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ABSTRACT
We investigate a three-dimensional (3D) robust chaotic system which only holds two non-
hyperbolic equilibrium points, and finds the complex dynamical behaviour of position modula-
tion beyond amplitudemodulation. To extend the application of this chaotic system, we initiate
a novel methodology to construct multiwing chaotic attractors by modifying the position and
amplitude parameters. Moreover, the signal amplitude, range and distance of the generated
multiwings can be easily adjusted by using the control parameters, which enable us to enhance
the potential application in chaotic cryptography and secure communication. The effectiveness
of the theoretical analyses is confirmed by numerical simulations. Particularly, the multiwing
attractor is physically realized by using DSP (digital signal processor) chip.
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1. Introduction

As an active topic, chaos has been extensively and con-
tinuously investigated in classical [1–7] and quantum
fields [8,9] over the last half-century. The study on
chaos has well served to promote the exploration of
dynamical behaviour, intrinsic structure of the natural
system and the design of the new chaotic system, as well
as chaos-based application. One of the potential appli-
cations of chaos is the image encryption and secure
communication based on synchronization technology
[10–15], since the complicated signal of the chaotic sys-
tem could be used as a carrier wave or a secure key. It is
confirmed that multiwing (or multiscroll) chaotic sys-
tem can presentmore complex dynamics than that with
few wings (or scrolls) [16].

Since the famous Chua double-scroll circuit was
formulated and analysed [17,18], numerous efforts
have been exerted to construct and realize multiwing
(or multiscroll) chaotic attractors. The basic idea for
most of the nonlinear systems to generate multiwing
(or multiscroll) attractors is to increase the number
of index-2 equilibrium points by introducing multi-
segment quadratic function [19,20], polynomial func-
tion [21], saw-tooth function [22,23], sinusoidal func-
tion [24,25], hysteresis function [26,27], stair func-
tion [28–30], transformation function [31], triangle
function [21,32] and others. In addition, there exist
many other methods to generate multiwing (or mul-
tiscroll) chaotic attractors. For example, Yu reported a

class of grid multiscroll chaotic attractors by design-
ing switching linear systems and constructing hetero-
clinic loops [33,34]. Chen introduced a simple method
for constructing multiscroll chaotic systems by select-
ing a proper unstable linear system and implementing
shift transformations [35]. Li and Yu proposed a ring-
scroll Chua system by introducing a generalized ring
transformation [36]. Yu also proposed a general ring-
multiscroll system family by introducing a parameter-
ized nth-order polynomial transformation in general-
ized Lorenz systems [37]. Deng and Lü introduced a
switching control scheme for constructing multidirec-
tionalmultiscroll chaotic attractors in the fractional dif-
ferential system, which can generate more scroll num-
ber than classical model [38]. Tahir presented a class
of multiwing attractors with no-equilibrium and with
an infinite number of equilibrium points respectively,
by using a state feedback controller [39]. Jafari [40],
Hu [41], Wang [42] and Escalante-González [43,44]
also reported a class of multiscroll system without
equilibrium. Bouallegue proposed a family of chaotic
attractors with separated multiscrolls by combining
the Julia fractal process with Chua’s attractor and
Lorenz’s attractor [45]. Although various design meth-
ods emerged, it’s still an attractive research interest in
seeking new methods for constructing multiwing (or
multiscroll) chaotic attractors.

The conception of robust chaos was first introduced
byBanerjeewhen studying the currentmode controlled
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boost converter [46], which is defined by the absence
of periodic windows over some range of the parame-
ter space and chaos is the unique state in this range.
Banerjee also found the robust chaos in buck con-
verter and proposed the conditions of robust chaos
[47]. Subsequently, based on Banerjee’s theorem, Min
introduced a chaos robustness criterion for a kind of
two-dimensional piecewise smooth map (2DPSM) and
constructed a 2DPSM with robust chaos feature [48].
Andrecut confirmed robust chaos in a family of one-
dimensional continuous piecewise smooth maps based
on bifurcation structure [49]. These investigations only
concern the robust chaos feature over a limited param-
eter range. Recently, we found that there exists robust
chaos in the continuous chaotic system over infinite
parameter range, and these parameters can regularly
control the signal amplitude (which is called amplitude
modulation for the convenience), yet the Lyapunov
exponents keep invariable [50–54]. Therefore, it is a
promising type of system in the practical application
of image encryption, signal processing, synchroniza-
tion and chaotic communication [53,54]. However, as
far as we know, little research on such a system, partic-
ularly its extension of application, has been done in the
present literatures.

