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Application of social game context to teaching mutual exclusion
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ABSTRACT
Mutual exclusionmechanisms, like semaphore andmonitor, are fundamental tools used by soft-
ware engineers to solve the race condition problem, ensure barrier, and achieve other workflow
patterns. Introductory teachings on howparallel and concurrent processes compete over shared
resources have the underlying working principles of the operating system and computer archi-
tecture as a starting point for learning the mutual exclusion concepts. Conventional teaching
method focuses on lectures and solving race condition problem with counting semaphore in C
programming language. Before applying conventional teachingmethod, we advocate the intro-
duction of a social game scenario in teaching basic concepts of workers concurrently competing
over a shared resource. We also introduce a simplifiedmutual exclusion assignment in which the
implementation complexity is reduced by application of a specially designed graphical mech-
anism for mutual exclusion. Compared to a conventional method, the proposed experimental
teachingmethod has a 15% higher success rate in solving race condition problem in C program-
ming language. Regardless of additional steps introduced to make students familiar with the
concepts of mutual exclusion, the experimental method is slightly advantageous when median
time-on-task results are compared.
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Introduction

The most recent software engineering industry trends
are witnessing the increase usage of various cloud plat-
forms, sophisticated server side technologies andmulti-
core processing applications. As part of these trends,
there is an ubiquitous need for software engineers
strongly proficient in parallel and distributed comput-
ing (PDC) which is emphasized in the hiring pro-
cess. These demands are well recognized and addressed
by curriculum recommendations which prescribe the
body of parallel and distributed computing knowledge
for computer science undergraduates [1,2].

Conventional teaching methods address topics from
PDC through lectures and practical assignments. Lec-
tures are commonly complemented with additional
resources which prepare students for the assignment.
With minor differences across educational institutions,
it is generally agreed that lectures and additional
resources need to provide numerous examples of solu-
tions to familiar problems on the PDC topics.

While the importance of numerous well-elaborated
examples is unquestionable, the paper researches
importance and power of elementary examples which
reveal technology independent PDC concepts on real-
life metaphors. As a case study, the paper focuses on
teaching race condition problem and mutual exclu-
sion techniques, which are considered demanding top-
ics for the undergraduates. In our teaching experience,

students find it most difficult to make the first step
towards race condition problemwhichmight be related
to the poor understanding of parallelism and difficulty
to think in terms of parallel and concurrent processes.

The experimental method for teaching PDC con-
cepts on race condition problem is proposed in the
paper. In addition to the techniques covered by con-
ventional teaching methods, an experimental method
is designed with elements of a social game in which two
additional micro assignments for teaching race condi-
tion problem are introduced. The micro-assignments
are targeted to provide an early introduction on race
condition problem and concentrate on the strengthen-
ing students’ ability to think in terms of parallel and
concurrent processes. In the scope of micro assign-
ments, the method avoids having root premises in the
underlying working principles of the operating system
and the computer architecture. It advocates teaching
of basic PDC concepts by relying on the technique of
kinesthetic learning by doing (Sivilotti and Pike [3])
and utilizes a specially designed graphical mechanism.
We argue that students should have the basic concepts
demonstrated using a trivial technology that does not
overshadow the concepts with the implementation.

A small-scale experiment evaluates experimen-
tal and conventional teaching method on a group
of 25 participants who are computer science stu-
dents enrolled in the Operating Systems course1. The
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proposed experimental teaching method has a 15%
higher success rate than the conventional method
in solving race condition problem with counting
semaphore in C programming language. The exper-
imental method is also slightly advantageous when
median time-on-task results are compared.

After presenting related work, the paper describes
the conventional method. The experimental method is
described next. The evaluation and analysis of the con-
ventional and experimental method are described and
followed by a conclusion.

Related work

Shene and Carr [4] have stated early observations on
the importance and problems while teaching multi-
threaded programming. They have found that the con-
cept of race conditions, use of critical sections, and
mutual exclusion mechanisms proposed by Dijkstra
[5], Lamport [6], and Hoare [7] are far more difficult
than anticipated. Shene and Carr [4] also point out
that without a deeper understanding of issues which
are summarized as the five usual problems students
encounter, students will not be able to write decent
multithreaded programs.

