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REGULAR PAPER

Advanced backstepping control based on ADR for non-affine non-strict
feedback nonlinear systems

Chunhua Cheng, Yazhou Di, Jingshuo Xu and Tao Yuan

Department of Instrumentation and Control, Qingdao Branch, Naval Aviation University, Qingdao, People’s Republic of China

ABSTRACT
Few results are made on non-affine non-strict feedback nonlinear systems, which is a challeng-
ing problem in the control theory. In this paper, a novel control method based on an advanced
backstepping and auto disturbance rejection is presented for a class of non-affine non-strict
nonlinear feedback systems. The proposed advanced backstepping controller consists of differ-
entiator and extended state observer, which are respectively used to approach the derivative of
the virtual control and estimate the unknownpart of the system. The framework of the proposed
controller is both systematic and simple, and the assumptions have been relaxed. Moreover, the
input to state stability analysis shows that the system states can asymptotically converge to an
arbitrarily small region of equilibrium point. The simulation studies proved the effectiveness of
the proposed design scheme.
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1. Introduction

In the past decade, the problem of control design for
complex nonlinear systems has received considerable
attention and lots of powerful control approaches have
been proposed for the affine system, such as feedback
linearizing control design based on differential geo-
metric [1], adaptive backstepping control design [2]
and so on. However, relatively fewer results are avail-
able for the control of non-affine nonlinear systems,
which have non-affine appearance of the control, more
representative than strict feedback systems [3]. Many
practical systems are of the non-affine form, such as
biochemical process, aircrafts control system and so
on [4,5].

Until now, no systematic control design approach
has been formed for the non-affine system, of which
the control is still a challenging andmeaningful issue in
the nonlinear area. Based on the diffeomorphism trans-
form and implicit function theorem, a direct adaptive
multi-layer neural network control scheme has been
developed for the single-input, single-output, non-
affine, nonlinear dynamical systemswith strong relative
degree [6]. With the high gain observer, the method
in [4] is extended to the non-affine nonlinear system
with zero dynamics [7]. Then, a direct adaptive neural
network control is proposed for the strict feedback sys-
tem with non-affine input and unknown saturation, in
which a disturbance observer is developed to estimate
the unknown compounded disturbance [8]. A novel
adaptive critic controller based on the robust neural
network is proposed for the strict feedback system with

non-affine input [9]. In the control design for non-affine
nonlinear system, the fuzzy system parameter adap-
tation laws are tuned by the projection algorithm to
ensure that the parametermatrix is bounded away from
singularity and prevent parameter drift [10,11]. More
specifically, it is worth mentioning that for the above
approaches, the adjustable parameters of the fuzzy or
neural network systems are updated by an adaptive
law, which depended on the Lyapunov stability anal-
ysis. Different from others, the adjustable parameters
in the fuzzy system are updated by using a gradient
descent adaptation algorithm, meanwhile, the direct
adaptive fuzzy control scheme for chain integration sys-
tem with non-affine input is proved effective [12,13].
From the above papers, it can be noticed that the design
schemes for the non-affine pure feedback nonlinear sys-
tems belong to the direct adaptive neural network con-
trol, in which the implicit function theorem is applied
to illustrate the existence of an ideal controller that can
achieve the control objective and neural networks are
applied to construct this unknown ideal implicit con-
troller. However, adaptive neural networks controllers
based on the backstepping design method have some
drawbacks. First, the inputs of neural networks or fuzzy
systems used to construct the unknown ideal implicit
controllers include the partial derivatives of virtual con-
trol signals, which contain neural or fuzzy basis func-
tion or sign function leading to the partial differential
tedious and complex. Second, the complexity exhibits
an exponential increase as the order of the controlled
system grows.

