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IIR filter optimization using improved chaotic harmony search algorithm
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ABSTRACT
Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is gen-
erally nonlinear and multimodal, conventional derivative-based techniques fail when used in
adaptive Filter design. In this sense, global optimization techniques are required in order to
avoid local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently intro-
duced population-based algorithm that has been successfully applied to global optimization
problems. In the present paper, adaptive IIR filtering is formulated as a nonlinear optimization
problemand then an improved versionofHS incorporating chaotic search (CIHS) is introduced to
solve the identification problem of three benchmark IIR systems. Furthermore, the performance
of the proposed methodology is compared with HS and two well-known metaheuristic algo-
rithms, genetic algorithm (GA) and particle swarm optimization (PSO) and a modified version of
PSO called PSOW (Particle SwarmOptimizationwithweight Factor). The results demonstrate that
the proposed method has superior performance over the other above-mentioned algorithms in
terms of convergence speed and accuracy.
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1. Introduction

Adaptive filtering techniques have been significantly
advanced in recent years and have been successfully
applied in a variety of fields in digital signal processing,
communication and control. Adaptive filtering when
used for system identification tends to provide a model
that represents the best fit to an unknown plant based
on finite impulse response (FIR) or infinite impulse
response (IIR) structures. While theory and design
of adaptive filters based on FIR filter structure is a
well-developed subject, the same is not true for linear
IIR systems. This stems from the fact that IIR struc-
tures tend to produce multimodal error surfaces with
respect to filter coefficients. This fact leads conventional
derivative-based learning algorithms such as leastmean
square easily gets stuck in local minima when solving
such optimization problems. This is because they try to
find the global minima by moving only in the direction
of negative gradient. In this sense, each local minima
becomes a potential trap that prevents algorithm from
reaching the global extreme point. Classical recursive
methods, in addition to convergence to localminimum,
pose stability problem, slow convergence and also their
performance substantially deteriorate when reduced-
order adaptive models are used [1]. On the other hand,
an IIR structure due to having both poles and zeros
can give a better approximation of real-world systems.
Besides, to achieve a particular level of performance, an
IIR filter requires less number of coefficients than the

FIR filter which corresponds to less computational bur-
den. A number of classical adaptive system identifica-
tion and filtering techniques have been reported in the
literature [1–4]. Traditionally, least square techniques
have been well studied for the identification of static
and linear systems [5]. For nonlinear system identifi-
cation, different algorithms have been used in the past
including neural networks [6–8] and gradient-based
search techniques such as least mean square [9]. In
order to alleviate these deficiencies, population-based
search algorithms such as genetic algorithm has also
been used. But its effectiveness was affected by con-
vergence time. After that, population-based stochastic
optimization algorithms have been discussed in var-
ious literatures for design and identification of IIR
filters which had the capability of faster convergence
and global search of solution space in comparison to
conventional methods [10–13]. Application of particle
swarm optimization (PSO) and its variants could be
found in [14–16]. Recently, a new approach based on
artificial bee colony optimization for digital IIR system
identification is proposed [17]. Seeker optimization,
Cat swarmoptimization and harmony search (HS) have
been also proposed in [18–20].

When the complexity of the problem increases
or where time allowed for convergence is limited
(in dynamic systems), finding the global optimum
becomes challenging. In these cases, hybrid algo-
rithms are introduced to improve the performance by
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combining the best feature of each participating algo-
rithms [14].

The goal of this paper is to introduce an enhanced
HS algorithm by combining chaotic search and con-
cepts from Swarm intelligence to avoid local minima
and to enhance global convergence characteristics of
the algorithm. Although, HS itself can produce good
solutions at a reasonable time for a complex optimiza-
tion problem, researchers are still trying to improve the
fine-tuning characteristics and convergence rate of HS
algorithm [21–24].