Cloud platforms, server-side technologies, and
multi-core trends from the industry, reported by Lee
[8], emphasize demands for software engineers that
are strongly proficient in mutual exclusion techniques,
multitasking and multiprocessing. These demands are
well recognized and addressed by curriculum recom-
mendations which prescribe the body of parallel and
distributed computing knowledge for computer science
undergraduates [1,2]. According to recommended cur-
ricula, more time should be devoted to teaching PDC
topics.

Report fromArroyo [9] states that changes are being
made across educational institutions to align with the
prescribed body of PDC knowledge. A few new teach-
ing approaches have beendeveloped recently in order to
effectively transfer the prescribed body of PDC knowl-
edge. Adams, Brown, and Shoop [10] recommenda-
tions are to provide extensive number of exemplar
applications for parallel programming patterns, where
exemplar applications demonstrate PDC topics and
techniques in solving some (more or less) realistic prob-
lem. Von Praun [11] refers to Scott [12] in support of
proposing a course organized to introduce parallelism
concepts from higher to lower level of abstraction.
Gregg et al [13] research the idea of teaching parallel
programming before sequential and report on exper-
imental parallel programming course taught to nine-
and ten-year-olds.

To ease the difficulty in teaching and learning mul-
tithreaded programming, various visualization tools
have been proposed. Visualization proposed by Mal-
nati et al [14] is based on recording traces of thread

execution. Thread creation events and events of acquir-
ing and releasing locks are recorded and afterwards
visualized in the form of a sequence diagram which
can help students to better understand the behavior
of a multithreaded program. Similar visualization tool
proposed by Carr et al [15] provides visualization sup-
port for more synchronization primitives, including
semaphores, monitors, and channels. In addition to
displaying sequence of executions of synchronization
primitives, it also provides special views for visualizing
suspended threads for each synchronization mecha-
nism and displaying content of messages exchanged
over channels. Manickam and Aravind [16] use anima-
tion to demonstrate execution of seven mutual exclu-
sion algorithms which meet given criteria of being
simple and elegant. State of execution can be observed
in each step of the execution. ConEE [17] is a visu-
alization tool and code validator that checks the code
for deadlocks and race conditions. The tool validates
programs written in a simple language that supports
operations with semaphore, mutex, and barrier. ConEE
is limited to short programs with a small number of
threads, its objective is to help students grasp the com-
plexity of writing concurrent programs. Synchron-ITS
system [18] presents a valuable interactive tutoring tool,
but is limited in providing a development environment
for synchronization of worker tasks. Instead, its func-
tionality focuses on demonstrating the main concepts
of shared memory and synchronization visually and
interactively.

Noticeably different approach by Sivilotti and Pike
[3] advocates teaching PDC topics by applying kines-
thetic learning, since it is a powerful and ubiqui-
tous learning style that resonates with many students
across all disciplines and levels of education. Kines-
thetic learning is a learning style inwhich students learn
by actively carrying out physical activities by stand-
ing, walking, talking, pointing, or working with props
rather than by passively listening to lectures. Sivilotti
and Pike [3] consider courses on distributed computing
are uniquely suited to exploiting this learning technique
and present a collection of kinesthetic learning activi-
ties for a senior undergraduate or graduate-level course
on distributed systems.

The concept of gamifying learning experiences
is generally oriented on improving motivation and
engagement [19,20] in order to achieve better learn-
ing performance and, as such, it may apply to PDC.
Research examining the implications of gamification
is still scarce and guidelines for well-designed gami-
fication learning need to be more deeply researched.
Attalia and Arieli-Attalib [21] and Hanus and Fox [22]
show gamification can have a negative impact on learn-
ing experiences. Positive effects of gamification have
been confirmed in [23] when competing with friends
and when gamification provides instructions and feed-
back [24]. In [25] authors have reported on positive and
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negative implications of anonymity of group identity
when game-based learning is organized in groups. Per-
formance of students with high prior knowledge was
positively influenced by the anonimity of group iden-
tity, while it was negatively influenced by the salience
of group identity. On the contrary, the performance of
students with low prior knowledgewas negatively influ-
enced by anonimity of group identity, while it was pos-
itively influenced by salience of group identity. In [26]
authors suggest caution while introducing competition
element which can negatively reflect on overall perfor-
mance, cooperation, and problem-solving, and tends
to have a positive relationship with cheating. Caution
is also suggested by Christy and Fox [27] concerning
the use of leaderboards and social comparison, which
is a common element in game based learning. Using
leaderboards can result in both, upward and down-
ward comparisons, having implications on academic
performance.