CONTACT Chunhua Cheng chch715@126.com Department of Instrumentation and Control, Qingdao Branch, Naval Aeronautic University,
Qingdao 266041, People’s Republic of China

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00051144.2018.1517512&domain=pdf
mailto:chch715@126.com
http://creativecommons.org/licenses/by/4.0/


AUTOMATIKA 221

In [14,15], by utilizing the mean value theorem, the
original non-affine system is transformed to a new sys-
tem inwhich virtual and actual control variables appear
in an affine form, then, the indirect adaptive neural net-
work control incorporating the dynamic surface control
technique is proposed, avoiding the problem of explo-
sion of complexity, but it needs to know the upper
bound of the gain function in advance. In [3], the
Taylor series expansion method is adopted to trans-
form the non-affine input system into the affine input
system. Subsequently, the indirect adaptive Gaussian
radial basis function neural network sliding mode con-
trol approach is employed. The indirect adaptive fuzzy
control laws for the chain integration system with non-
affine input proposed in [16,17] are composed of three
terms: a linear term specifying the desired closed-loop
dynamics, an adaptive fuzzy term used to approxi-
mately construct an ideal uncertainty compensator and
a robustifying term applied to compensate for distur-
bances and approximation errors. The approach pro-
posed in [16,17] is applied to the strict feedback non-
linear system with non-affine input [18] and a chaotic
systemwith non-affine input [19].More specifically, the
basic idea in [16–19] that change the non-affine form
into the affine form is adding and subtracting a lin-
ear term of control variable to non-affine input terms.
This basic idea is equivalent to the auto disturbance
rejection controller (ADRC) design idea proposed in
[20,21]. The necessity of a paradigm shift in the feed-
back control system, the basic idea of ADRC, is argued
in [22]. Moreover, the ADRC design idea is successfully
applied in many fields [23,24]. In [25–29], the ADRC
design idea is proposed for non-affine nonlinear pure
feedback systems.

However, the object models in the above references
are non-affine strict feedback or pure feedback nonlin-
ear systems. Until now, few results about the non-affine,
non-strict feedback form have been reported in the
existing literature, since the traditional backstepping
method is applicable to the strict feedback form. To
deal with the non-strict feedback form, an extended
backstepping method is proposed in [26]; however, the
system studied has the affine form. In this paper, we
consider the non-affine, non-strict feedback nonlinear
system and put forward an ADRC design scheme based
on the advanced backstepping, in which auto distur-
bance rejection (ADR) design is embedded in each step.
Moreover, differentiator and extended state observer
(ESO) are respectively used to estimate the virtual con-
trol of the derivative and the unknown part of the
system, avoiding the partial differential tedious of vir-
tual control. What is more, the input to state stability
(ISS) analysis is used to show that the system states can
asymptotically converge to an arbitrarily small region
of equilibrium point.

The rest of the paper is organized as follows: a
class of single-input, single- output (SISO), non-affine,

non-strict feedback, nonlinear systems and control
objective as well as some preliminary results are
described in Section 2. The proposed ADRC scheme
is presented in Section 3 with its stability analysis. In
Section 4, the proposed control algorithm is used to
control a simple, non-affine, non-strict feedback, non-
linear system, meanwhile, the comparison with the
approach mentioned in [25] is made. Conclusions are
drawn in Section 5.

2. Problem formulation and preliminaries

2.1. Problem statement

Consider the SISO, non-affine, non-strict feedback,
nonlinear systems in the following form :

ẋ1 = f1 (x1, x2, x3)

...

ẋi = fi (x1, . . . , xi, xi+1, xi+2)

...

ẋn−1 = fn−1 (x1, . . . , xn−1, xn)

ẋn = fn (x1, . . . , xn, u) ,

(1)

where x = [x1, x2, . . . , xn]T ∈ Rn are the state vectors
and u ∈ R is the control input. The unknown nonlin-
ear functions fi(·) are sufficiently smooth. In this paper,
the control objective is to design a controller for the
systems so that (i) all the signals in the closed-loop
remain uniformly ultimately bounded and (ii) the states
x = [x1, x2, . . . , xn]T are stabilized near the equilibrium
point.

Assumption 2.1: For a compact set�, let gi(x̄i+1, xi+2)

= (∂fi( ¯xi+1, xi+2))/(∂xi+1) �= 0, i = 1, . . . , n − 1, gn
(x̄n, u) = (∂fn(x̄n, u))/(∂u) �= 0, where xn+1 = u, x̄i+1
= [x1, . . . , xi+1]T, i = 1, . . . , n − 1. Without loss of
generality, assume that there exists a positive constant
b such that 0 < b ≤ gi(·) < ∞,∀(x̄i+1, xi+2) ∈ �, i =
1, . . . , n − 1.

