0.25 0.25

⎞
⎠ ,

pij,3 =
⎛
⎝0.25 0.5 0.25

0.5 0.5 0
0.25 0 0.75

⎞
⎠ .

Here, using DSQO then the limit behaviour of the
trajectories of the three agents converges to the cen-
tre

( 1
3
)
(see Figure 3). The number of iterations to

reach a consensus is achieved through 4 iterations also.
The convergence of DSQO goes to the centre (aver-
age) because the sum of all distributed the matrices
pij,1, pij,2, pij,3 is amatrix having all the elements equal to
one as well. The difference between DSQO and QSO is
that the matrices of the DSQO are under the majoriza-
tion condition which is

∑
i,j∈α aij ≤ |α| for α ⊂ I =

{1, 2, . . . ,m}.

4.6. Extreme doubly stochastic quadratic
operators

Ganikhodzhaev [120] has investigated a sub-class of
DSQO called EXTREME DSQO and abbreviated as
EDSQO. The EDSQO is a sub nonlinear mathemati-
cal model that belongs to a theory of DSQO and QSO.
In other words, EDSQO is a subclass of DSQO, and
DSQO is a subclass of QSO. EDSQO is a new class
which is based onmajorization concept with additional
conditions to the concept of DSQO. The concept of
EDSQO is referred to stochastic analysis, matrix the-
ory and graph theory. It is based on the fact that the set
of DSQO form a polyhedron, in such a way that each
DSQOmay be viewed or interpreted as a point in some
dimensional space. All these points will give a polyhe-
dron geometrically, that consists of vertices which are
considered exactly as extreme DSQO. That is a geo-
metric meaning of extreme, and the reason for their
reference as extreme is simply due to the fact that they
are vertices. The concept of EDSQO is also presented in
the works of [108,117]. More specifically, necessary and
sufficient conditions for EDSQO were introduced by
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Figure 4. The convergence of EDSQO.

[114], and at the same time leaving a number of related
open problems. One of the open problems in EDSQO
is regarding the limit behaviour of the underlying tra-
jectories which is also considered as a central problem.
EDSQOs on 2D have been completely defined in [129].
Both EDSQO and DSQOmust satisfy Vx ≺ x.

The DSQO is called EDSQO if its matrices belong to
the set of ExtrU defined as follows:

If A = (aij) ∈ Extr U then aii = 0 ∨ 1,

× aij = 0 ∨ 1
2

∨ 1.

So in FD (where F = (m − 1)), there will be m matri-
ces each of size m × m and satisfying the following
conditions:

(1) The elements of each diagonal matrix are either 0
or 1 (0 ∨ 1).

(2) The elements of each non-diagonal matrix are 0 or
1
2 or 1

(
0 ∨ 1

2 ∨ 1
)
.

(3) Each matrix is symmetric.
(4) The sum of elements of each matrix ism.
(5) The sum of sub-block of size m bym less or equal

tom.
(6) The sum of all m matrices is a matrix that has all

elements equal to 1.

For Example:
Let again the initial values be the same initial values

of QSO:

x01 = 0.678735, x02 = 0.243359, x03 = 0.077905.

And with the transition distributed matrices as:

pij,1 =
⎛
⎝1 0 0
0 1 0.5
0 0.5 0

⎞
⎠ ,

pij,2 =
⎛
⎝ 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

⎞
⎠ ,

pij,3 =
⎛
⎝ 0 0.5 0.5
0.5 0 0
0.5 0 1

⎞
⎠ .

Here, using EDSQO then the limit behaviour of the
trajectories of the three agents converges to the centre( 1
3
)
(see Figure 4). The number of iterations to reach

a consensus is achieved through 12 iterations. Like-
wise, the convergence of EDSQO goes to the centre
(average) since the sum of all the distributed matrices
pij,1, pij,2, pij,3 is a matrix with all the elements equal
to one. The difference between EDSQO compared to
DSQO and QSO is that all the interior elements of the
distributedmatrices are 1or 1

2or 0, whichmake the coef-
ficients of the elements xi equal to one leading to easier
calculations.

5. Conclusion and future work

In this paper, the resent literature of consensus prob-
lem has been reviewed. Since most of the researches on
consensus problem are ongoing, this survey focused on
linear and nonlinear consensus forMAS. In such recent
works, most consensus problems in MAS have been
considered in the framework of linear dynamics model.
Some results of linear dynamics model imply that
they can be extended by nonlinear dynamics model.
As the outcome, the framework of nonlinear stochas-
tic dynamics consensus can be applied to centralized
robot, spacecraft and UAV formation flying scenarios.
The study of the consensus problem for the team of
agents through complex nonlinear dynamics and in the
case of heterogeneous agents is a motivating issue for
future research. Majority of researches on the problems
of consensus expected that the status of final achieved



154 R. ABDULGHAFOR ET AL.

consensus is intrinsically constant, which may not be
the case in the sense that the status information of each
agent can be dynamically changing over time as an
inherent dynamic. It will be interesting to investigate
a new nonlinear model so as to study the consensus
problemas the final consensus status changeswith time.
In the present reality, most researches have considered
the linear model and complex nonlinear model. This
serves as a motivating factor) for evolving the solution
into a low complexity nonlinear model for the con-
sensus problem in MAS. Furthermore, most works are
concentrated on the theoretical study of the consensus
problems and most results are verified by simulations
with the exception of some experimental results on the
coordination of MAS communicated in invariant time.
The implementation application of consensus plan for
MAS is amain section of research in the future. In addi-
tion, topics such as disorders, time delay and noise of
sensor models should also be considered.
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