Conventional method

The goal of the conventional teaching method is
to educate participants and prepare them for suc-
cessful completion of individual practical assignment
where mutual exclusion is achieved by using count-
ing semaphore in C programming language. In the
conventional method, the participants are educated
through official lectures from an educational institu-
tion and are typically allowed to use all the avail-
able resources to help them learn how to solve race
condition problem from the assignment. In the con-
ventional method which is applied in our research,
participants are recruited from students enrolled in the
mandatory Operating Systems course at the Univer-
sity of Zagreb, Faculty of Electrical Engineering and
Computing. Within the course, participants receive
educational support from the faculty, including lec-
tures on the related topics, recommended reading, and
online resources. Performance of participants educated
through the conventional teaching method is evaluated
on a practical assignment on race condition problem.
Figure 1 demonstrates the flow of the experiment in the
conventional teaching method. As shown in the figure,
before the assignment inC language, all participants are
introduced to the assignment details.

The participants are given a sample C program in
which a race condition problem occurs when program
is executed. The sample pseudocode of the program is
shown in Table 1. Critical region of the code between
read and write to the data source (lines 2–5) is not pro-
tected with any mechanism. Although participants are
selected to already possess prerequisite computer sci-
ence knowledge, they are first introduced to all aspects
of the program, including the creation of multiple pro-
cesses and shared memory, and how the race condi-
tion problemoccurs. Next, the participants are required

Figure 1. Flowchart diagram of the conventional teaching
method.

Table 1. Pseudocode of an individual assignment in the con-
ventional teaching method.

1 while has next income {
2 balance = read balance from the data source;
3 income = read next income;
4 balance = balance+ income;
5 store balance to the data source;
6 }

to achieve mutual exclusion by modifying the sample
program to use counting semaphore.

The sample program consists of three processes.
Each process is assigned an array of small positive inte-
gers. All processes have access to a shared memory
segment which is initialized to zero. For each element
of the array, the process reads the value written in the
shared memory, adds the value of the array element,
and writes the result of the sum to the shared memory.

Modification of the sample program consists of a
call to a primitive for the creation of the counting
semaphore, setting of access rights for the semaphore,
and defining data structureswhich are passed as param-
eters in function calls to the semaphore. Each process
needs to make a function call which executes the oper-
ation acquire semaphore before entering the critical
section. After the critical section executes, the process
needs to make a function call for executing the opera-
tion release semaphore. The critical section needs to be
as short as possible.

Participants independently self-record the time they
spend learning how to solve the problem. Therefore,
participants are specially prepared forwriting notes and
directed to write down the time at the beginning and
end of each activity; activities including lectures, pro-
gramming, reading, looking for resources. The time
spent on looking for resources, like browsing the inter-
net, is excluded from the final result. Reports from
participants are anonymized to eliminate the motiva-
tion for cheating. Regardless of their achievement on
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the assignment, participants receive a full score on the
practical assignment for the mutual exclusion part of
the course.

Experimental method

In addition to teaching steps of the conventional
method, the experimentalmethod introduces two addi-
tional practical assignments, each preceded by an intro-
ductory step. The flow of the experiment is shown in
Figure 2. All the additional steps of the experimental
method are introduced as a social game. The scenario
which describes the assignments is put in the context of
collaborative team-work in order to engage students to
physically performmutual exclusion activities and per-
sonally experience the race condition problem. A game
context is subtly used in the scenario to give mean-
ing to the assignments and make them more fun and
enjoyable. Gamification elements such as score points,
badges, and leaderboards are considered superficial
and misleading from the main non-game objective and
therefore are avoided. Participants are required to play
a game in which they are assigned roles of accountants
and receive imaginary accounting tasks. The tasksmake
participants compete over a shared resource.