Chaos is one of the characteristics of nonlinear
systems which include infinite non-periodic bounded
motions. Nonlinear dynamic systems could be iter-
atively used to generate chaotic sequences of num-
bers. Many chaotic maps in the literature possess
certainty, ergodicity and the stochastic property. As
a novel optimization technique, chaos has gained
much attention. For a given cost function, by follow-
ing chaotic ergodic orbits, chaotic dynamic system
may eventually reach the global optimum or its good
approximation. Recently, chaotic sequences have been
adopted in place of random sequences [25–27]. They
also have been combinedwith somemetaheuristic opti-
mization algorithms to improve performance of these
algorithms by chaotic evolution of variables [10,28,29].
This evolution includes two main steps: firstly, map-
ping from the chaotic space to solution space and
then searching optimal regions using chaotic dynamics
instead of random search [30].

In this paper in order to enhance the global con-
vergence of HS algorithm, firstly we proposed a new
variant of HS, called improved HS (IHS) by adopt-
ing concepts from swarm intelligence. Furthermore,
sequences generated from logistic chaotic map sub-
stitutes random numbers for two key parameters of
HS. Finally, to enhance the fine-tuning characteris-
tic, top solutions found by HS are sent to a chaotic
local search (CLS) based on the logistic map, where
the best solution will be replaced if the result of CLS
is better than HS. The simulation results pertaining
to identification of three IIR systems and one non-
linear systems with reduced-order models show the
superior performance of our proposed method com-
pared to HS and two other well-known metaheuristic
algorithms GA and PSO and a variant of PSO, called
PSOW.

The remaining of this paper is organized as follows.
Section 2 considers the mathematical formulation of
IIR system identification. Section 3 discusses the HS
algorithm. The improved HS with chaos is intro-
duced in Section 4. The proposed CIHS-based IIR sys-
tem identification method is provided in Section 5.
The simulation results and discussions are given
in Section 6. The paper ends with conclusions in
Section 7.

2. IIR filtering and system identification

The application of IIR filter in system identification has
been widely studied sincemany problems in signal pro-
cessing can be characterized as a system identification
problem (Figure 1) [12,18]. The problem of determin-
ing a mathematical model for an unknown system by
monitoring its input–output data is known as system
identification [2]. The task of any given parametric
system identification algorithm is to vary the model
parameters until a predefined approximation criterion
is satisfied. The block diagram of an arbitrary IIR sys-
tem identification algorithm is shown in Figure 1. The
adaptive algorithm essays to tune the adaptive filter
coefficients such that the error between the output of
the unknown system and the estimated output is min-
imized. In other words, the parameters of IIR filters
are successively updated by the algorithm to solve a
minimization–optimization problem.

An IIR system is described as:

Y (z) = H (z) U (z) , (1)

wherein,

H (z) = a0 + a1z−1 + a2z−2 + · · · + amz−m

1 + b1z−1 + b2z−2 + · · · + bnz−n (2)

is the IIR transfer function, Y(z) is the z-transform
of the output y(n), and U(z) denotes the z-transform
of the input u(n). ai,i = 0, 1, 2, . . . ,mand bi , i = 1, 2, 3,
. . . , n are the feed-forward and feed-back coefficient
of the IIR system, respectively. The IIR filter can be
formulated as a difference equation

y (n) = −
n∑

k=1

bky (n − k) +
m∑
k=0

aku (n − k) . (3)

As illustrated in Figure 1, v(n) is the additive noise in
the output of the system. Combining v(n) and y(n), we
get the overall output of the system d(n). Additionally,

Figure 1. Block diagram of system identification using an IIR
filter.
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for the same set of inputs, the adaptive IIR filter block
produces ŷ(n). The estimated transfer function can be
represented as

Ĥ (z) = â0 + â1z−1 + â2z−2 + · · · + âmz−m

1 + b̂1z−1 + b̂2z−2 + · · · + b̂nz−n
, (4)

where âi and b̂i signify the approximated coefficients
of the IIR system. In other words, the transfer func-
tion of the actual system is to be identified using the
transfer function of the adaptive filter. The difference
between d(n) and ŷ(n) produces the input to the adap-
tive algorithm. The adaptive algorithm uses this resid-
ual to adjust the parameters of the IIR system. It can be
concluded from the figure that

d (n) = y (n) + v(n), (5)

e (n) = d (n) − ŷ (n) . (6)

The cost function (mean square error) to beminimized
by the adaptive identification algorithm is given by

J = E
[
(d (n) − ŷ (n))2

] ∼= 1
N

N∑
n=1

e2(n) (7)

where,N denotes the number of input samples and E(.)
is the statistical expectation operator. The optimization
algorithms employed in this paper search the solu-
tion space to locate those values of parameters, which
contribute to the minimization of (7).