This paper aims at developing a systematic method-
ology for generating multiwing attractors by construct-
ing a robust chaotic system and modifying the posi-
tion and amplitude parameters of the system. We
first introduce a robust chaotic system and analyse
the dynamical properties carefully. It’s found that the
reported system holds two non-hyperbolic equilibrium
points and possesses the feature of position modu-
lation (interpreted as controlling the position of the
chaotic signal by system parameter), other than ampli-
tude modulation. Then, with the application of posi-
tion modulation, we realize the double scheme for
wing number in the robust chaotic system by mod-
ifying the position parameter. And with the applica-
tion of amplitude modulation, we further construct
multiwing chaotic attractors from the modified system
by transforming the amplitude parameter. The pro-
posed design philosophy is different from the exist-
ing approach in literatures [19–45], and the designing
process is concise with only three simple operations.
What’s more, the signal amplitude, range and distance
of the generated wings can be modulated by the control
parameters. The reported dynamical behaviours of the
multiwing chaotic system are discussed theoretically
and confirmed numerically, which displays the poten-
tial application in chaotic cryptography and secure
communication for the flexible choice of attractor
characteristics.

The rest of this paper is outlined as below: in
Section2, we introduce a robust chaotic system and dis-
cuss the dynamical properties. In Section 3, we give the
design scheme and analysis for generating multiwing

attractors from the robust chaotic system. In Section
4, we give a DSP-based realization of the multiwing
attractor. Finally, the conclusion is drawn in Section 5.

2. Model of robust chaotic system

2.1. Model description

The considered 3D system is described by⎧⎨
⎩

ẋ1 = x2 − ax1
ẋ2 = −bx1 − cx1x3
ẋ3 = −h + kx22

(1)

where x(t) = (x1(t), x2(t), x3(t)) are the state variables.
The volume contraction of system (1) can be reckoned
by the Lie derivative∇V = ∂ ẋ/∂x + ∂ ẏ/∂y + ∂ ż/∂z =
−a, which means that system (1) holds a negative dis-
sipativity when a > 0. Thereby, system (1) is bounded,
and the asymptoticmotion at time through the flowwill
settle onto an attractor.

For the positive parameters a, b, c, h, k, we obtain two
equilibrium points of system (1), as below
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Then the corresponding characteristic equation at any
equilibrium point (xE1, xE2, xE3) is deduced to

|J − λI| = −λ3 − aλ2 − (b + cxE3 + 2ckxE1xE2)λ

− 2ackxE1xE2 (2)

When considering the representation of E+ or E−,
the characteristic equation (2) is simplified as

|J − λI| = −λ3 − aλ2 − 2
ch
a

λ − 2ch (3)

Equation (3) holds one negative real root λ1 = −a and
two pure imaginary roots λ2,3 = ±i

√
2ch/a. Therefore,

the two equilibrium points are non-hyperbolic, and
system (1) doesn’t belong to Šil’nikov type chaos.

By selecting the parameter set S0 = {a = 5, b = 1,
c = 1, h = 40, k = 1} and the initial condition x(0) =
(0.01, 0.01, 0.05), we calculate the three Lyapunov expo-
nents of system (1) as (0.508566, 0, −5.498819) by
the orthogonal method [55], confirming the chaotic
behaviour. The corresponding chaotic attractors are
shown in Figure 1. It can be seen that the chaotic tra-
jectories have two wings alternatively swirling around
the two non-hyperbolic equilibrium points.

2.2. Dynamics analysis of amplitude and position
modulation

Although there are still many chaotic systems of non-
hyperbolic type, little attention is paid to the prop-
erty of robust chaos for this kind of system, see, for
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Figure 1. (a) Attractor in the phase space and (b) projection of the attractor onto the plane (x2, x3) with the parameter set S0 and for
the initial value x(0) = (0.01, 0.01, 0.05).

instance, Refs [56–58] and Refs therein. Recently, we
reported a non-hyperbolic system and investigated the
dynamics features of robust chaos and amplitude mod-
ulation [59]. Zhu investigated the dynamics features of
amplitude and position modulations, but the reported
chaotic system is hyperbolic with one saddle and two
saddle-foci equilibrium points [60]. In this paper, the
dynamics feature of the position modulation in the
robust non-hyperbolic system is found for the first time,
not confined to the amplitude modulation.