A specially designed mechanism is used in the addi-
tional steps in order to avoid having root premises in
the underlying working principles of the operating sys-
tem and the computer architecture. The mechanism
is designed to allow the teaching of basic concepts
demonstrated within an environment that does not
overshadow the concepts with the implementation.

Figure 2. Flowchart diagram of the experimental teaching
method.

Geppeto [28,29] is an example of such an environment
that is based on a service-oriented architecture and
features a widget-oriented programming by demon-
stration paradigm. In the interactive assignment in the
experiment, the graphical mechanism called Ordered
Customer Service is used for enforcing mutual exclu-
sion. The programming-by-demonstration assignment
uses Geppeto programming paradigm to program
mutual exclusion over the graphical interfaces of the
mechanism used in the previous assignment.

The interactive andprogramming-by-demonstration
assignemnt are performed in a supervised environ-
ment in which performance of the participants is con-
trolled and evaluated by the coordinator. Participants
are instructed and supervised to precisely measure
the time while their efforts are invested in solving
the assignment. After stopping the timer, participants
report to the coordinator and the coordinator evaluates
solutions of each participant.

Introduction to the interactive assignment

A special scenario is designed to introduce partici-
pants to a race condition problem that requires mutual
exclusion. It is designed with a requirement to place
every participant in a situation in which participant
personally experiences side effects of unresolved race
condition problem. A shared resource is the amount
of income on the account of a virtual company.
Unprotected read and write operations to the shared
account are exposed in the form of a widget shown in
Figure 3(a). Each participant appends its daily income
to the shared account. Income appending consists of
three consecutive operations. The first operation is a
click on the Refresh button in order to display the most
recent value of company’s income. The second oper-
ation is an input of the value of a new income to the
textual field – the new value is calculated by summing
up themost recently read company’s income to the per-
sonal daily income which participant receives from the
coordinator of the experiment. The last operation is a
click on the Store button which stores the new value to
the company’s account.

At the beginning of the experiment, participants are
grouped in groups of two or three and the sequence
of positive numbers representing a sequence of daily
incomes is given to each participant. Upon each coor-
dinator’s signal of an end of the day, each participant
appends one given income to the company’s account
using the Account widget. After participants append
all daily incomes, the amount of income of the com-
pany is expected to differ from the sum of all daily
incomes of all participants in the group. The reason
for such result is explained to participants by demon-
strating a case where two participants simultaneously
perform income appending operations. It is explained
that the three income appending operations need to
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Figure 3. Widgets used in the mutual exclusion scenario: (a) The Account widget for appending of daily income to the company’s
account; (b) Ordered Customer Serving widget for enforcing mutual exclusion.

execute atomically without other participant’s opera-
tions interfering. Participants are expected to become
aware of the meaning and purpose of mutual exclusion.

In the next attempt, participants are instructed to
establish mutual exclusion and complete the same task
with the correct final amount of income on the com-
pany’s account. Participants are directed to establish
signaling of performed income appending operations,
which signals that the next selected participant can per-
form income appending. Verbal or any kind of sign
communication is allowed for the sole purpose of estab-
lishing mutual exclusion protocol.

Interactive assignment

The previously introduced scenario of income append-
ing is modified so that participants are prohibited
to engage in any kind of personal communication.
The mechanism Ordered Customer Serving shown in
Figure 3(b) is exposed to participants as the only
means of achieving mutual exclusion. The recommen-
dation engine of Geppeto [30] uses existing knowl-
edge of building composite applications with income
appending widget to assists participants in discovering

and adding the mechanism into the development
environment.

Participants need to learn how to properly apply
theOrdered Customer Serving widget for mutual exclu-
sion of income appending actions that are performed
manually using the widget in Figure 3(a). The correct
usage of the widget is shown in the form of a manual
depicted in Figure 4. The user manual comprises the
textual description next to the four-step illustration of
themechanism usage.Mutual exclusion is reached after
step 3 and the exclusive session lasts untill step 4. After
step 3, Account widget shown in Figure 3(a) is used to
perform income appending actions. The usage manual
is offered to participants to assist them in solving the
problem. The time participant spends learning how to
properly apply the mechanism is recorded.