3. HS optimization

TheHSmetaheuristic is a novel optimization algorithm
inspired by the underlying principles of music
improvization that is successfully used in several sci-
ences and engineering applications [31–34]. When
musicians are improvizing, they usually test various
pitch combinations to make up a harmony. In fact, the
aim of the music is to search for a perfect state of har-
mony. In this sense, the process of searching for optimal
solution in engineering is analogous to this search for
a pleasing harmony in memory. In a real optimization
problem, each musician is replaced by a decision vari-
able and favourite pitches are equivalent to favourite
variable values. Table 1 presents a comparison between
music improvization and optimization.

In order to explain the HS algorithm in more detail,
it is required to idealize the improvization process done
by an expert musician. There are three possible choices
for a musician, (1) to play any famous pitch frommem-
ory. (2) to execute a pitch adjacent to any other in his
memory (3) execute a random pitch from the range of
all possible pitches [32]. Geem et al. [35] in 2010 for-
mulized these three options to create a newmetaheuris-
tic. The corresponding components of these options

Table 1. Comparison between music improvization and opti-
mization.

Comparison factors

Music improvization Optimization
Musical instrument Decision variable
Aesthetic standard Objective function
Pitch range Value range
Harmony Solution vector
Practice Iteration
Experience Memory matrix

are memory consideration, pitch adjustment and ran-
domness. Using harmony memory (HM) is important
because it ensures that good solutions are considered as
elements of new solutions. In order to use this memory
effectively, a parameter called harmony memory con-
sideration rate (HMCR) is introduced. If this param-
eter is too low, only few good solutions are selected
and convergence may be slow. If this rate is extremely
high (close to 1) nearly all the memory values are
used and other harmonies are not well explored, lead-
ing to potentially wrong solutions. Therefore typically,
HMCR∈ [0.7, 0.95]. Pitch adjustment is similar to the
mutation operation in GA. Pitch adjusting rate (PAR)
and pitch range variability or fret width (FW) are two
parameters of this component. A low value for PAR
together with FW can result in a slow convergence and
exploration being limited to a portion of the search
space. On the other hand, a very high value for PAR and
FW may cause the solutions to disperse around a few
optimums as in random search and the algorithm may
not converge at all. Hence, usually, PAR∈ [0.1, 0.5], and
FW is bounded 1–10% of all the range of variable values
[32]. The last component is the randomization, which
is to increase the diversity of the solutions. Although
pitch adjusting has a similar rule, it is limited to a local
search. The use of randomization can provide explo-
ration of various regions so as to find the optimum
through global search. The steps of the HS algorithm
can be followed in Figure 2.

4. Improved HS with chaos

In this section, the IHS algorithm will be introduced
first, and then, after a brief description on chaotic
behaviour, the proposed chaotic IHS algorithm will be
discussed.

5. Improved HS

Compared to the other metaheuristics like GA or PSO,
HS offers some advantageous: It has fewer mathemat-
ical requirements and thus easier implementation. In
addition, there is evidence to suggest that HS is less
sensitive to its parameters than PSO [36]. Although
the basic HS is efficient but improvable, it can be seen
from the simulation results that the solutions are still
changing as the optima are approaching [20,37,38].
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Figure 2. The pseudo-code of the HS algorithm.

In order to improve the convergence of theHS, some
works have been performed in [21–24]. In this paper, an
IHS will be proposed which is inspired by the concept
of global best in PSO. We will modify the HM consid-
eration step such that the new harmony can mimic the
best harmony in HM. When using HM, it is desirable
to pick up the best harmony from the memory. This
will happenwith a probability of 1/HMS in the basic HS
since a random selection is applied to choose the new
harmony from the HM. Our proposed HIS has exactly
the same steps as the HS with the exception that HM
consideration step is replaced by HM (gbest) instead of
HM (fix(U(0,1) *HMS). Where gbest refers to the best
harmony among all harmonies in terms of minimum
fitness function.

