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ABSTRACT
In this paper, in order to achieve the best tracking control of a class of multi-input multi-output
(MIMO) nonlinear systems with unknown dynamics and unknown disturbances, a new robust
adaptive interval type-2 fuzzy slidingmode control law (AIT2-FSMCL) has been proposed. Based
on developing interval type-2 fuzzy local models for some operating points of the controlled
system, an interval type-2 fuzzy logic system (IT2-FLS) has been designed to better estimate
the unknown nonlinear dynamics of the studied system. Then, to enhance the tracking con-
trol performance and ensure the system robustness in the presence of approximation errors,
parameter variations, un-modelled dynamics and external disturbances, a newAIT2-fuzzy sliding
mode system (AIT2-FSMS), has been introduced. In order to avoid the chattering phenomenon
while keeping the systemperformance, the AIT2-FSMSuses three AIT2-fuzzy logic systems (AIT2-
FLSs) to estimate the optimal gains of the AIT2-FSMCL. The adaptation laws have been derived
using the Lyapunov stability approach. The mathematical proof shows that the closed-loop sys-
tem with the proposed control approach is globally asymptotically stable. Finally, the proposed
design method is applied to a two-link robot arm to validate the effectiveness of the proposed
control approach.
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1. Introduction

Conventionally, control algorithms canhardly dealwith
multi-inputmulti-output (MIMO) uncertain nonlinear
systems. To cope with this problem of control, several
robust approaches have been proposed. Among them,
fuzzy logic control (FLC), H∞ technique and sliding
mode control (SMC) have attracted a remarkable atten-
tion.

Over the past decades, intelligent algorithms using
fuzzy logic systems (FLSs) have been extensively used
and successfully applied in various applications [1–9].
However, for nonlinear perturbed complex systems
with uncertainties, FLSs cannot guarantee the global
stability of the closed-loop system [10]. To overcome
this problem, many researchers have tried to combine
FLSs with other advanced robust methods to achieve
good performance, such as SMC, adaptive control,H∞
technique and neural network [11–16]. In [17], the
authors have proposed an adaptive sliding mode con-
troller for systems with actuator saturation to guaran-
tee that the closed-loop system is uniformly ultimately
bounded. In [18], an adaptive fuzzy SMC (AFSMC)
for uncertain discrete-time nonlinear systems is pro-
posed. The nonlinear uncertainties are approximated
by using a fuzzy system. Then, anAFSMC term is added
to the control to compensate themodelling errors. And,

in [19], a discrete sliding mode controller for a class
of nonlinear systems described by a Takagi-Sugeno
(T-S) fuzzy model subject to modelling error has been
proposed to guarantee the global stability of the closed-
loop system despite the modelling error.

SMC is a particular kind of robust control, which
allows the complete reject of any disturbances act-
ing on the system dynamics. It has been successfully
applied for many complex uncertain perturbed sys-
tems [20–24]. However, the control law in the conven-
tional SMC is discontinuous, which can generate the
so-called chattering phenomenon [25,26]. This phe-
nomenon consists of the oscillation of the control law
at a frequency and with amplitude capable of damag-
ing the actuators [26]. In order to reduce the chattering,
boundary layer methods (BL) and higher order SMC
approaches (HO-SMC) are usually adopted by many
researchers [27–30]. However, these methods have a
major disadvantage that limits their performancewhich
consists in the fact that they require the knowledge of
the upper bounds of the different kinds of uncertain-
ties and disturbances that affect the system dynamics.
Moreover, the HO-SMC algorithms require in general
higher order derivative of the sliding variable. And,
the BL approach constraint the system state trajecto-
ries not to the desired dynamics but to their vicinities,
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thus losing the control accuracy and may even provoke
a deterioration of the system stability. The second-order
super-twisting SMC (SOST-SMC) is among the most
popular and effective HO-SMC algorithms widely used
in the literature for controlling complex uncertain non-
linear systems [31–36], it is developed by Levant [37]
to avoid the chattering and ensure the finite time con-
vergence of the system state trajectories. However, the
choice of its control gains values remains one of the
major problems for this kind of algorithms. The large
gains can cause the chattering and a dynamic response
with overshoot. And, the small gains can deteriorate
the tracking control accuracy and affect the system
robustness.

On the other hand, FLS cannot directly handle rule
and measurement uncertainties because it uses type-
1 fuzzy sets (T1-FSs) that are certain. To cope with
this constraint, the so-called type-2 fuzzy logic sys-
tem (T2-FLS) has been introduced in designing robust
controllers and becomes more and more imposed in
industrial and technological fields [38–40]. One rea-
son is that a T2-FS is characterized by a membership
function (MF) that includes a footprint of uncertainty
(FOU) which makes it possible to handle linguistic
uncertainties more effectively than T1-FLSs [41,42]. In
[43], both the position and speed of a mobile robot
are controlled by using two interval type-2 fuzzy con-
trollers. And, in [44], both the position and speed of a
mobile robot are controlled by using two interval type-2
fuzzy controllers.