Introduction to the
programming-by-demonstration assignment

The goal of the programming-by-demonstration assign-
ment is programming of mutual exclusion based on the
mechanism that is used in the previous assignment. The
introduction is necessary in order to have participants

Figure 4. User manual to help participants to achieve mutual exclusion using the mechanism Ordered Customer Serving.
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Figure 5. Programming of execution of actions upon reception of a signal with the Trigger widget.

prepared for using a special programming tool. The
idea behind the programming of mutual exclusion is
to use Geppeto – a widget-oriented programming by
demonstration tool. The set of GUI actions which
were performedmanually in the interactive assignment
should be defined to execute as a run-time program
using Geppeto. As part of the introduction, Geppeto
programming paradigm is demonstrated and new ele-
ments of the programming environment are explained.

Geppeto paradigm [28,29] supports event-driven
programming model well suited for programming
over graphical interfaces, like buttons and textboxes.
Only a subset of the Geppeto’s programming ele-
ments is adopted and customized for the purpose of
mutual exclusion. Interface to programming is exposed
through buttons – central graphical constructs com-
monly recognized by non-programmers as elements
listening to user clicks and triggering designated action
upon click. While in traditional Web applications
button-assigned actions are fixed and their program-
ming is out of reach of end-user, Geppeto allows end-
user to define a sequence of actions which gets assigned
to a listening button. In response to a certain type of
event, typically a click on the listening button or a
specific signal from the run-time environment, the lis-
tening button triggers execution of a defined sequence
of actions.

Mutual exclusion of the operations of income
appending needs to be programmed to execute when
the end of a day signal occurs. Triggering is performed
by using the Geppeto environment and a special pur-
pose widget shown in Figure 5. The Trigger widget
provides functionality for receiving the end of a day sig-
nal that is signaled by the coordinator. Participants are
tutored on the usage of the Trigger widget.

Besides visually representing reception of a signal,
the Trigger widget allows execution of a sequence of
actions upon reception of a signal. Figure 5 demon-
strates programming of actions which execute upon
reception of a signal. The button labeled On signal,
which represents an interface for listening to the signal
reception, needs to be configured first. Signal occur-
rence enforces a click on the button. Signal-initiated
click on the button results with the same effect as a

click performed by a user. Hence, listening for a signal
is configured by right-clicking on the listening button
and then selecting the action “When clicked” from a
context menu (A1). A sequence of actions which will
be executed upon reception of a signal is programmed
next.

The example shows programming of actions which
perform income appending operations on the Account
widget. Each action that is programmed has a targeted
GUI element on which it executes. The actions are pro-
grammed on the targeted GUI element by selecting one
of the listed actions from a drop-down menu which is
specific to the element. A click on the Refresh button
is the first action which is defined (A2). The follow-
ing is the action of adding next income (A3) which is
a special purpose action of the textbox element. The
action retrieves participant’s daily income from the
server and sums it to the value of income present in
the textbox at the given time of execution. Execution
of this action ends by leaving the summed value writ-
ten in the textbox. The last actionwhich is programmed
is the click on the Store button (A4). Having the Trigger
widget programmed as demonstrated, an occurrence of
the end of a day signal (B1) will automatically trigger
execution of a sequence of programmed actions. In the
figure, B2 denotes triggering of action A2, while B3 and
B4 denote triggering of actions A3 and A4 respectively.

Each participant is required to program their
instance ofTrigger andAccountwidget as demonstrated
in Figure 5. Correct behavior of programmed function-
alities is tested upon the occurrence of the end of a
day signal. All instances of Trigger widget, of which
each participant’s browser locally hosts one instance,
listen to the end of a day signal. Upon reception of
the signal, each instance triggers independent execu-
tion of a sequence of actions. Participants need to
confirm valid triggering of their sequence that auto-
mates income appending operations. The listening but-
ton can be reprogrammed any number of times. After
all participants confirm validity, the scenario of income
appending is played in whole and the result is analyzed.
An explanation is provided to clarify why the result-
ing amount of income on the company’s account is
not equal to the sum of all incomes. Participants are



214 M. POPOVIĆ ET AL.

Figure 6. Solution of programming mutual exclusion over graphical interfaces of the mechanism Ordered Customer Serving.

Figure 7. User manual to help programming of mutual exclusion of the mechanism Ordered Customer Serving.

reminded of a racing problem, which occurs if multi-
ple sequences of income appending operations execute
simultaneously and not in a mutual exclusion.