6. Chaos

Chaos is a deterministic, pseudorandom dynamic
behaviour in nonlinear dynamical systems that are
non-periodic, non-converging & bounded. It exhibits
sensitivity dependence on initial conditions. Mathe-
matically, chaos is randomness of a simple determin-
istic dynamical system and chaotic system may be
considered as source of randomness [22] and [23].
Although, it appears to be stochastic, it occurs in
a deterministic nonlinear system under deterministic
conditions. A chaotic map is a discrete-time dynamical

system running in the chaotic state.

zk+1 = f (zk), 0 < zk < 1, k = 0, 1, 2, . . . (8)

The chaotic sequence zk : k = 0, 1, 2, . . . can be used
as spread-spectrum sequence and as a random num-
ber sequence. The logistic map, circle map, and sinu-
soidalmap are among thewell-knownone-dimensional
maps used in the chaotic search. The logistic map is
represented by the following equation [39].

zk+1 = µ(1 − zk) (9)

zk is the kth chaotic number, with k denoting the iter-
ation number and µ = 4. Obviously, zk ∈ [0, 1] under
the condition that the initial z0 ∈ [0, 1] and that z0 /∈
[0, 0.25, 0.5, 0.75, 1].

In recent years, chaos has been extended to various
optimization areas like in [40,41]. In random search
optimization algorithms, the method using chaotic
variable instead of random variable are called chaotic
optimization algorithms. In these algorithms due to the
non-repetition and ergodicity of chaos, it can carry out
global searches at higher speed than stochastic searches
that depends on probabilities [42]. Many have used
chaos for multimodal optimization problems in the
past. The effective role of chaotic search in finding
global minima are reported in [40–43].

7. Chaotic harmony search

It wasmentioned in Section 3 that one of the drawbacks
of the HS is its premature convergence, especially while
handling with more than one local optima. HCMR,
PAR, FW and the initialization of HM are key factors to
affect the convergence of HS. In classical HS, the above-
mentioned parameters are adjusted as fixed values in
initialization step. In this method, the number of iter-
ations plays an important role to find an optimal solu-
tion. For example, for a small PAR and large FW, much
number of iterations are required to find optimum solu-
tions. Small FW values in final iterations increase the
fine-tuning of solution vectors by local exploitation and
in early iterations bigger FW value can increase the
diversity of solutions vector for global exploration [43].
In [21,23], some efforts have been done to dynami-
cally update the PAR and FW. These parameters could
be selected chaotically by using chaotic maps. In 2010,
Alatas proposed different chaotic HS algorithms by
applying different chaotic maps to the HMCR, PAR,
FWand the initialization ofHM[43]. In this paper, PAR
and FW values have not been fixed and they have been
modified as follows to improve the global convergence
by escaping the local optima.

FW (t + 1) = f (FW (t)) , 0 < FW (t) < 1,

t = 0, 1, 2, . . . (10)
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PAR (t + 1) = f (PAR (t)) , 0 < PAR (t) < 1,

t = 0, 1, 2, . . . (11)

where f corresponds to logistic map and t denotes
iteration number.

Furthermore, the algorithm is hybridized with a
CLS. For this purpose, when the three steps of HS
algorithm are performed, the topHMS /5 of harmonies
in the HM are passed through a chaotic map (logis-
tic map in this paper). This step is performed by (1)
mapping the top decision variables in solution space
to chaotic variable in the interval (0,1), (2) determin-
ing the new chaotic variable for each of them using the
logistic equation and (3) converting new chaotic vari-
ables to decision variables in the range of the solution
space. Then the best harmony of this chaotic search
is chosen and compared to the new harmony resulted
from the main algorithm and the new solution will be
updated if the result of CLS is better.

8. CIHS-based IIR system identification

The identification algorithm can be summarized in the
following steps:

(1) For a set of given input–output pairs {x(i), y(i)}pi=1,
adjust HS fixed parameters. Construct a matrix
HM of size HMS×N, where HMS represents the
population size or the number of the harmonies
andN refers to the number of adaptive IIRmodel’s
coefficients. Each component of HM is initialized
randomly in the search space.