Assumption2.2: If and only if x̄i+1 = 0, i = 1, . . . , n −
1, then fi(x̄i+1, xi+2) = 0. In other words, the equilib-
rium point of system(1) is the origin point.

Assumption 2.3: All states are available.

Remark 2.1: fi(·) is sufficiently smooth, then ∀(x̄i+1,
xi+2) ∈ �, gi(·) is also continuously smooth. Assump-
tion 2.1 guarantees the controllability of the system(1)
and Assumption 2.3 is the prerequisite for states feed-
back control and ESO design.
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2.2. ESO

Consider the following system:

ż = H (t) + BU, (2)

where H(t) is the total uncertainty and U is the input.
Then, we add an extended state z0 as the uncertainty
H(t), and system (2) can be written as

ż = z0 + BU,

ż0 = G (t) ,
(3)

where the function G(t) is the derivative of the uncer-
tain term H(t), which is uncertain as well. Then the
ESO for system (3) is proposed in the following form
such as mentioned in [23]:

E1 = Z1 − z,

Ż1 = Z2 − β01fc1 (E1) + BU,

Ż2 = −β02fc2 (E1) ,

(4)

where E1 is the estimation error of the ESO, Z1,Z2
are the observer states, and β01 > 0, β02 > 0 are the
observer gains. The function fci(·) is a nonlinear func-
tion or linear, which satisfies that efci(e) > 0, ∀e �=
0,fci(0) = 0, waiting to be properly constructed. For
example, we can design fci(·) as the following:

fc1 (E1) = E1,

fc2 = |E1|α1sign (E1) ,
(5)

where 0 < α1 < 1.

Lemma 2.1: Consider system (2) and ESO (4), there
exist observer gains β01,β02 and α1 ∈ (0, 1), such that
the estimated states Z1,Z2 converge into a residual set of
the actual states z,H(t). In order to improve the estima-
tion accuracy, when choosing the gains, we should have
to expand the following inequality [26]:

1
4
β2
01 > β02 > |G (t)| . (6)

Detailed proof can be found in [23,27].

2.3. Tracking differentiator

To estimate a signal without the mathematical expres-
sion or difficult to construct the model, tracking differ-
entiator (TD) is employed to estimate the derivation of
the signal [27]. In this paper, to avoid the complicated
differential of virtual control, we adopt the second-
order system-derived differentiator proposed in [27],
such as the following:

υ̇1 = υ2,

υ̇2 = −λ2sign (υ1 − r (t)) |υ1 − r (t)|α − λυ2,
(7)

where r(t) is the virtual control in the backstepping
design. υ1,υ2 are the differentiator states. α and λ are

parameters to be designed and satisfy the following
inequality:

0 < α < 1, λ > 0. (8)

Then υ2 → ṙ(t), meanwhile, υ1 → r(t).

2.4. ISS

Definition 2.1: System [1]

ẋ = f (t, x, u) , (9)

where f is piecewise continuous in t and locally Lip-
schitz in u is said to be ISS if there exist a class
KL function β and a class K function γ , such that,
for any x(0) and for any input u(·) continuous and
bounded on [0,∞) the solution exists for all t ≥ 0 and
satisfies

|x (t)| ≤ β (|x (t0)| , t − t0) + γ

(
sup

t0≤τ≤t
|u (τ )|

)
.

(10)
For all t0 and t such that 0 ≤ t0 ≤ t.

Suppose that for system(9), there exist a C1 function
V : 	+ × 	n → 	+ such that for all x ∈ 	n and u ∈
	m [1]

γ1 (|x|) ≤ V (t, x) ≤ γ2 (|x|) ,

|x| ≥ ρ (|u|) ⇒ ∂V
∂t

+ ∂V
∂x

f (t, x, u) ≤ −γ3 (|x|) ,
(11)

where γ1, γ2 and ρ are class K∞ functions and γ3 is
a class K function. Then, system (9) is ISS with γ =
γ −1
1 γ2ρ.

