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patients by single surface EMG parameter
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ABSTRACT
The classificationpotential of surface electromyographic (EMG) parameters needs tobe explored
beyond classification of subjects onto low back pain subjects and control subjects. In this paper,
a classification model based on surface EMG parameter is introduced to differentiate low back
pain patients with radiculopathy from chronic low back pain (CLBP) patients and control sub-
jects. A variant of the Roman chair was used to perform static contractions, where subject’s own
upper body weight was used to inducemuscle fatigue in low back muscles. Surface EMG signals
were recorded over the paraspinal muscles at L1–L2 and L4–L5 interspace level. As a descriptor
of spectral changes, the median frequency of the power spectrum (MDF) was estimated by use
of Hilbert–Huang transform. Student’s t-test detected that regression line slope of the median
frequency is significantly different (p < 0.05) only between low back pain patients with radicu-
lopathy and other two groups. There was no significant difference between CLBP patients and
control subjects. The achieved overall accuracy of the implemented decision tree classification
model was at best 86.8%. The results suggest possibility of differentiating low back pain patients
to subgroups depending on clinical symptoms.
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Introduction

Differences in spectral variables of surface EMG
(sEMG) signals recorded over low back muscles of
subjects with low back pain (LBP) and those with-
out (NLBP) have been thoroughly explored in the
past [1–25]. Only smaller part of the research was
directed to development of sEMG-based classifica-
tion models enabling differentiation to LBP and NLBP
groups [1–4,6–8,13,19,26], and none of these investi-
gated problems whether LBP patients could be further
classified to homogenous groups such as a low back
painwith radiculopathy (LBPR). The trend of classifica-
tion only between LBP and NLBP groups continues in
recent investigations exploring classification potential
of large array surface electromyography [27–29].

The most dominant classification methods were dif-
ferent types of discriminant analysis [1–4,6,7,19,26].
There is no apparent explanation for this dominance
or occasional use of linear regression [8,13]. As noticed
by Peach and McGill [8], the drawback of discriminant
analysis is inconsistent selection of input parameters
which they attributed to overfitting of the data or not
using the holdout group. The overfitting of the data
leads to classification model that performs well on the
training data but negatively impacts its ability to gen-
eralize, and omitting of holdout group for evaluation
of the classification model does not provide objective

insight into classification accuracy. There are other pos-
sible choices for classification methods from a vast
range of machine learning techniques [30–32]. Among
them, decision trees are used in medicine and health
care applications over several decades [33], and they
seem to represent prevalent algorithm for classification
in healthcare analytics [34]. Since decision trees have
not been used for sEMG-based classification between
LBP and NLBP they are selected for implementation in
this research.

The number of input variables for the classifica-
tion purposes varied from just a few [1,6] to rather
large number of variables [4,8]. The power spectrum
median frequency was used either in simple form such
as the slope of the regression line of the power spec-
trummedian frequency time change, MDF Slope, [1,6]
or as a part of more complex variables such as a propor-
tion of recovery from the end of fatigue to the start of
the repeat contraction [8]. In researches that used spec-
tral parameters derived from theEMGsignal, the power
spectrum median frequency was inherently included
in classification models. To explore possibility that sin-
gle sEMG variable could be employed for classification
MDF Slope is chosen to be a classification variable in
this work.

In analysed studies, data setswere small and typically
imbalanced [2–4,6–8,13], with the imbalance degree of
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a class distribution not exceeding value 2.83. It is possi-
ble that rebalancing of the data sets might improve clas-
sification accuracy of the applied discriminant analysis,
but only when large training data sets could be pro-
vided [35]. The imbalance degree also influences per-
formance of the decision tree classifications. The exact
value of the imbalance degree at which the classification
performance of decision tree begins to deteriorate is not
known since other factors influence classification per-
formance [36,37]. A positive property of decision tree
is the ability to perform well even in situations when
data sets for learning are imbalanced [36].