Compared to the existing works in the literature, the
main contributions of the present study are listed as
follows:

(1) A new robust adaptive interval type-2 fuzzy sliding
mode control law (AIT2-FSMCL) is proposed for a
large class ofMIMOnonlinear systems to deal with
the tracking control problem, with the following
considerations are taken into account:
• All dynamics are entirely unknown and suffer

from time varying disturbances.
• No prior knowledge is required for the upper

bound of unknown disturbances that affect
the studied system dynamics, including un-
modelled dynamics such as friction force, para-
metric variations and external disturbances.

(2) Based onT-S fuzzy system characterized by its abil-
ity to represent input/output relationships locally
of a system [45], an interval T2-FLS (IT2-FLS),
has been introduced in order to efficiently describe
the unknown dynamics of the studied system. FSs
are chosen to be IT2, firstly, because they do not
require a lot of computation and, secondly, for their
efficiency to capture severe uncertainties.

(3) A new synthesized AIT2-fuzzy sliding mode sys-
tem (AIT2-FSMS) has been introduced to handle
modelling errors and effectively reject the effects

of parametric variations, un-modelled dynamics
and unknown external disturbances on the system
dynamics. By using three AIT2-FLSs, the AIT2-
FSMS is designed in such a way as to generate the
optimal gains of the AIT2-FSMCL that ensure the
best tracking control performance while simulta-
neously avoiding the undesired chattering.

(4) The adaptation laws are derived using the Lya-
punov stability theorem. Finally, a two-link robot
arm is used as a study case to confirm the effec-
tiveness of the proposed control approach.

This paper is organized as follows. Section 2 describes
the IT2-FLSs. In Section 3, the problem formulation
is presented. In Section 4, we propose the controller
design method. Finally, the simulation results are illus-
trated in Section 5.

2. Introduction to type-2 fuzzy logic systems

A T2-FLS is characterized by MFs that are them-
selves fuzzy. Output sets of inference engine are T2-FSs.
Therefore, a reducer is required to convert them into
T1-FS. The obtained type reducer set is then defuzzified
to obtain a crisp output.

An example of a T2 fuzzy MF is the Gaussian MF
represented in Figure 1, with the associated FOU, is the
area in between the upper and lower MFs.

Upper MF and lower MF are two T1 fuzzy MFs. μ1
is the intersection of the crisp input x with lower MF,
and μ2 is the intersection with upper MF.

2.1. Interval type-2 fuzzymodelling system

The T-S fuzzy system is characterized by its ability to
represent input/output relationships locally of a system.
Every conclusion of such system is expressed by a lin-
ear system describing the system dynamics at a given
operating point. Then, with a rule base ofM rules, each
having q antecedents and p consequents, the jth rule can
be written as [45]

Rj : if x1 is F1j and x2 is F2j . . . and xq is Fqj

then

{
x(n) = Ajx + Bju
y = x

(1)

where Fij are the antecedent FSs characterized by the
fuzzy MFs μFji

(xi); x = [ x1 x2 ... xp ]T is the first ele-

ment of the state vector x = [xT , ẋT , . . . , x(n−1)T]T ∈
R
q such that q = p × n; u ∈ R

m and y ∈ R
p are,

respectively, the input and the output of the studied
system; Aj ∈ R

p×q is the state matrix and Bj ∈ R
p×m

denotes the input matrix.
In this study, to take advantage of the potential of T2-

FS to consider uncertainties on T2 fuzzy rules, FSs Fij
defined in (1) are replaced by IT2-FSs. Then, the sys-
tem (1) can be reformulated using the T-S rule based
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Figure 1. A type-2 fuzzy set.

modelling for a T2 fuzzy system as follows:

Rj : if x1 is F̃
j
1 and x2 is F̃

j
2 . . . and xq is F̃

j
q

then

{
x(n) = Ajx + Bju
y = x

(2)

where F̃ji are IT2-FSs characterized by the fuzzy MFs
μF̃ji

(xi)
Consider that all local models of the system (2) are

controllable and the meet operation is implemented by
the product t-norm. Then, the firing interval of the jth
fuzzy rule is the following interval T1-FS (IT1-FS):

Zj(x) = [zjl(x), z
j
r(x)] (3)

where zjl(x) = q
π
i=1

μlow
F̃ji

(xi) and zjr(x) = q
π
i=1

μ
upp
F̃ji

(xi),

withμlow
F̃ji

(xi) andμ
upp
F̃ji

(xi) are the lower and upperMFs

of μF̃ji
(xi), respectively.

2.2. Type reduction for interval type-2 fuzzy sets

The output of the inference enginemust be reduced to a
T1-FS before defuzzification. The type reduction using
the centre of sets (COS)method is adopted in this study
for the IT2-FSs and it is given by [46]

Ycos(θ
1, θ2, . . . , θM ,Z1,Z2, . . . ,ZM)

=
∫
y1

∫
y2

. . .