(2) For k = 1, 2, . . . ,HMS input samples are passed
through the adaptive model yield in ŷk(i), i =
1, 2, . . . ,N. Subsequently, the fitness associated
with the k’th harmony is evaluated according to the
following equation

MSE(k) = 1
N

[(
Y − Ŷk

)T (
Y − Ŷk

)]
(12)

where, Y = [y(1) y(2) . . . y(p)]T , is the output of
the plant contaminated bymeasurement noise, and
Ŷk = [ŷk(1) ŷk(2) . . . ŷk(p)]T . Now the objective is
to minimize the (k), k = 1, 2, . . . ,HMS. In this
paper, GA, PSO, and CIHS are used for this pur-
pose.

(3) HS operators are applied to evolve a new harmony.
In parallel, a chaotic search is performed on the top
1/5 of all harmonies. The best result is saved as the
new harmony.

(4) If the new harmony vector is better than the exist-
ing harmony vectors in HM, HM will be updated.

(5) In each generation the minimumMSE (MMSE) is
plotted against the number of iterations.

(6) The learning process will stop when a predefined
MSE level or the maximum number of genera-
tions is reached. The harmony (filter coefficients)

that corresponds to the least fitness (best attain-
able match between the IIR model and the actual
system in the sense of MSE) shows the estimated
parameters.

9. Results and discussions

In this section, three benchmark linear IIR systems are
considered for the case study. Parameter identification
burden is carried out using a model having less order
than of the actual system. These reduced-order cases
pose challenge to the optimization algorithm since they
produce highly multimodal error surfaces. In addition,
as the number of coefficients decreases, the degree of
freedom reduces and it becomes more difficult to iden-
tify the actual system. In order to ensure the validity
of the results, each experiment is repeated in 20 con-
secutive trials and the resultant (best, worst, standard
deviation, and mean) values of the minimum MSE’s
of each run are given in corresponding tables. To pro-
vide a more comprehensive comparison, other than
the proposed algorithm (CIHS), same simulations are
repeated using standard versions of GA, PSO and HS
and a modified version of PSO introduced as PSOW, as
well. Each simulation is carried out in MATLAB v.7.5.
In all cases, the population size is set to 50, the max-
imum number of iterations (NI) is set to 1000 and the
input data is a Gaussian white noise with zeromean and
unit variance. The output data is contaminated with a
Gaussian random noise with zero mean and a variance
of 0.001.Parameter adjustment is as the following: In
CIHS PAR and FW values are determined by a logistic
map in each iteration and HMCR = 0.95. In basic HS
parameters are set as PAR = 0.5, HMCR = 0.95, and
FW is bounded to 1% of each variable range. In GA
algorithm, the bit number is set to 16, mutation prob-
ability is 0.1, and crossover step is of single-point type
with a probability of 0.6. In PSO, acceleration constants
are set to 2 and inertia weight is linearly decreased from
0.9 to 0.4. In PSOW, the adaptive inertia weight factor
w, is determined as follows:

w =
{
wmin + (wmax−wmin)(f−fmin)

favg−fmin
, f ≤ favg ,

wmax, f > favg,
(13)

where wmin and wmax denote the maximum andmini-
mum w, respectively. f is the current objective function
value of the particle, favg and fmin are the average and
minimum objective values of all particles, respectively
[30]. In this approach, w is varied based on the objec-
tive function value so that particles with low objective
values can be protected while particles with objective
value greater than average will be disrupted. Hence, it
provides a good way to maintain population diversity
and sustain good convergence capacity. The constant
parameters for PSOW are: wmax = 1.2, wmin = 0.2,
c1= c2 = 2 and vmax is limited to the 15% of the search
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Figure 3. Convergence characteristic for Example 9.1modelled
using a first-order IIR filter.

Table 2. Achieved MSE values for example 9.1 modelled using
a first-order IIR filter.

MSE CIHS HS PSOW PSO GA

Best 0.0763 0.0878 0.1685 0.1927 0.1916
Average 0.0819 0.1053 0.1793 0.1939 0.1980
Worst 0.091 0.1530 0.1869 0.2210 0.2445
Std. Dev. 0.0032 0.0177 0.0110 0.0140 0.0265

Note: Bold value shows best result of the minimum value of MSE.