Our analysis starts with the linear transformation
x1 → x1/

√
k, x2 → x2/

√
k, x3 → x3, based on the

relation of the system parameter and the mathematical
expression of the nonzero equilibrium point [52]. Thus,
system (1) is degenerated to the normalized system
about parameter k, as below⎧⎨

⎩
ẋ1 = x2 − ax1
ẋ2 = −bx1 − cx1x3
ẋ3 = −h + x22

(4)

Therefore, the parameter k can modulate the signal
amplitude of variables x1, x2 according to 1/

√
k, but the

amplitude of signal x3 keeps constant. In addition, we
notice that the characteristic equation (3) is irrespective
to parameter k, thus the Lyapunov exponent spectrum
remains constant when k varies. The feature of ampli-
tude modulation for system (1) is depicted by means

of signal amplitude, Lyapunov exponent spectrum and
phase diagram for the initial value x(0) = (0.01, 0.01,
0.05), as shown in Figure 2.

Next, when considering the transformation of
x1 → x1, x2 → x2, x3 → x3 + bk/c, system (1) is
deduced to ⎧⎨

⎩
ẋ1 = x2 − ax1
ẋ2 = −(b + bk)x1 − cx1x3
ẋ3 = −h + kx22

(5)

Thereby, as the parameter b increases, the position
of signal x3 descends at the speed of 1/c, while the
amplitude and position of signals x1, x2 keep invari-
able. Similarly, we know that characteristic equation (3)
is irrespective to the variation of parameter b. Thus,
when b changes in a real number field, the Lyapunov
exponent spectrum remains invariable. The feature of
position modulation for system (1) is illustrated in
Figure 3, bymeans of signal amplitude, Lyapunov expo-
nent spectrum and phase diagram for the initial value
x(0) = (0.01, 0.01, 0.05).

It’s noticed that for the numerical results depicted by
Figures 2 and 3, the Lyapunov exponent spectrums keep
fluctuating because of the computational precision and
the same initial condition of the system under different
parameters k or b. In spite of this, the simulation results
agree well with the theoretical analyses.

0 5 10 15
−150

−100

−50

0

50

100

150

200

parameter k

si
gn

al
 a

m
pl

itu
de

(a)

x
1max

x
1min

x
2max

x
2min

x
3max

x
3min

0 5 10 15
−6

−5

−4

−3

−2

−1

0

1

parameter k

L
ya

pu
no

v 
ex

po
ne

nt
s

(b)

LE
1

LE
2

LE
3

−30 −20 −10 0 10 20 30
−80

−60

−40

−20

0

20

40

60

x
2

x 3

(c)

k=1
k=9

Figure 2. Amplitudemodulation interpreted by (a) signal amplitude; (b) Lyapunov exponent spectrum versus parameter k with the
parameter set S0 except for k and (c) phase diagram with different k.
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Figure 3. Position modulation interpreted by (a) signal amplitude; (b) Lyapunov exponent spectrum versus parameter b with the
parameter set S0 except for b and (c) phase diagram with different b.

3. Designingmultiwing attractors from robust
chaotic system

3.1. Design scheme

First of all, we select the parameter set S1 = {a = 5,
b = −35, c = 1, h = 40, k = 1} for system (1), then
the position of signal x3 ascends about 36 units, com-
pared with the selection of parameter set S0, as shown
in Figure 4(a). It’s known that few trajectories pass
through x3 = 0 plane, but most trajectories stay above
x3 = 0 plane.

Secondly, to realize the double scheme for wing
number in the robust chaotic system, we start with the
chaotic system (1) with the parameter set S1, and make
the parameter transformation b → bsign(x3) by con-
sidering the effect of parameter b on signal position.
Then the system of differential equations becomes⎧⎨

⎩
ẋ1 = x2 − ax1
ẋ2 = −bx1sign(x3) − cx1x3
ẋ3 = −h + kx22

(6)

where sign(·) is the signum function, which means
sign(x3) = 1 for x3 > 0, sign(x3) = –1 for x3 < 0 and
sign(x3) = 0 for x3 = 0. When x3 > 0, the equilib-

rium points for system (6) are E1
(

1
a

√
h
k ,
√

h
k , − b

c

)
,

E2
(

− 1
a

√
h
k , −

√
h
k , − b

c

)
. And the equilibrium points

are E3
(

1
a

√
h
k ,
√

h
k ,

b
c

)
, E4

(
− 1

a

√
h
k , −

√
h
k ,

b
c

)
with

x3 < 0. The characteristic equation for all these equi-
libriumpoints is expressed as (3) throughmathematical
derivation, therefore, the four equilibrium points are
non-hyperbolic. Yet the equilibrium points for x3 = 0
play a key role that bridges the positive half-space
and the negative half-space with respect to the x3-
axis. Thus, a four-wing attractor can be generated from
system (6), as illustrated in Figure 4(b).