∫
yM

∫
z1

∫
z2

. . .

∫
zM

1/
∑M

j=1 y
jzj(dy1dy2 . . . dyMdz1dz2 . . . dzM)∑M

j=1 zj

(4)

where Ycos is an IT1-FS defined by two end points yl(x)
and yr(x); yj ∈ θ j = [θ jl , θ

j
r] with θ j is the centroid of

the associated fuzzy consequent set; and zj ∈ Zj(x) =
[zjl(x), z

j
r(x)].

The defuzzified crisp output by using the centre of
gravity is then obtained as follows:

y = yl + yr
2

(5)

where yl and yr can be expressed as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yl = min
Zj

∑M
j=1 θ

j
l z

j∑M
j=1 zj

= θTl ξl

yr = Max
Zj

∑M
j=1 θ

j
rzj∑M

j=1 zj
= θTr ξr

(6)

where ξl = [ξ 1l ξ 2l . . . ξMl ]T and ξr = [ ξ1r ξ2r ... ξMr ]T

are two vectors of fuzzy basis functions, such that: ξ
j
l

= zj∑M
j=1 zj

and ξ
j
r = z̄j∑M

j=1 z̄j
, with ( zj, z̄j) ∈ Zj(x); θl =

[ θ1l θ2l ... θMl ]T and θr = [ θ1r θ2r ... θMr ]T are the adjus-
table parameter vectors.

In this study, zj and z̄j are determined using the iter-
ative algorithm developed by Mendel and Karnik [47].
Therefore, yl and yr can be easily computed.

3. Problem formulation

Consider a general class of MIMO nth order nonlin-
ear systems, having m inputs and p outputs ( p ≤ m),
described by the following equation:{

x(n) = f (x) + g(x)u + d
y = x

(7)

where f (x) = fN(x) + �f (x) = [ f1 f2 ... fp ] ∈ R
p is a

vector of bounded unknown nonlinear continuous
functions, and g(x) = gN(x) + �g(x) =⎡
⎣

g1,1 g1,2 ... g1,m
g2,1 g2,2 ... g2,m
...

...
...

...
gp,1 gp,2 ... gp,m

⎤
⎦ ∈ R

p×m is a matrix of bounded

unknown nonlinear continuous functions, with �f (x)
and �g(x) represent the parametric variation on the
systemdynamics;u = [ u1 u2 ... um ]T ∈ R

m and y ∈ R
p,
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are, respectively, the input and the output of the sys-
tem; x = [xT , ẋT , . . . , x(n−1)T]T ∈ R

q denotes the state
vector of the system assumed to be available to mea-
surement, with x = [ x1 x2 ... xp ]T is the first element
of the state vector, and q = n × p; d = [ d1 d2 ... dp ] ∈
R
p denotes unknown bounded disturbances, including

un-modelled and unknown external disturbances.
Assume that gN(x) is a non-null matrix, and let

g−1
N (x) denote the Moore-Penrose pseudo-inverse of
gN(x).

Based on the system (2), for a given state/control
(x, u) pair of the system (7), if the product is used as
an inference engine, COS for the type reduction and
the centre of gravity for defuzzification. The defuzzi-
fied crisp out will appear as a weighted average of the
IT2 fuzzy local models:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n) =
∑M

j=1 z
j(x)[Ajx + Bju]∑M
j=1 zj(x)

= 1
2

∑M
j=1 z

j(x)[Ajx + Bju]∑M
j=1 zj(x)

+1
2

∑M
j=1 z̄

j(x)[Ajx + Bju]∑M
j=1 z̄j(x)

y = x

(8)

Let f0(x) = [
f 10 f 20 ... f p0

]T = 1
2

[∑M
j=1 z

jAjx∑M
j=1 zj

+
∑M

j=1 z̄
jAjx∑M

j=1 z̄j

]

and g0(x) =

⎡
⎢⎢⎣
g01,1 g01,2 ... g01,m
g02,1 g02,2 ... g02,m
...

...
...

...
g0p,1 g0p,2 ... g0p,m

⎤
⎥⎥⎦

= 1
2

[∑M
j=1 z

jBj∑M
j=1 zj

+
∑M

j=1 z̄
jBj∑M

j=1 z̄j

]
; then, the system (8) can be

reformulated as{
x(n) = f0(x) + g0(x)u
y = x

(9)

The system (9) is an IT2-FLS designed to describe
the unknown dynamics of the system (7).

Consider εf (x) and εg(x) the approximation errors
of fN(x) and gN(x), respectively. Thus, fN(x) and gN(x)
can be formulated respectively as follows:{

fN(x) = f0(x) + εf (x)
gN(x) = g0(x) + εg(x)

(10)

Then, the system (7) can be rewritten as{
x(n) = f0(x) + g0(x)u + ϕ

y = x
(11)

where ϕ = [ ϕ1 ϕ2 ... ϕp ]T = (�f (x) + εf (x)) + (�g(x)
+ εg(x))u + d is assumed to be bounded ((|ϕi| ≤
φi,φi ≥ 0, i = 1, . . . , p).