Table 3. Computational time (in seconds) required by each
algorithm for example 9.1 modelled using a first-order IIR filter.

Time CIHS HS PSOW PSO GA

Average 1.8576 0.0543 6.8369 5.1368 360.802
Best 1.7634 0.05186 6.6159 4.9301 344.371
Worst 1.9904 0.0566 7.1234 5.8694 378.910
Std. Dev. 0.0692 0.0014 0.1447 0.2184 10.8203

Note: Bold value shows the best result of theminimum computational time.

space. In all algorithms, random numbers take values
between 0 and 1.

Example 9.1: Consider the following IIR system

H (z) = 0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2 . (14)

System (14) is modelled using the following IIR struc-
ture

H (z) = a0
1 − b1z−1 . (15)

The simulation results related to the reduced-order
model (15) are given in Figure 3. The analysis of the
figure shows that the utilization of CIHS has resulted
in greater estimation accuracy and higher convergence
speed. HS converges to its minimum MSE level after
about 700 numbers of iterations, which demonstrate its
poor convergence speed. Table 2 shows that the CIHS
provides the best average result in terms of the MSE.

Table 3 demonstrates that HS requires much less
computational time than the other algorithms. CIHS
needs higher computational time than HS, mainly

Figure 4. Convergence characteristic for Example 9.2modelled
using a second-order IIR filter.

because it has to go through more number of fitness
evaluations. Each iteration ofHS corresponds to qnum-
ber of fitness evaluations while that of CIHS corre-
sponds to q + HMS /5.

Example 9.2: The transfer function of the plant is
given by the following equation

H (z) = −0.2 − 0.4z−1 + 0.5z−2

1 − 0.6z−1 + 0.25z−2 − 0.2z−3 . (16)

This third-order plant ismodelled using a second-order
IIR filter. Hence the transfer function of the model is
given by

H (z) = a0 + a1z−1

1 − b1z−1 − b2z−2 . (17)

The convergence characteristic shown in Figure 4
demonstrates that GA, PSO and PSOW converge to
a suboptimal solution. However, HS and CHS do not
stagnate and reach their minimum noise floor level.
The CHS takes 250 generations to reach its minimum
MSE level, whereas HS takes 700 generations to reach
its corresponding value. CHS outperforms the HS with
higher convergence speed and lowerMSE value. Table 4
shows that the CHS provides the best average result in
terms of MSE. Table 5 indicates that CHS needs higher
computation time than the HS. Hence, there is a trade-
off between the quality of solution and computational
time.

Table 4. Achieved MSE values for example 9.2 modelled using
a second-order IIR filter.

MSE CIHS HS PSOW PSO GA

Best 0.0065 0.0161 0.0123 0.0564 0.0704
Average 0.0073 0.0331 0.0456 0.0578 0.0753
Worst 0.0081 0.0637 0.1135 0.0804 0.1402
Std. Dev. 6.618e-4 0.0276 0.0384 0.0176 0.0639

Note: Bold value shows best result of the minimum value of MSE.
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Table 5. Computational time (in seconds) required by each
algorithm for example 9.2 modelled using a second-order IIR
filter.

Time CIHS HS PSOW PSO GA

Average 2.5882 0.0749 8.1638 6.2917 379.092
Best 2.5308 0.0703 7.6900 6.1290 365.597
Worst 2.6785 0.0802 8.5809 6.4578 397.524
Std. dev. 0.0526 0.0035 0.3263 0.0854 10.1545

Note: Bold value shows the best result of theminimum computational time.

Figure 5. Convergence characteristic for Example 9.3modelled
using a fourth-order IIR filter.