Programming-by-demonstration assignment

Using the Ordered Customer Serving widget and Gep-
peto programming paradigm, participants are required
to program the sequence of actions which executes
income appending operations in a mutually excluded
fashion. The time participant spends learning how to
program the mechanism is recorded.

Participants are expected to bind together the logic
which is initiated by the end of a day signal and the
response to calling signal which is fired when the num-
ber called matches the received waiting number. The
expected solution is shown in Figure 6.

An action which takes the waiting number is pro-
grammed to execute upon the occurrence of the end
of a day signal (1). The Ordered Customer Serving wid-
get is programmed to trigger the sequence of income
appending operations (2, 3, and 4) to execute auto-
matically when calling out the waiting number occurs.
The sequence of income appending operations needs

to be followed by the action which ends the exclusive
session (5).

In order to achieve a correct solution, usage hints
on programming Ordered Customer Serving widget are
shown to participants in the form of a manual depicted
in Figure 7. The key interface element for programming
with Geppeto is the button for responding to a calling
(1). By right-clicking on the button, participants need
to define a sequence which is triggered as an automated
response to calling out the waiting number.

Evaluation

The evaluation was performed on two independent
groups of participants. Sample group for testing con-
ventional method is referred to as the Conventional
sample. Sample group for testing experimental method
is referred to as the Experimental sample. Participants
were recruited from students enrolled in mandatory
Operating Systems course at the University of Zagreb,
Faculty of Electrical Engineering and Computing. Par-
ticipants have not yet received education on race con-
dition problem and mutual exclusion, but have been
educated on writing programs with multiple processes
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and multithreaded programs. The conventional sample
consisted of 11 participants. The experimental sample
consisted of 14 participants.

The testing procedure for evaluating the conven-
tional method was based on an assignment which
requires solving the race condition problem by apply-
ing counting semaphore in C programming language
(details on the flow of the procedure are depicted
in Figure 1). Testing procedure of the experimen-
tal method comprised three assignments shown in
Figure 2: the interactive assignment, the programming-
by-demonstration assignment, and the assignment in
C language. The first two assignments utilized a spe-
cially designed graphical mechanism and a social game
scenario. The third assignment of the experimental
method is the same assignment in C language used for
evaluating the conventional method.

Results of the conventional method evaluation are
presented first, followed by the results of the experi-
mental method evaluation. The results are compared
in a discussion which presents authors’ reflections
and conclusions from the results. Issues which present
threats to validity of stated conclusions are presented
after the comparison and discussion.

Conventional method

Statistical summary of the results is given in Table 2.
Success rate of the conventional method evaluated to
64%, which means 7 out of 11 participants successfully
solved the race condition problemby applying counting
semaphore in C programming language. Time-on-task
analysis considers only the completion times of partici-
pants who successfully solved the problem. Time-on-
task results are displayed in numbers in Table 2 and
in the form of a histogram in Figure 8. Distribution of
results on time axis generates a slightly inclined shape
of the histogram. Inclined shape points to an unequal
distribution of results left and right from the mean
value. Such distribution of results causes the shift of the
median value from the mean. In this case, median dis-
plays a 14min longer time-on-task than themean value,
which evaluates to 156min.

Experimental method

Statistical summary of the results is given in Table 3.
The table displaysmeasured results for each assignment

Table 2. Metrics showing results of conventional method
(mean, median, and standard deviation are displayed in
minutes).

Number of
participants

Success
rate Mean Median

Standard
deviation

Conventional
sample

11 7/11 = 0.64 156 170 52

Figure 8. Histogramdisplaying time-on-task results of conven-
tional method.

of the experimental method and for the overall pro-
cedure. The success rate of the overall procedure was
79%, due to the success rate of the assignment in C lan-
guage, while the first two assignments had 100% success
rates. Altogether 11 out of 14 participants successfully
solved the race condition problemby applying counting
semaphore in C programming language.