4. Control law design

The control objective is to ensure that the state x tracks
the desired reference xr = [ x1r x2r ... xpr ]T in the pres-
ence of un-modelled dynamics, parametric variations
and unknown external disturbances for a large class
of MIMO nonlinear systems with unknown dynamics
as it was defined in (7). Therefore, in order to guar-
antee the robustness of the system (7) against these
constraints and ensure the best tracking control per-
formance while simultaneously avoiding the undesired
chattering, a new AIT2-FSMCL is proposed in this
study.

4.1. Slidingmode control law design

The main objective of SMC is to force the system
dynamics to reach and then remain on the sliding sur-
face s(x, t) = 0, with 0 ∈ R

p denotes the null vector.
Define the tracking error e = xr − x. Then, the slid-

ing surface can be defined for a nth order system as
[48]

s(x, t) = [
s1 s2 . . . sp

]T ∈ R
p

=
(

∂

∂t
+ λ

)(n−1)
e

=
n−1∑
j=0

(n − 1)!
j!(n − j − 1)!

(
∂

∂t

)(n−j−1)
λje (12)

whereλ = diag(λi)1≤i≤p ∈ R
(p×p), is a diagonalmatrix,

with λi is the positive slope of the sliding surface si.
In order to ensure the desired control performance,

a new control law is designed as follows:

u = g−1
0 (x)(x(n)

r − f0(x) + ρ − uc)

= ueq − g−1
0 uc (13)

where ueq = g−1
0 (x(n)

r − f0(x) + ρ) and uc is a reaching
sliding mode control law.

The fuzzy equivalent control ueq describes the slid-
ing mode of the system dynamics, it drives the system
trajectories to the desired dynamics, and it is obtained
when ṡ = 0. However, the approximation errors and
unknown disturbances that affect the system (7) may
cause a deterioration of the sliding mode. Therefore,
a new robust reaching sliding mode control law uc is
introduced to overcome this problem. The control law
uc describes the reaching phase of the system state tra-
jectories towards the sliding surface s = 0. Thus, the
proposed reaching slidingmode control law is designed
as follows:

uc = [
uc(1) uc(2) . . . uc(p)

]T
= −αs(x, t) − k

∫ tr

0
sign(s(x, t))dt − μω(s(x, t))

(14)
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where ω(s(x, t)) = [ ω1(s1) ω2(s2) ... ωp(sp) ]T ∈ R
p, such

thatωi(si) =
⎧⎨
⎩

εi sign(si), si ∈ �
sign(si)
log2|si| , si /∈ �

,� = {si ∈ s||si| ≥ Ni
2 ,

0 < Ni ≤ 1}, and εi = 1
log2(Ni/2)

in order to ensure a
continuous signal in |si| = (Ni/2); α = diag(αi)1≤i≤p,
μ = diag(μi)1≤i≤p and k = diag(ki)1≤i≤p are diago-
nal matrices of the positive reaching control gains αi,
μi and ki, respectively;

∫ tr
0 sign(s)dt = [ ∫ tr1

0 sign(s1)dt∫ tr2
0 sign(s2)dt . . .

∫ trp
0 sign(sp)dt

]T,with tr= [ tr1 tr2 ... trp ]T

such that tri =
{
t |si| > ϑi

tϑi |si| ≤ ϑi
denotes the reaching

time to a neighborhood ϑi of the sliding surface si = 0.

Theorem 1: For the controlled MIMO nonlinear sys-
tem (7), with the IT2-FLS defined in (9), the control
law defined in (13) is globally stable in closed-loop sys-
tem with the tracking error converges asymptotically to
zero, despite unknown dynamics and unknown distur-
bances that affect the system (7), including un-modelled
dynamics, parametric variations and unknown external
disturbances.

Proof: In order to ensure the desired dynamics and
guarantee the stability of the closed-loop control sys-
tem, we consider the following Lyapunov function:

v = 1
2
sTs (15)

The time derivative of the above equation for the system
(11) can be given as

v̇ = sT ṡ(x, t)

= sT(x(n)
r − f0(x) − g0(x)u − ϕ + ρ) (16)

whereρ = [ ρ1 ρ2 ... ρp ]T = ∑n−1
j=1

(n−1)!
j!(n−j−1)!