Thirdly, to further construct multiwing chaotic
attractors from the modified system (6), we make
the parameter transformation k → k(1 − k1f (k2x2))
by considering the effect of parameter kon signal ampli-
tude. Then it yields the following resulting system

⎧⎨
⎩

ẋ1 = x2 − ax1
ẋ2 = −bx1sign(x3) − cx1x3
ẋ3 = −h + k(1 − k1f (k2x2))x22

(7)

In system (7), f (·) is a periodic function; k1 and k2 are
the control parameters, which can control the variation
ranges of the signal amplitude and the wing distance,
respectively. There exist different choices of the func-
tion f (·) for the generation of multiwing attractors. For
simplicity, we will focus on the case of f (·) = sin(·) in
this paper, though similar results and analysis can be
made for other periodic functions. Then system (7) can
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Figure 4. (a). Projection of the attractor for system (1) and (b) projection of the four-wing attractor for system (6) onto the plane (x2,
x3), with the parameter set S1 and for the initial condition x(0) = (0.01, 0.01, 0.05).



188 C. LI ANDW. HAI

−30 −20 −10 0 10 20 30
−100

−80

−60

−40

−20

0

20

40

60

80

100

x
2

3

(a)

6 8 10 12 14 16 18
−100

−80

−60

−40

−20

0

20

40

60

80

100

x
2

3

(b)

Figure 5. (a) Projection of the attractor for system (8) onto the plane (x2, x3) with the parameter set S1, k1 = 3.6, k2 = 3 and for the
initial condition x(0) = (0.2, 1.2, 0.5) and (b) the enlarged view.
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be reformulated as⎧⎨
⎩

ẋ1 = x2 − ax1
ẋ2 = −bx1sign(x3) − cx1x3
ẋ3 = −h + k(1 − k1 sin(k2x2))x22

(8)

With the selection of the parameter set S1 and k1 = 3.6,
k2 = 3, the numeral simulations of the attractor pro-
jected onto the plane (x2, x3) in Figure 5 shows
that system (8) holds complicated multiwing attrac-
tors. The corresponding Lyapunov exponents are reck-
oned as 0.594554, 0, −5.574220, which further proves
the chaotic character. It is worth mentioning that we
approximate the signum function sign(x3) by the hyper-
bolic function tanh(120x3), as shown in Figure 6,
to reduce differential buffeting when calculating Lya-
punov exponents [61].

The diagram of bifurcation and the maximal Lya-
punov exponent spectrum is computed by varying
parameter c from its null value to detect the dynami-
cal transition. As found in Figure 7, the system reaches
a chaotic pattern immediately from the lowest value

of c. And we notice that periodic windows embedded
in the chaotic region are observed as the value of c is
increased.

3.2. Analysis of attractor

In this subsection, we will consider the influences of
parameters k, k1 and k2 on the characteristics of the
generated wing attractors.

The bifurcation diagram for k ∈ [0, 10] is plotted in
Figure 8 to describe the amplitude evolution. Superfi-
cially, it seems that the coefficient k can modulate the
signal amplitude regularly. But one notices with the
careful observation that there emerge visible periodic
windows in the chaotic region. In fact, we know that
the value of k(1− k1sin(k2x2)) changes with parame-
ter k. In this sense, one may guess that if the multiwing
attractors exist, k is a parameter that directly affects the
signal amplitudes of x1, x2 by the power function with
the index −1/2, but the amplitude of x3 keeps invari-
able. The above analysis can be intuitively confirmed by
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Figure 7. State evolution interpreted by (a) bifurcation diagram and (b) maximal Lyapunov exponent spectrum versus c with the
parameter set S1 except for c, k1 = 3.6, k2 = 3 and for the initial condition x(0) = (0.2, 0.2, 0.5).
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numerical results with k = 1 and k = 4, as respectively
described in Figure 9.

We now analyse the influence of control parameter
k1 on the property of the generated wings. It’s obvi-
ous that a larger value of k1 will yield a wider variation
range of k(1− k1sin(k2x2)). As a result, if the multi-
wing chaotic attractors exist, the variation ranges of
the signal amplitude of x1, x2 increase with a larger k1.
In other words, the range from the innermost wing to
the outermost wing in x1, x2 direction increase with
a larger k1. The analysis is compared in Figure 10

with k1 = 1 and Figure 11 with k1 = 4 by numerical
simulations.