3. Advanced backstepping based on ADR

3.1. ADR concept for non-affine sytems

Consider the following non-affine system:

ẋ = f (x, u) , (12)

where x ∈ � ⊂ R,� is a compact set, f is a uncertain
smooth continuous function, meanwhile, (∂f /∂u) �=
0 and x is available. Without loss of generality, let
(∂f /∂u) > 0, then the feedback linearization is per-
formed by rewriting (12) as:

ẋ = f (x, u) − c0u + c0u, (13)

where c0 > 0 is the parameter to be chosen. Define
F(x, u) = f (x, u) − c0u as the new uncertain term.
According to (4), the ESO for (13) can be constructed
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as follows:

e1 = z1 − x,

ż1 = z2 − β1gc1 (e1) + c0u,

ż2 = −β2gc2 (e1) ,

(14)

where ESO’s states z1 → x, z2 → F(x, u). β01 > 0,
β02 > 0 are the observer gains and the function gci(·) is
a nonlinear function or linear function to be designed.
Then, the stabilizing controller for system (12) can be
chosen as follows:

u (t) = 1
c0

(−z2 − kx) , (15)

where k>0 is the parameter to be designed.

Lemma 3.1 ([25,29]): Consider system (12), controller
(15) based on ESO can asymptotically stabilize sys-
tem(12)to a residual set of the origin, whose size is
dependent on β1,β2, k and gci(·).

Remark 3.1: When gc1(·), gc2(·) are chosen as nonlin-
ear functions, the parameters are still needed to satisfy
that β1,β2 > 0 and β2

1 − 4β2 > 0. The detailed proof
can be found in [28].

3.2. Advanced backstepping design

According to Lemma 2.2 and assumptions, system (1)
can be rewritten as follows:

ẋ1 = c2x2 + F1 (x1, x2, x3) ,

ẋ2 = c3x3 + F2 (x̄2, x3, x4) ,

...

ẋn = cn+1u + Fn (x̄n, u) ,

(16)

where Fi = fi − ci+1xi+1, i = 1, . . . , n − 1, Fn(x̄n, u) =
fn(x̄n, u) − cn+1u are new uncertain functions, ci, i =
2, . . . , n + 1 are parameters to be chosen, and the sign
of ci+1, i = 1, . . . , n is the same with the sign of gi, i =
1, . . . , n.

Next, we will discuss the advanced backstepping
design based on ADR. First, second-order ESO is con-
structed for each state to estimate the uncertain term
Fi(·), i = 1, . . . , n in every subsystem, such as follows:

ei,1 = Zi,1 − xi,

Żi,1 = Zi,2 − βi,1gi,1
(
ei,1
)+ ci+1xi+1,

Żi,2 = −βi,2gi,2
(
ei,1
)
,

i = 1, 2, . . . n,

(17)

where Zi,1,Zi,2 are states of ESO,gi,1(·), gi,2(·) are non-
linear function to be designed, for example: gi,1(ei,1) =
ei,1, gi,2(ei,1) = |ei,1|1/2sgn(ei,1), and Zi,1 → xi, Zi,2 →
Fi(x̄i, xi+1).

Similarly, we can also design TDs for virtual con-
trol xid, 2 ≤ i ≤ n defined below. TDs are designed as
follows:

υ̇i,1 = υi,2,

υ̇i,2 = −λ2sign
(
υi,1 − xid

) ∣∣υi,1 − xid
∣∣α − λυi,2,

(18)

where υi,1, υi,2 are states, and α, λ are the parameters to
be designed.

Now, to design the controller for non-strict feedback
system (16), the advanced backstepping is proposed.
The design procedure is as follows:

Step 1: Define e1 = x1. Its derivative is

ė1 = F1 (x1, x2, x3) + c2x2. (19)

Take x2 as the virtual control variable. Since F1 con-
tains x3, according to the traditional backstepping, F1
should be countervailed. However, we do not deal with
F1 in this step. F1 will be countervailed in step 3. So, we
choose the following virtual control:

x2d = −k1
c2
e1. (20)

where k1 > 1 is a constant to be chosen.
Choose a Lyapunov function as follows:

V1 = 1
2
e21. (21)