(
∂
∂t
)(n−j−1)

λjė
From (13), we get:

x(n)
r = f0(x) + g0(x)u + uc − ρ (17)

Substitute x(n)
r and uc by their expressions defined in

(17) and (14), respectively, into (16), gives

v̇ = −
(
sTαs(x, t)

+sTk
∫ tr

0
sign(s(x, t)) dt + sTμω(s(x, t))

)
− sTϕ

(18)

The above equation becomes negative if the inequality
below is guaranteed:

αi|si| + kitri + μi|ωi| ≥ φi, i = 1, . . . , p (19)

Thus, a good choice of the reaching control gains μi,
αi and ki will allow verifying the above inequality (19),

hence, the proof 1 is completed. However, in practice, it
is very difficult to obtain the optimal reaching control
gains μi, αi and ki that ensure the best tracking con-
trol without deteriorating the system robustness. The
large gains generate a big chattering in the system con-
trol and a dynamic response with overshoot, and the
small ones affect the tracking accuracy and can even
cause the instability in control system. In this paper, for
handling this problem, a new AIT2-FSMS is designed
to better estimate the optimal gains of μi, αi and ki that
provide the best tracking control performance for the
system (7) by guaranteeing the condition (19) and to
simultaneously avoid the chattering phenomenon. �

4.2. Adaptive interval type-2 fuzzy slidingmode
control law

Based on the IT2-FLS (5), and with the sliding sur-
face s(x, t) as an input vector, the terms −αs(x, t),
−k

∫ tr
0 sign(s) dt and−μω(s) of the control law defined

in (14) are substituted by their AIT2-FLSs, respectively:

ûα(i) = ξTα (i)θα(i)|si|
ûk(i) = ξTk (i)θk(i)tri
ûμ(i) = ξTμ (i)θμ(i)|ωi(si)|

i = 1, . . . , p (20)

where ξα(i)= 1
2 (ξα(i)l + ξα(i)r)= [ ξ1α(i) ξ2α(i) ... ξMα (i) ]T,

ξk(i) = 1
2 (ξk(i)l + ξk(i)r) = [ ξ1k (i) ξ2k (i) ... ξMk (i) ]T and

ξμ(i) = 1
2 (ξμ(i)l + ξμ(i)r) = [

ξ1μ(i) ξ2μ(i) ... ξMμ (i)
]T are

the vectors of fuzzy basis functions as they were
described in (6); θα(i) = [ θ1α(i) θ2α(i) ... θMα (i) ]T, θk(i) =
[ θ1k (i) θ2k (i) ... θMk (i) ]T and θμ(i) = [

θ1μ(i) θ2μ(i) ... θMμ (i)
]T

are parameter vectors free to be designed by adaptive
laws;M is the number of rules.

Define the optimal parameters of the AIT2-FLSs
ûα(i), ûk(i) and ûμ(i):

θ∗
α(i) = argmin

θα(i)
(sup

si
|ûα(i) − uα(i)|)

θ∗
k (i) = argmin

θk(i)
(sup

si
|ûk(i) − uk(i)|)

θ∗
μ(i) = argmin

θμ(i)
(sup

si
|ûμ(i) − uμ(i)|)

(21)

The global proposed AIT2-FSMCL is designed as fol-
lows:

u = g−1
0 (x)(x(n)

r − f0(x) + ρ − ûc) (22)

where ûc = [ ûc(1) ûc(2) ... ûc(p) ]T = ûα + ûk + ûμ,
such that: ûα = [ ûα(1) ûα(2) ... ûα(p) ]T, ûk =
[ ûk(1) ûk(2) ... ûk(p) ]T and ûμ = [ ûμ(1) ûμ(2) ... ûμ(p) ]T.
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The adaptive laws for the designed AIT2-FLSs
defined in (20) are designed as follows:

θ̇α(i) = −γα(i)s2i sign(si)ξα(i)

θ̇k(i) = −γk(i)sitri ξk(i)

θ̇μ(i) = −γμ(i)si|ωi(si)|ξμ(i)

(23)

where γα(i), γk(i) and γμ(i) are positive constants

Theorem 2: For the MIMO nonlinear system (7), with
the IT2-FLS defined in (9), the AIT2-FLSs proposed in
(20) and the adaptive laws expressed by Equation (23),
the designed AIT2-FSMCL (22) is smooth and globally
stable in closed-loop system with the tracking error con-
verges asymptotically to zero, despite unknown dynamics
and unknown disturbances that affect the system (7),
including un-modeled dynamics, parametric variations
and unknown external disturbances.

Proof: Consider the following new augmented Lya-
punov function:

v =
p∑

i=1
vi = 1

2

p∑
i=1

s2i + 1
2

p∑
i=1

θ̃Tα (i)θ̃α(i)
γα(i)

+ 1
2

p∑
i=1

θ̃Tk (i)θ̃k(i)
γk(i)

+ 1
2

p∑
i=1

θ̃Tμ(i)θ̃μ(i)
γμ(i)

(24)

where θ̃α(i) = θα(i) − θ∗
α(i), θ̃k(i) = θk(i) − θ∗

k (i) and
θ̃μ(i) = θμ(i) − θ∗

μ(i); γα(i), γk(i) and γμ(i) are posi-
tive constants.