The LBP-NLBP classification studies lost pace with
development of data signal processing. The fast Fourier
transform (FFT) or even the analogue signal process-
ing methods were used for estimation of the median
frequency [1–4,6–8,13,19,26]. These are all well-known
classic signal processing methods. In 2009, Cifrek et al.
[38] reviewed the classic and modern signal processing
methods from the position of applicability to sEMG sig-
nals. Among the modern methods, the Hilbert-Huang
transform (HHT) seem to be entering slowly into the
biomedical engineering field. One of the reasons is
surely its computationally demanding algorithm. Fol-
lowing the initial research of our group, indicating that
HHT provides statistically more significant results then
STFT-based analysis [39] of sEMG signal recorded over
low back muscles during static contractions, we have
decided to apply HHT.

Based on previous studies, we hypothesized a pos-
sible differentiation of low back pain patients with
radiculopathy from chronic low back pain (CLBP)
patients. It can be assumed that patients having radicu-
lopathywith radicular pain develop asymmetrical func-
tioning and different fatigability pattern of the lower
backmuscles. In our opinion, such phenomenonwould
reflect in myoelectrical signals and enable differenti-
ation from CLBP patients. To achieve completeness,
the set of subjects without low back pain (healthy sub-
jects) is also included in the study. The specific goal was
to explore whether differentiation could be achieved
with decision tree classification and based on only
one surface EMG parameter. If such result could be
achieved, it would simplify classification methodology
and thus improve the likelihood of being used in clinical
application.

Methods

Subjects

The 76 male volunteers were included in the study, half
of them being a control group of healthy men with-
out any history of low back pain in the past 5 years.
The other half had a history of low back pain and was
further divided into two groups: the first group con-
sisted of 25 CLBP patients and second group consisted

of 13 patients having LBPR. The presence of CLBP was
defined as daily or almost daily pain that lasted at least 6
months prior to measurements. Low back pain patients
with radiculopathy had clinical symptoms of radicu-
lopathy with radicular pain lasting at least 14 days.
The exclusion criteria for subjects were spinal deforma-
tion, spinal injuries, spinal surgery, spondylolisthesis,
spinal stenosis, osteoporosis, and there were not any
accompanying systemic diseases.

Thewhole experiment was approved by Ethics Com-
mittee of the University of Zagreb, Faculty of Electrical
Engineering and Computing, and informed consent
was received from each subject.

Data collection and signal conditioning

The system used to acquire surface EMG data over the
paraspinal muscles is FREEEMG system (BTS, Milano,
Italy). It is a system with wireless EMG probes enabling
free movement of subjects during measurement. Each
probe has a pair of surface EMG pre-gelled Ag-AgCl
10 mm diameter electrodes (Ambu-Blue, Sensor, and
Ballerup, Denmark).

The placement of the electrodes over the paraspinal
muscles is illustrated in Figure 1. First electrode pair is
placed parallel to the direction of the muscle fibres of
the m. erector spinae 30 mm lateral from the spinous
process at L1-L2 interspace. Second electrode pair is
placed at m. erector spinae at L4-L5 interspace and
aligned parallel to the line between the posterior supe-
rior iliac spine and the L1-L2 interspace.

Prior to measurement, electrode-skin impedance
was measured to ensure that value is less than 5 k�.
The raw surface EMG signal was differentially ampli-
fied and bandpass filtered at 20–400Hz. The differential
amplifier input impedance was >100M�, and com-
mon mode rejection ratio was >100 dB at 65 Hz.
The signal was sampled at 1200Hz using a 12-bit A/D
converter.

Figure 1. Placement of the electrodes over the paraspinal
muscles.
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Figure 2. The tilting device used for testingwith subject placed
in starting position.

The high-pass cutoff frequency of 20 Hz was cho-
sen as recommended to be optimal choice for general
use [40].