Define e2 = x2 − x2d, combiningwith formula (20), the
derivative of V1 along the system trajectory is:

V̇1 = −k1e21 + e1F1 + c2e1e2. (22)

Step 2: The derivative of e2 is

ė2 = F2 + c3x3 − ẋ2d. (23)

Similar to step 1, F2 containing x4 will be countervailed
in step 4. So, the virtual control can be designed as
follows:

x3d = − 1
c3

(
k2e2 + c2e1 − υ1,2

)
, (24)

where k2 > 1 is a constant to be chosen. υ1,2 is the state
of TD defined in (18), avoiding the computation of ẋ2d.
Choose a Lyapunov function V2 as follows:

V2 = V1 + 1
2
e22. (25)

Define e3 = x3 − x3d, combining with the virtual con-
trol (24), the derivative of V2 along the system trajec-
tory is:

V̇2 = −k1e21 + e1F1 + e2 (c2e1 + ė2)

= −k1e21 + e1F1 + e2 (c2e1 + c3x3 + F2 − ẋ2d)

= −k1e21 − k2e22 + e1F1 + c3e2e3
+ e2F2 + e2

(
υ1,2 − ẋ2d

)
.

(26)
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Step 3: The derivative of e3 is

ė3 = F3 + c4x4 − ẋ3d. (27)

Similar to step 1, F3 containing x5 will be countervailed
in step 5. And, F1 contains only x1, x2, x3, so the vir-
tual control should counteract F1. Therefore, the virtual
control can be designed as follows:

x4d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
c4

⎛
⎝ k3e3 + c3e2

−υ2,2 + e3e1Z1,2
|e3|2

⎞
⎠ , |e3| ≥ ς ,

0, |e3| < ς ,

(28)

where k3 > 1 and ς > 0 are constants to be designed.
Z1,2 is the state of ESO defined in (17), which is used
to estimate F1 in real time. υ2,2 is the state of TD
defined in (18), avoiding the computation of ẋ3d, choose
a Lyapunov function V3 as follows:

V3 = V2 + 1
2
e23. (29)

Define e4 = x4 − x4d. The derivative of V3 along the
system trajectory is:

V̇3 = −k1e21 − k2e22 + e2
(
υ1,2 − ẋ2d

)
+ e3

(
c3e2 + e3e1F1

|e3|2
+ ė3

)
+ e2F2

= −k1e21 − k2e22 + e2F2 + e2
(
υ1,2 − ẋ2d

)

+ e3

⎛
⎝c3e2 + e3e1F1

|e3|2
+ F3

+c4x4d − ẋ3d

⎞
⎠+ c4e3e4.

(30)

Step i: The derivative of ei is

ėi = Fi + ci+1xi+1 − ẋid. (31)

Similar to step 1, Fi containing xi+2 will be coun-
tervailed in step i+2. It is noticed that Fi−2 contains
x1, . . . , xi, so the virtual control should counteract Fi−2.
Therefore, the virtual control can be designed as fol-
lows:

x(i+1)d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
ci+1

⎛
⎝kiei + ciei−1 − υi−1,2

+eiei−2Zi−2,2

|ei|2

⎞
⎠ , |ei| ≥ ς ,

0, |ei| < ς ,
(32)

where ki > 1 and ς > 0 are constants to be designed.
Zi−2,2 is the state of ESO defined in (17), which is used
to estimate Fi−2 in real time. υi−1,2 is the state of TD
defined in (18), avoiding the computation of ẋid, choose

a Lyapunov function Vi as follows:

Vi = Vi−1 + 1
2
e2i . (33)

Define ei+1 = xi+1 − xi+1d. The derivative of Vi along
the system trajectory is:

V̇i = V̇i−1 + eiėi

= −
2∑

j=1
kje2j + e2

(
υ1,2 − ẋ2d

)+ ei−1Fi−1

+ ei−2Fi−2 + ciei−1ei + eiėi

+
i−1∑
j=3

ej

⎛
⎝cjej−1 + ejej−2Fj−2∣∣ej∣∣2

+cj+1xj+1 − ẋjd

⎞
⎠

= −
2∑

j=1
kje2j + e2

(
υ1,2 − ẋ2d

)+ ei−1Fi−1

+
i−1∑
j=3

ej

⎛
⎝cjej−1 + ejej−2Fj−2∣∣ej∣∣2

+cj+1xj+1 − ẋjd

⎞
⎠

+ ei
(
ciei−1 + eiei−2Fi−2

|ei|2
+ ėi

)