Finally, we consider the role of k2. It’s noticed that
sin(k2x2) is a function with the period as 2π/k2, which
means that the right-hand side of the third equation
of system (8) keeps invariable when x2 moves to x2 +
2mπ/k2, m ∈ Z. Therefore, if these multiwing chaotic
attractors exist, the distance of adjacent wings (called
wing distance for the convenience) can be estimated as
d = 2π/k2. And we further know that a larger k2 will
bring a smaller distance d. In this sense, parameter k2
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Figure 9. Projection of the attractor for system (8) onto the plane (x2, x3) with a = 5, b = –35, c = 1, h = 40, k1 = 3.6, k2 = 3
and for (a) k = 1, initial condition (0.2, 1.2, 0.5); (b) k = 4, initial condition x(0) = (–0.1, 0.618, –0.1).



190 C. LI ANDW. HAI

−30 −20 −10 0 10 20 30
−120

−100

−80

−60

−40

−20

0

20

40

60

80

100

x
2

x 3

(a)

10 15 20 25
−100

−80

−60

−40

−20

0

20

40

60

80

100

x
2

x 3

(b)

Figure 10. (a) Projection of the attractor for system (8) onto the plane (x2, x3) with the parameter set S1, k2 = 3, k1 = 1 and initial
condition x(0) = (0.2, 0.1, 0.2); (b) the enlarged view.
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Figure 11. (a) Projection of the attractor for system (8) onto the plane (x2, x3) with the parameter set S1, k2 = 3, k1 = 4 and initial
condition x(0) = (0.02, 0.11, 0.1); (b) the enlarged view.
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Figure 12. (a) Projection of the attractor for system (8) onto the plane (x2, x3) with the parameter set S1, k1 = 3.6, k2 = 9, and initial
condition x(0) = (0.2, 1.8, –1.2); (b) the enlarged view.

can directly affect the wing distance. The analysis can
be verified numerically in Figure 5 with k2 = 3 and
Figure 12 with k2 = 9.

4. DSP-based realization of themultiwing
system

As a microprocessor designed with a special struc-
ture, DSP chip holds the features of programmability,
flexible interface and high operation speed. Therefore,
DSP chip plays an increasingly important role on

electronic products research and digital signal process-
ing. In this realization, we adopt TMS320C6747 device,
which is a low-power digital signal processor based
on a TMS320C674x DSP core with 64-bit running at
375MHz and floating-point operation, therefore, it is
considered to be sufficient for our experiment.

To increase the computational precision of the itera-
tive equation and compress the range of state variables,
the variable-scale reduction is first made on system (8).
Considering the condition of a = 5, b = –35, c = 1,
h = 40, k = 1, k1 = 3.6, k2 = 3, and the compression
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Figure 13. DSP implementation of the multiwing system (a) experimental setup; (b) experimental observation.

factors (2, 6, 25) for variables (x1, x2, x3), we derive the
differential equations system of (8) as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1 = 3x2 − 5x1
ẋ2 = 35

3
x1sign(x3) − 25

3
x1x3

ẋ3 = −8
5

+ 36
25

(1 − 3.6 sin(18x2))x22
(9)

And we further execute the time-scale transformation
to increase the density of periodic orbits and to capture
the wave easily. Subsequently, we obtain the resulted
system of (9) with the time-scale factor 10, depicted by

⎧⎪⎨
⎪⎩

ẋ1 = 30x2 − 50x1
ẋ2 = 350

3
x1sign(x3) − 250

3
x1x3

ẋ3 = −16 + 14.4(1 − 3.6 sin(18x2))x22

(10)

Considering that DSP is a digital processor, we dis-
cretize the continuous system (10) by the classical
Runge–Kutta method with step 0.001. Accordingly, we
convert the chaotic digital sequences into analog ones
by themultichannelDAC (digital analog converter with
the model DAC7724). With the setting of the initial
value (0.2, 1.2, 0.5), the oscilloscope observation of the
multiwing chaotic attractor is displayed in Figure 13.
Compared with the attractors simulated by Matlab in
Figure 5, it can be concluded that they have a good
qualitative agreement.

5. Conclusion

Robust chaos is an interesting research field of contin-
uing concern and should be paid closer attention to
the dynamics and the application expansion. In this
paper, we reported a robust chaotic system with ampli-
tude modulation. And for the first time, we found the
properties of position modulation and non-hyperbolic
equilibrium points swirled around by wings alterna-
tively in the robust chaotic system. By transforming
the forms of position parameter and amplitude param-
eter, a systematic methodology was presented to con-
struct multiwing attractors from the robust chaotic sys-
tem. The flexible adjustment of the signal amplitude,
range and distance of generated wings by changing

the control parameters will add the dynamics com-
plexity of the multiwing system, and consequently will
enhance the potential application in chaotic cryptog-
raphy and secure communication. The non-reported
design method of multiwing attractors expanded the
application range of robust chaos, and will also conse-
quently enrich the design theory of complicated chaotic
system.
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