Considering Equations (15), (18) and (22), the time
derivative of (24) gives

v̇ =
p∑

i=1
v̇i =

p∑
i=1

(
si(ûc(i) − ϕi) + 1

γα(i)
θ̇Tα (i)θ̃α(i)

+ 1
γk(i)

θ̇Tk (i)θ̃k(i) + 1
γμ(i)

θ̇Tμ(i)θ̃μ(i)
)

(25)

Let u∗
α(i) = ξTα (i)θα(i)|si| = −α∗

i si, u
∗
k(i) = ξTk (i)θk(i)

tri = −k∗
i
∫ tri
0 sign(si) dt and u∗

μ(i) = ξTμ (i)θμ(i)|ωi(si)|
= −μ∗

i ωi(si) denote, respectively, the optimal control
laws of uα(i), uk(i) and uμ(i) that ensure the best track-
ing control performance of the system (7) by generating
the optimal gains α∗

i , k
∗
i and μ∗

i of the control law
uc(i), which allows to effectively reject the perturba-
tion ϕ acting on the system dynamics by verifying the
condition (19) while simultaneously ensuring that the
undesired chattering are avoided. Then, by introducing
the optimal control law u∗

c (i) = u∗
α(i) + u∗

k(i) + u∗
μ(i)

into (25), it gives for v̇i (i = 1, . . . , p):

v̇i = si((ûc(i) − u∗
c (i) + u∗

c (i) − ϕi) + 1
γα(i)

θ̇Tα (i)θ̃α(i)

+ 1
γk(i)

θ̇Tk (i)θ̃k(i) + 1
γμ(i)

θ̇Tμ(i)θ̃μ(i)

= si(ξTα (i)θ̃α(i)|si| + ξTk (i)θ̃k(i)tri
+ ξTμ (i)θ̃μ(i)|ωi(si)|) + si(u∗

α(i)

+ u∗
k(i) + u∗

μ(i) − ϕi) + 1
γα(i)

θ̇Tα (i)θ̃α(i)

+ 1
γk(i)

θ̇Tk (i)θ̃k(i) + 1
γμ(i)

θ̇Tμ(i)θ̃μ(i)

=
(
s2i sign(si)ξTα (i) + 1

γα(i)
θ̇Tα (i)

)
θ̃α(i)

+
(
siξTk (i)tri + 1

γk(i)
θ̇Tk (i)

)
θ̃k(i)

+
(
siξTμ (i)|ωi(si)| + 1

γμ(i)
θ̇Tμ(i)

)
θ̃μ(i)

+ si

(
−α∗

i si − k∗
i

∫ tri

0
sign(si)dt − μ∗

i ωi(si) − ϕi

)

(26)

Substituting θ̇α(i), θ̇k(i) and θ̇μ(i) by their expressions
defined in (23), gives

v̇i = −|si|(α∗
i |si| + k∗

i t
r
i + μ∗

i |ωi(si)|) − siϕi (27)

The above equation becomes negative if the following
condition is guaranteed:

α∗
i |si| + k∗

i t
r
i + μ∗

i |ωi(si)| ≥ φi (28)

the inequality (28) is verified since α∗
i , k

∗
i and μ∗

i are
the optimal estimation gains of αi, ki andμi that ensure
the condition (19), and therefore, the equation v̇ =∑p

i=1 v̇i becomes negative. Thus, the proof 2 is com-
pleted. �

5. Simulations results

5.1. Robot arm dynamicmodel

To validate the developed approach of control, consider
a two-link robot arm actuated by two DC motors as
shown in Figure 2.

Let l1 and l2 be arm lengths, m1 and m2 the masses
at the end of each joint axe, and gthe gravity accelera-
tion. Also let q = [ q1 q2 ]T be the joint variable vector
(angular positions vector).

The robot arm system is described by the following
equation [49,50]:

M(q)q̈ + C(q, q̇)q̇ + G(q) = u + d (29)
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Figure 2. A two-link robot arm.

where M(q) =
⎡
⎣ (m1+m2)l21 m2l1l2(sin(q1) sin(q2)

+(cos(q1) cos(q2))
m2l1l2(sin(q1) sin(q2)
+(cos(q1) cos(q2)) m2l22

⎤
⎦

is the completed inertia matrix; C = m2l1l2(cos(q1)
sin(q2) − sin(q1) cos(q2))

[
0 −q̇2

−q̇1 0

]
denotes the cori-

olis and centripetal forces; G =
[−(m1+m1)l1g sin(q1)

−m2l2g sin(q2)

]T
Contains the gravity terms; u = [ u1 u2 ]T is the con-
trol torque vector; d = [ d1 d2 ]T denotes the unknown
disturbances, including un-modeled dynamics such as
friction force and unknown external disturbances.

Introduce the state vector x = [ xT ẋT ]T = [ qT q̇T ]T,
where x = [ x1 x2 ]T = [ q1 q2 ]T; thus, Equation (29) can
be reformulated as

ẍ = fN(x) + gN(x)u + D (30)

where fN = M−1(−Cq̇ − G), gN(x) = M−1 and D =
M−1d.