= −
2∑

j=1
kje2j + e2

(
υ1,2 − ẋ2d

)

+ eiFi + ei−1Fi−1 + ci+1eiei+1

+
i∑

j=3
ej

⎛
⎝cjej−1 + ejej−2Fj−2∣∣ej∣∣2

+cj+1x(j+1)d − ẋjd

⎞
⎠ .

(34)

Step n–1: The derivative of en−1 is

ėn−1 = Fn−1 + cnxn − ẋ(n−1)d. (35)

Similar to step 1, Fn−1 containing xn will be coun-
tervailed in step n. It is noticed that Fn−3 contains
x1, . . . , xn−1, so the virtual control should counteract
Fn−3. Therefore, the virtual control can be designed as
follows:

xnd =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1
cn

⎛
⎜⎜⎜⎝
kn−1en−1 − υn−2,2

+en−1en−3Zn−3,2

|en−1|2
+cn−1en−2

⎞
⎟⎟⎟⎠ , |en−1| ≥ ς ,

0, |en−1| < ς ,
(36)

where kn−1 > 1 and ς > 0 are the constants to be
designed. Zn−3,2 is the state of ESO defined in (17),
which is used to estimate Fn−3 in real time. υn−2,2 is the
state of TDdefined in (18), avoiding the computation of
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ẋ(n−1)d, choose a Lyapunov function Vn−1 as follows:

Vn−1 = Vn−2 + 1
2
e2n−1. (37)

Define en = xn − xnd. The derivative ofVn−1 along the
system trajectory is:

V̇n−1 = −
2∑

j=1
kje2j + e2

(
υ1,2 − ẋ2d

)
+ en−1Fn−1 + en−2Fn−2 + cn+1en−1en

+
n−1∑
j=3

ej

⎛
⎝cjej−1 + ejej−2Fj−2∣∣ej∣∣2

+cj+1x(j+1)d − ẋjd

⎞
⎠ .

(38)

Step n: The derivative of en is

ėn = Fn + cn+1u − ẋnd. (39)

In this step, Fn, Fn−1, Fn−2 should be counteract by
control u. Therefore, the control can be designed as
follows:

u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
cn+1

⎛
⎜⎜⎜⎜⎝

knen + cnen−1

+enen−2Zn−2,2

|en|2
+ Zn,2

+enen−1Zn−1,2

|en|2
− υn−1,2

⎞
⎟⎟⎟⎟⎠ , |en| ≥ ς ,

0, |en| < ς ,
(40)

where kn > 1 and ς > 0 are the constants to be
designed. Zn−2,2, Zn−1,2,Zn,2 are the states of ESO
defined in (17), which is used to estimate Fn−2, Fn−1, Fn
respectively in real time. υn−1,2 is the state of TD
defined in (18), avoiding the computation of ẋnd,
choose a Lyapunov function Vn as follows:

Vn = Vn−1 + 1
2
e2n. (41)

The derivative of Vn along the system trajectory is:

V̇n = −
2∑

j=1
kje2j + e2

(
υ1,2 − ẋ2d

)

+
n−1∑
j=3

ej

⎛
⎝cjej−1 + ejej−2Fj−2∣∣ej∣∣2

+cj+1x(j+1)d − ẋjd

⎞
⎠

+ en

⎛
⎜⎝cnen−1 + enen−1Fn−1

|en|2
+ Fn

+enen−2Fn−2

|en|2
+ cn+1u − ẋnd

⎞
⎟⎠ .

(42)

The above design process can be summarized by the
following theorem.

Suppose that Assumptions 2.1–2.3 are satisfied and
that the above proposed design procedure is applied
to system (1), only if the parameters in TD and ESO

design are chosen appropriately, then, the virtual con-
trols (20),(24),(28),(32),(36) and control (40) can make
the states of system(1) asymptotically converge to an
arbitrarily small region of origin.