Example 9.3: The transfer function of the plant is
given by the following equation

H (z) = B(z)
A(z)

,

B(z) = 0.1084 + 0.5419z−1 + 1.0837z−2 + 1.0837z−3

+ 0.5419z−4 + 0.1084z−5,

A(z) = 1 + 0.9853z−1 + 0.9738z−2 + 0.3864z−3

+ 0.1112z−4 + 0.01134z−5. (18)

The IIR filter transfer function used for the identifica-
tion purpose is given below:

H (z) = a0 + a1z−1 + a2z−2 + a3z−3 + a4z−4

1 − b1z−1 − b2z−2 − b3z−3 − b4z−4 (19)

Using Equation (19), the same set of simulations
have been executed as in Examples 9.1 and 9.2.

Figure 5 represents the average MSE graphs from 20
simulation tests. It is shown in Figure 5 and Table 6 that
the convergence speed of CIHS is much greater than
HS and the minimum MSE level obtained using CIHS
is much smaller than that of HS, PSO, PSOW and GA.
The CHS takes 250 generations to reach its minimum
MSE level, whereas HS solutions are still changing as
the number of generations reaches 1000. The respective
computation time of the algorithms are listed in Table 7.

The computational time of an adaptive filtering
algorithm is a critical issue in real-time applications.

Table 6. Achieved MSE values for example 9.3 modelled using
a fourth-order IIR filter.

MSE CIHS HS PSOW PSO GA

Best 6.517e-4 0.0075 0.0079 0.0177 0.0442
Average 0.0026 0.0135 0.0254 0.0354 0.2729
Worst 0.0067 0.0210 0.0321 0.1028 0.6907
Std. dev. 0.0020 0.0045 0.0064 0.0259 0.2631

Note: Bold value shows best result of the minimum value of MSE.

Table 7. Computational time (in seconds) required by each
algorithm for example 9.3 modelled using a fourth-order IIR
filter.

Time CIHS HS PSOW PSO GA

Average 3.3312 0.1206 11.3490 9.3061 402.622
Best 3.2774 0.1123 11.7931 9.1386 400.452
Worst 3.4021 0.1391 12.8542 9.5138 404.825
Std. dev. 0.0490 0.0080 0.2110 0.1403 10.5326

Note: Bold value shows the best result of theminimum computational time.

Figure 6. Convergence characteristic for Example 9.3modelled
using a fourth-order IIR filter with iteration number of 10,000.

The results demonstrate that HS-based adaptive IIR fil-
tering algorithms aremuch faster than theGA andPSO.
Altogether, the simulation results given in this section
reveals that CIHS has minor chance of premature con-
vergence and hence, it is a promising optimization tool
in IIR adaptive filtering.

According to Figures 3–5, HS solutions tends to
reach lower errors as the number of iterations reaches
1000. To investigate the impact of higher iteration num-
bers on convergence characteristics of HS-based algo-
rithms, we repeated the experiment of Example 9.3with
HS and CIHS algorithms. Equation (18) is used as the
transfer function of the plant and Equation (19) as the
IIR filter. All the parameters of algorithms are the same
as the parameters of Example 9.3 except the iteration
number which is set to 10,000 this time.

Figure 6 shows the results. Both algorithms have
reached better results in terms of accuracy but CIHS
again showed better accuracy and speed.

10. Conclusion

In this paper, a new version of Harmony Search
algorithm (CIHS) is developed using social component



338 M. SHAFAATI AND H. MOJALLALI

of PSO and chaotic search combined to the origi-
nal algorithm to enhance exploration and exploita-
tion capability during the search. The new algorithm
is outlined and has been applied to identification of
three benchmark IIR plants. The performance assess-
ment of the CIHS in identifying an unknown sys-
tem with a reduced-order IIR model in comparison to
those obtained by the HS, PSO, PSOW and GA clearly
exhibits faster convergence and lower values of MSE
for CIHS which makes it the best algorithm among the
five, for adaptive system identification. In addition, it
has been shown that HS-based IIR system identifica-
tionmethodswould result in amuch less computational
complexity. Therefore, the proposed method can be
employed in real-time tasks. To confirm the robustness
of the proposed algorithm, CIHS needs to be applied
to more complex and real-world optimization applica-
tions. For future work of the authors, investigating the
result of various chaotic maps on the algorithm’s per-
formance and real-time hardware implementation of
the algorithm will be considered. Also, comparison of
the performance between the proposed algorithm with
other recently introduced nature-inspired algorithms
can be a subject of future works.
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