Assume that the mass of joints of the robot arm
system (30) presents parametric variation. Therefore,

Equation (30) can be rewritten as

ẍ = (fN(x) + �f (x)) + (gN(x) + �g(x)u) + �

= fN(x) + gN(x)u + �̄ (31)

where�f (x) and�g(x) represent the time varying dis-
turbances acting on the system dynamics caused by the
mass variation dm;� = (M + �M)−1d, with�M rep-
resents the parametric variation of the inertia matrixM
caused by dm; and �̄ = �f (x) + �g(x)u + � .

Equation (31) is similar to the systems described in
(7), it is a second-order nonlinear system having two
inputs and two outputs, unknown dynamics fN and gN ,
and unknown disturbance vector �̄. So, we can apply
the proposed control law defined in (22).

5.2. Simulation

A robot arm with the following nominal characteristics
is considered:

l1 = l2 = 1m; m1 = 4 kg and m2 = 2 kg; g =
9.8m/s2.

The time varying disturbances on the mass of
joins are given as follows: dm (kg) = [ dm1 dm2 ]T =
[ 2 sin(t) sin(t) ]T

The unknown disturbances vector is represented as
�̄ = (M + �M)−1

[
0.8 sin(2t)+0.4 sin(q̇1)+0.2q1
0.6 sin(2t)+0.2 sin(q̇2)+0.2q2

]
+ �f (x)

+ �g(x)u.
Set the initial condition joint angular position vector

x (rad) = [ 1.2 0.4 ]T.
Set the sliding surfaces s1 = ė1 + λ1e1 and s2 = ė2 +

λ2e2, where e1 = q1d − q1 and e2 = q2d − q2 are the
tracking errors, λ1 and λ2 are the positive slopes of the
sliding surface s1 and s2, respectively.

Assume that q1 and q2 belong to [− π
2

π
2 ].

The control objective is to maintain the sys-
tem to track the desired trajectory qd = [ q1d q2d ]T =
[ sin(t) cos(t) ]T.

Figure 3. Interval type-2 fuzzy sets used by the IT2-FLS defined in (33).
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Figure 4. Interval type-2 fuzzy sets used by IT2-FLS ûc .

Figure 5. Type-1 fuzzy sets used by the T1-FLS defined in (34).

The proposed AIT2-FSMCL is designed as

u = [
u1 u2

]T
= g−1

0 (x)(q̈d − f0(x) + ρ − ûc) (32)

where ρ =
[

λ1 0
0 λ2

] (
ė1
ė2

)
.

The IT2-FLS used to describe the nonlinear system
dynamics (30) is designed as{

ẍ = f0(x) + g0(x)u
y = x

(33)

The IT2-FLS (33) has two inputs q1 and q2, and each of
them is defined by three MFs, as depicted in Figure 3.

There are M = 9 fuzzy rules to describe the
unknown dynamics of the system defined in (30),
which requires the following Aj and Bjmatrices (j =
1, 2, . . . , 9):

A1 = [−0.01 0.04 −10.2 −8.4
0.02 0.01 −1 1

]
; A2 = [ 12 −9 −1 0.4

0 17 1 0
]
;

A3 = [ 11 7 −1 1
0 0 1 −1

]
; A4 = [ 18 0 0.03 0.34

1 12 −1 0.01
]
;

A5 = [ 26 −8 −0.04 0.01
0 7 1 −0.02

]
; A6 = [ 11 0 0.02 0.48

0 10 1 −0.08
]
;

Table 1. The constant parameters of both control approaches.

Parameters FSOST-SMC PAC

λ1 5 5
λ2 4 4
N1 – 0.12
N2 – 0.15
γα(1) – 20
γα(2) – 750
γk(1) – 820
γk(2) – 1480
γμ(1) – 30
γμ(2) – 40
b1 20 –
b2 38 –
β1 11 –
β2 14 –

A7 = [ 10 4 −0.04 0
0 0.04 1 −1

]
; A8 = [ 12 1 0 −0.4

0 18 −1 −0.04
]

A9 = [ 3 3 −1 1
1 −1 0 0

]
; B1 = [ 0.8 −0.8

−0.8 2.4
]
; B2 = [ 0.54 0

0 1.7
]
;

B3 = [ 0.8 0.8
0.8 2.4

]
; B4 = B2; B5 = B1; B6 = B2; B7 = B3

B8 = B2; B9 = B1.
For the AIT2-FLS ûc, three MFs are designed for

each of its inputs s1 and s2, as represented in Figure 4.
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Figure 6. The tracking error e1(rad) of both control methods.

Figure 7. The tracking error e2(rad) of both control methods.

Figure 8. The angular position q1(rad) and its reference trajectory q1d(rad) of both control methods.

Figure 9. The angular position q2(rad) and its reference trajectory q2d(rad) of both control methods.
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Figure 10. (a) The control law u1(N.m) of the PAC. (b) The control law V1(N.m) of the FSOST-SMC approach.

Figure 11. (a) The control law u2(N.m) of the PAC. (b) The control law V2(N.m) of the FSOST-SMC approach.