Proof: (1) When ‖ei‖ ≥ ς , i = 3, . . . , n, substitute the
virtual controls and control into formula (42), then
formula (42) can be rewritten as follows:

V̇n = −
n−1∑
j=1

kje2j +
n−1∑
j=1

ej
(
Fj − Zj,2

)+ enėn

+
n−2∑
j=1

ej+1

(
υj,2 − ẋ(j+1)d

)
+ cnen−1en

= −
n∑
j=1

kje2j +
n∑
j=1

ej
(
Fj − Zj,2

)

+
n−1∑
j=1

ej+1

(
υj,2 − ẋ(j+1)d

)
.

(43)

Let

ēn = [e1, . . . , en]T and

Q =

⎡
⎢⎢⎢⎣

F1 − Z1,2
(F2 − Z2,2) + (υ1,2 − ẋ2d)

...
(Fn − Zn,2) + (υn−1,2 − ẋnd)

⎤
⎥⎥⎥⎦ ,

thenQ can be viewed as the disturbance input of closed-
loop system. So, Equation (43) can be rewritten as
follows:

V̇n ≤ −ēTn

⎡
⎢⎢⎢⎣
k1

k2
. . .

kn

⎤
⎥⎥⎥⎦ ēn

+ ‖ēn‖

∥∥∥∥∥∥∥∥∥

F1 − Z1,2
F2 − Z2,2 + υ1,2 − ẋ2d

...
Fn − Zn,2 + υn−1,2 − ẋnd

∥∥∥∥∥∥∥∥∥
.

(44)

According to the ISS theory, only if ‖Q‖ is bounded,
then ēn can asymptotically converge to a neighbour-
hood of the origin which depends on ki, i = 1, . . . , n.
Obviously, it can be seen that ‖Q‖ is bounded from (4)
and (7). Apart from this, the size of neighbourhood is
also tied closely to the accurate estimation of the uncer-
tain nonlinear terms and virtual controls by ESOs and
TDs, respectively.

(2) When ‖ei‖ < ς , i = 3, . . . , n, according to the
formulas of the virtual controls and control, we have
xid = 0, i = 3, . . . , n and u=0. Then from ei = xi −
xid, i = 3, . . . , n, we have that states xi, i = 3, . . . , n are
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bounded, that is to say that states can asymptotically
converge to a ς-neighbourhood of the origin. Until
then by formula(43), it also can be derived e1, e2 is
bounded. x2d = −(k1/c2)e1 is bounded too. That is
to say x1, x2 also converge to a neighbourhood of the
origin. Of course when a ‖ei‖ < ς , the same con-
clusion can be drawn. Moreover, it is not difficult to

obtain that all the signals in the closed-loop system are
bounded. �

Remark 3.2: The contribution of this paper is that the
framework of the control design is both systematic and
simple, and the only thing required is the knowledge
of the order of the system and few assumptions stated

Figure 1. Time response of states.

Figure 2. Approximation of virtual control via TD.
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Figure 3. Estimation of uncertainties via ESO.

above. Moreover, this control scheme design procedure
can be applied to many other nonlinear plants.

4. Simulation results

In this section, the feasibility and performance of the
advanced backstepping based on ADR are illustrated
via two examples.

Example 4.1: To illustrate that the proposed method
is robust for designing the parameters ci, the following
third-order, non-affine, non-strict feedback, nonlinear

Figure 4. Control input.

system is used for the simulation:

ẋ1 = x2 − 0.05x2x3 + x1 cos x3,

ẋ2 = (1 + x21)x3 + x1 cos x2 + 0.2x3 sin 2t + 0.15x23,

ẋ3 = x2 cos t + 2x3 cos t + 0.3x3 sin t

+ (1 + x21)u + sin(0.1u), (45)

where f1 = x2 − 0.05x2x3 + x1 cos x3, f2 = (1 + x21)x3
+ x1 cos x2 + 0.2x3 sin 2t + 0.15x23 and f3 = x2 cos t +

Figure 5. Time response of states.
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2x3 cos t + 0.3x3 sin t + (1 + x21)u + sin(0.1u) are
uncertain terms. Obviously, the origin is the equilib-
rium point.