Time-on-task analysis considers only the comple-
tion times of participants who successfully solved the
problem. Time-on-task results are displayed in num-
bers in Table 3 and in the form of a histogram in
Figure 9. The analysis focuses on the cases where the
median value and the mean value do not overlap as
in normal distribution. The absence of overlapping is
noted only in the last assignment of the experimental
method, the assignment that involves mutual exclusion
by counting semaphore in C programming language. In
the interactive assignment, the median and the mean
value almost overlap at 4min. In the programming-by-
demonstration assignment, the median and the mean
value almost overlap at 11.5min. In the last assignment,
the median value is 150min, while the mean value is
170min. In the overall procedure, median value dis-
plays a 15min shorter time-on-task than the mean,
which evaluates to 185min.

Figure 9 shows histograms of time-on-task for each
assignment of the experimental method and for the
overall procedure. Histograms show that d) has the
greatest influence on the overall time-on-task shown in
a). The influence of the results shown in d) is based on
the variance and the mean time-on-task which are by
far greater in d) than in b) and c). The same shape of
a slightly inclined histogram can be seen on a) and d)
as well as the shift of the mean and the median value
which is related to such distribution of results.

Comparison and discussion

Themost indicative parameters for comparison of con-
ventional and experimental teaching method are the
success rate and time-on-task results of the Conven-
tional and the Experimental sample.
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Table 3. Metrics showing results of experimental method (mean, median, and standard deviation are
displayed in minutes).

Number of
participants Success rate Mean Median

Standard
deviation

Overall procedure 14 11/14 = 0.79 185 160 71
Interactive assignment 14 14/14 = 1 4.25 4 1
Programming-by-demonstration assignment 14 14/14 = 1 11.25 11.5 2
Assignment in C language 14 11/14 = 0.79 170 150 72

Figure 9. Histograms displaying time-on-task for the following: (a) overall learning process in the experimental method; (b) the
inteactive assignment only; (c) the programming-by-demonstration assignment only; d) the assignment in C language only.

Figure 10. Side-by-side comparison of (a) success rate of the Conventional and the Experimental sample; (b) estimated probability
density functions (PDF) of time-on-task for the Conventional and the Experimental sample.

Figure 10(a) shows the success rate comparison of
the Experimental and the Conventional sample. The
Experimental sample has achieved 15% higher success
rate in solving the specified race condition problem
in C programming language. The explanation of bet-
ter success rate of the Experimental sample is found
in the additional teaching steps that are introduced
by the experimental teaching method. The introduced
steps precede solving the race condition problem in C
language and conceivably contribute to better under-
standing of the technology independent concept of how
the solution is reached. Therefore, while programming
in the C, participants do not struggle with figuring out
the idea behind the solution; instead, they can focus on

overcoming the syntax of how the solution is expressed
in C language.

In order to analyze whether the additional steps
prolonged the overall learning process of the experi-
mental method, the time-on-task measure is examined
taking into account all the steps of the learning pro-
cess. Figure 10(b) shows estimated probability density
functions of time-on-task for the Conventional and the
Experimental sample side-by-side. Probability density
functions (PDF) are estimated with right- and left-
skewed Weibull distributions in order to model the
offset of a median and mean values, which is noticeable
in the results of both Conventional and Experimental
sample. Since outliers are considered important for the
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Table 4. Interquartile range statistics for the estimated proba-
bility density functions.

Lower bound of the
interquartile range

Upper bound of the
interquartile range

Conventional PDF 139 195
Experimental PDF 119 206

analysis which follows, estimated functions are fit to
match histogramdata and themeasuredmedian values.
Mean values of estimated PDF functions are kept in the
95% confidence intervals of the original results. Since
the duration of lecturing on the race condition prob-
lem is estimated to at least 15min, the model does not
consider times on-task lower than 30min. Additional
15min is a fixed minimum amount of time accounted
to programming.

Better time-on-task performance of the Experimen-
tal sample is inferred from the median, interquartile
range, and long tail elements of the estimated PDFs.
Median values show ten minutes shorter time-on-
task in favor of the Experimental sample. Interquartile
range statistics are shown in Table 4. Lower bound
of the estimated interquartile range of the experimen-
tal method is 20min lower than the lower bound of
the conventional method. Upper bound of the esti-
mated interquartile range of the experimental method
is 11min higher than the upper bound of the conven-
tional method. The higher upper bound of the experi-
mental method points to the long tail of the estimated
distribution, which models the 15% better success rate.