Figure 12. The tracking error e1(rad) of both control methods, for b1 = 27, b2 = 45, β1 = 18 and β2 = 27.
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Figure 13. The tracking error e2(rad) of both control methods, for b1 = 27, b2 = 45, β1 = 18 and β2 = 27.

Figure 14. (a) The control law u1(N.m) of the PAC; (b) The control law V1(N.m) of the FSOST-SMC approach, for b1 = 27, b2 = 45,
β1 = 18 and β2 = 27.

To show the effectiveness of the proposed approach
of control (PAC), a comparison was made with the
fuzzy SOST-SMC algorithm (FSOST-SMC) that uses a
T1-FLS to approximate the dynamics of the system (30)
and uses a SOST-SMC law to handle the approximation
errors and unknown disturbances.

The T1-FLS used to describe the nonlinear system
dynamics (30) is designed as{

ẍ = f̄0(x) + ḡ0(x)V
y = x

(34)

where f̄0(x) = ∑3
k=1

∑3
p=1 ξ kpAk

px and ḡ0(x) =∑3
k=1

∑3
p=1 ξ kp Bkp, such that: ξ kp = μEk (x1)μEp (x2)∑3

l=1
∑3

m=1
μEl(x1)μEm(x2)

,

with Ei( i = 1, . . . , 3) are the antecedents T1-FSs char-
acterized by the fuzzy MFs μEi(xj), j = 1, 2, A1

1 = A1,

A1
2 = A2, A1

3 = A3, A2
1 = A4, A2

2 = A5, A2
3 = A5, A3

1 =
A7, A3

2 = A8, A3
3 = A9, B11 = B1, B12 = B2, B13 = B3,

B21 = B4, B22 = B5, B23 = B6, B31 = B7, B32 = B8, B33 =
B9;V denotes the global control law of the FSOST-SMC
approach, and is given by the following equation:

V = [
V1 V2

]T
= ḡ−1

0 (x)(q̈d − f̄0(x) + ρ − uST) (35)

where uST = −
[
b1 0
0 b2

] [ ∫ t
0 sign(s1)dt∫ t
0 sign(s2)dt

]
−
[

β1 0
0 β2

]
[ |s1|0.5

|s2|0.5
]
, with b1, b2, β1 and β2 are the gains of the

SOST-SMC law uST .
The T1-FSs Ei used by the T1-FLS defined in (34) are

depicted in Figure 5.
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Figure 15. (a) The control law u2(N.m) of the PAC; (b) The control law V2(N.m) of the FSOST-SMC approach, for b1 = 27, b2 = 45,
β1 = 18 and β2 = 27.

For the constant parameters of the two approaches
of control, we take the following values, as shown in
Table 1.

The simulation results are shown in Figures 6–11.
They illustrate the comparison between the PAC and
the FSOST-SMC method.

Figures 6 and 7, they depict the evolution of the
tracking errors. Figures 8 and 9, they represent the tra-
jectories of robot arm angular positions q1 and q2, and
their references trajectories q1d and q2d, respectively.
Figures 10 and 11, they depict the evolution of the
control laws of both control methods.

According to the above simulation results, we notice
that the PAC ensures the best tracking performance
compared to the FSOST-SMC method. This is due to
the fact that the PAC, firstly, it efficiently describes
the unknown dynamics of the controlled system,
and secondly, it rejects the effect of approximation
errors, neglected and un-modeled dynamics, time vary-
ing disturbances acting on the system dynamics, and
unknown external disturbances that perturb the con-
trol system more efficiently than the FSOST-SMC
approach. Furthermore, the PAC generates smooth
control inputs while simultaneously ensuring higher
tracking performance. On the other hand, Figures
12–15, they show that when we apply higher gains
(b1, b2, β1 and β2) of the control law uSTof FSOST-
SMC in order to improve the tracking performance, the
chattering becomes more severe.

Even with the improvement of the tracking perfor-
mance of the SOST-SMC method, which obtained at
the detriment of the smoothness of the applied control
inputs, it is noticed that the PAC still presents the best
tracking performance with smooth generated control
inputs.

6. Conclusion

In this paper, we presented a new robust AIT2-FSMCL
for a quite large class of MIMO nonlinear processes
with unknown dynamics and subject to unknown dis-
turbances. Firstly, the unknown dynamics have been
approximated to a weighted combination of IT2 fuzzy
local models. And secondly, a new AIT2-FSMS, which
uses three AIT2-FLSs, has been designed to estimate
the optimal gains of the AIT2-FSMCL that provide
the best tracking performance while simultaneously
avoiding the undesired chattering, despite approxima-
tion errors and unknown disturbances that affect the
studied system, including un-modeled dynamics, para-
metric variations and unknown external disturbances.
The closed-loop system control is globally asymptot-
ically stable and mathematically proven. The simula-
tion example confirms the efficiency of the developed
control approach in achieving the desired objectives.
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