In this simulation, the system state’s initial condi-
tions are x = [1, 1, 1]T and the ESOs andTDs state’s ini-
tial conditions are 0, the design parameters are λ = 6,
α = 18, β01 = 100, β02 = 1500, α1 = 0.25, k1 = k2 =
10, k3 = 20, ς = 0.1. The simulation results of case ci =
1 and the case ci = 2 are shown in Figures 1–4.

In accordance with Figure 1, the method proposed
here can make states asymptotically converge to a
neighbourhood of the origin in both case ci = 1 and
the case ci = 2. Figure 2(a, b) represents case ci = 1,

Figure 6. Control input.

while Figure 2(c, d) represents case ci = 2, both cases
illustrate the performances of TD estimating the deriva-
tive of virtual control, which indicates that the values
of parameters λ,α are chosen independent of parame-
ters ci. Only if parameters λ,α are designed appropri-
ately, each component of the differentiator states υi,1
approximate to the virtual control xid. Figure 3(a–c)
represents case ci = 1, while Figure 3(d–f) represents
case ci = 2. Both cases show the effectiveness of ESOs,
and the parameters β01,β02,α1 are selected regardless
of ci. Both ESO and TD have the independence in the
whole control design procedure. Figure 4 shows that
the control input in both case ci = 1 and case ci = 2 is
bounded.

Example 4.2: In order to illustrate the control design
procedure and performance based on the advanced
backstepping, the following fourth-order, non-affine,
non-strict feedback nonlinear system is used for the
simulation:

ẋ1 = x2 + x3 + sin x3,

ẋ2 = x3 + x4 + x2 sin x4,

ẋ3 = x4 + sin
(
x43
)
,

ẋ4 = u + sin u, (46)

where f1 = x2 + x3 + sin x3, f2 = x3 + x4 + x2 sin x4,
f3 = x4 + sin x34, f4 = u + sin u are uncertain terms.
Obviously, the origin is the equilibrium point.

In this simulation, the system state’s initial condi-
tions are x = [1, 1, 1, 1]T and the ESOs and TDs state’s

Figure 7. Approximation of virtual control via TD.
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Figure 8. Estimation of uncertainties via ESO.

initial conditions are 0, the design parameters are ci =
1, λ = 6, α = 18, β01 = 100, β02 = 1500, α1 = 0.25,
k1 = k2 = k3 = 1, k4 = 20, ς = 0.1.

The simulation results are shown in Figures 5–8. In
accordance with Figure 5, both the proposed method
here based on the advanced backstepping and the pre-
vious method in [25] based on the traditional back-
stepping can make states asymptotically converge to a
neighbourhood of the origin, but we can obviously have
that method proposed here is better than the previous
method in [25]. Figure 6 shows that the control input
is bounded. Figure 7 illustrates the performances of TD
estimating the derivative of the virtual control. Only if
the values of parameters λ,α are chosen appropriately,
each component of the differentiator states υi,1 approx-
imates to the virtual control xid. The performances
of ESO observing the uncertainties Fi, i = 1, 2, 3, 4 are
given in Figure 8. By selecting appropriate values of
parameters β01,β02,α1, each component of the esti-
mated states Zi,2 converges to the actual uncertainty
component Fi.

5. Conclusion

The main contribution is that the advanced backstep-
ping design based on ADR for non-affine, non-strict
feedback, nonlinear systems has been proposed. In the
design scheme, each step of the advanced backstepping
is combined with the idea of ADR. The scheme consists

of an advanced backstepping used to deal with the non-
strict feedback form systems, ESOs applied to estimate
the uncertain, TDs used to approximate the virtual
controls, the ISS theorem illustrating the effectiveness
of the control scheme. The advantages of this scheme
are as follows: (1) avoiding the tedious derivation of
virtual controls; (2) more independence for selecting
parameters ci, i = 1, . . . , n; (3) more independence for
designing estimators of uncertain terms, that is to say
the choices for parameters in TD and ESO are indepen-
dent of the closed-loop system stability. The simulation
results performed on a simple, non-affine, non-strict
feedback, nonlinear system demonstrate the feasibility
of the proposed adaptive control scheme.
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