In the measured results of the Experimental sample,
outliers of the long tail shift the mean so much to the
right that it shows higher time-on-task than the mean
of theConventional sample. Such shift of themean con-
vinces the authors in the validness of assigning the 15%
better success rate of the experimental method to the
long tail in the estimated time-on-task PDF. There-
fore, the model assumes 15% of the participants who
fail when the conventional method is applied would
succeed if the experimental method was applied, but
with higher time-on-task. In this sense, the experimen-
tal method helps students withminor performance and
high determination to reach the solution with extra
time invested.

Additional discussion is devoted to the opposite
aspect of outliers and how the model estimates time-
on-task for the best-performing students. Outliers with
particularly low time-on-task represent the best stu-
dents who have a high mental capacity to quickly
understand and absorb new and abstract concepts. In
this sense, the best-performing students are delayed by
the extra time spent in additional steps of the experi-
mentalmethod.Outliers with particularly low time-on-
task are modeled in favor of the conventional method.
The estimation of such results is modeled by the long
left tail of the probability distribution of conventional

method and the shift of the mean value to the left of the
median.

Threats to validity

Several issues are outlined which present threats to
validity. Authors are aware the results are performed on
a small sample size. The obtained results have provided
positive feedback on the validity of the experimental
method and can serve as an argument to plan a larger
experiment in the future. Also, the validation of the
experimental method is compared to the conventional
teaching method only. The validation with other non-
conventional teaching methods is the next important
concern that will be addressed in the future work. In
addition to non-conventional teaching methods listed
in the related work, flipped classroom approach is
reported to be successfully applied in numerous teach-
ing fields [31,32] and is considered as a candidate for
new experiments in the future work.

The participants have self-reported time-on-task for
the conventional method. In its nature, the conven-
tionalmethod is based on an individual assignment that
students perform at home. It often results in lengthy
times needed for solving the assignment. While self-
report is considered less reliablemethod than the actual
measurement of time-on-task by the experimenters,
special instructions and additional practice was under-
taken with the participants to train the participants to
perform self-reporting as correctly as possible.

Two independent sample t-test was evaluated on
measured time-on-task results of the Conventional
and the Experimental sample with failure to reject
the null hypothesis at the significance level of 0.05.
Wilcoxon rank-sum test was also evaluated with fail-
ure to reject the null hypothesis at the same significance
level. Accordingly, the decision to estimate indepen-
dent probability density functions of time-on-task for
the experimental and conventional method is arguable.
In this sense, more simplified conclusions about time-
on-task could state that the experimental method is not
worse than the conventional method. However, authors
find that the models of estimated time-on-task have
additional value for interpretation of results. The esti-
mated PDFs were used to randomly generate datasets
of the same size as the Conventional and the Experi-
mental sample. In amillion datasets generated from the
estimated PDFs, t-test and rank-sum test resulted with
failure to reject the null hypothesis in more than 95%
of the cases, which is consistent with the results of t-
test and rank-sum test on the original data from the
Conventional and the Experimental sample.

Conclusion

The experimental method for teaching mutual exclu-
sion in parallel programming is proposed and evaluated
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against the conventional teaching method. The experi-
mental method relies on a specially designed graphical
mechanism for teaching mutual exclusion and a social
game context which is subtly applied in the teaching
process. The game scenario is used to give meaning to
the assignments, while other gamification elements are
omitted. Two major conclusions are derived from the
evaluation results of an experiment comprising 11 par-
ticipants involved in conventional and 14 participants
in experimental method. First, experimental teaching
method has 15% higher success rate than the conven-
tional method in solving race condition problem with
counting semaphore in C programming language. Sec-
ond, the experimental method is slightly advantageous
when median time-on-task results are compared. The
time-on-task comparison is based on median values,
due to the impact of outliers on the mean. Outliers
could not be discarded from the results since correla-
tion is confirmed between the number of outliers and
the higher success rate. The correlation is modeled with
the long tail of the estimated time-on-task probability
distribution for the experimental method.

Note

1. Operating Systems course at the University of Zagreb,
Faculty of Electrical Engineering and Computing, http://
www.fer.unizg.hr/en/course/os.
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