Testing procedure

Before commencing the testing procedure each subject
was familiarized with the procedure, a tilting device
presented in Figure 2, and instrumentation. The tilting
device was a variant of a Roman chair.

The skin, over lower back muscles, was shaved and
cleaned with abrasive paste and alcohol. Then, the
subject was asked to stand upright until electrodes
were positioned. While standing in the upright posi-
tion without footwear, the distance between floor and
anterior superior iliac spine was measured. Depending
on the measured distance, the standing pad of tilting
device was adjusted so that toes, back of the lower
leg (above Achilles tendon) and pelvis (together with
upper thigh) became the only body parts in contact
with the tilting device and thus creating the supporting
points.

Subject was instructed to stand on the tilting device
and to hold hands crossed having palms placed on
chest. Upon subject’s verbal confirmation, medical staff
gradually tilted the device until horizontal position was
reached. To ensure static contractions of lower back
muscles each subject was asked to maintain in hori-
zontal position as stable as possible. The weight of the
subject’s upper body was used to induce muscle fatigue.
Upon subject’s verbal request medical staff returned the
subject to upright position. Only subjects able to main-
tain at least 45 s in horizontal position were included in
the study.

As part of the testing procedure, all raw surface EMG
signals were visually inspected for motion artifacts and
improper amplifier gain. If any of four signals was cor-
rupt the measurement was fully discarded and subject
repeated the test after 20min rest interval.

Data analysis

Starting point of contraction was defined as the
moment when smoothed and rectified surface EMG
signal reached 90% of the maximum value during the
contraction. If duration of the signal exceeded 60 s the
signal was trimmed to 60 s to mitigate potential influ-
ence of the length of analysing interval [41].

MATLAB was used for all signal processing tasks
following recording.

Spectral parameters
The time-frequency signal processing was done by
Hilbert–Huang transform [42–45] which does not
require that analysed signal has to be stationary or
quasi-stationary as for example in analysis based on fast
Fourier transformation [8,38].

The median frequency was selected as a descrip-
tor to track spectral changes of surface EMG. Linear
regression was applied to MDF time series in order to
calculate MDF Slope, a known muscle fatigue index
[38,46].

Classification feature
To check whether each of the four muscle sites carries
additional classification information, correlation coef-
ficients for MDF Slope between muscle sites within
each group (control group, CLBP and LBPR) were
calculated. Based on correlation results, classification
feature was constructed containing MDF Slope of all
four muscle sites. Following, the Student’s t-test was
used to demonstrate a significant difference between
the groups.

Classificationmodel
Decision tree was used for binary classification between
groups, whereMDFSlope from all fourmuscle sites was
used for segmenting predictor space. To protect from
overfitting a 10-fold cross validation was used to parti-
tion the data set into folds. For each fold a model was
trained by using the out-of-fold observations followed
by assessment ofmodel performance, where assessment
was done with in-fold data. At the end, an average test
error over all folds was calculated.

Two split criterions have been used: the first one
being a cross entropy (also known as maximum
deviance reduction) and the second one being Gini
diversity index [32,47]. It can be expected that both
criterions will generate close results. Raileanu and
Stoffel [48] in a theoretical comparison between the
Gini diversity index and the information gain reported
that these two split criterions will have disagreement
only in 2% of all cases. Information gain is a cri-
terion that uses the cross-entropy as the impurity
measure [49].
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Results

Spectral parameters

The mean value and standard deviation of the MDF
Slope for all three groups are presented in Table 1. It
is noticeable that mean value of MDF Slope for LBPR
patients is lower in comparison to CLBP patients and
control group for all measurement sites. Such result
indicates possibility of differentiation between LBPR
patients and other two subject groups. Since mean val-
ues of MDF Slope for CLBP patients and control group
are rather close or even equal it can be expected that dif-
ferentiation between them would not be possible based
on MDF Slope parameter.

Statistical significance

The absolute values of correlation coefficients for all
combinations of MDF Slope parameter were below 0.9.
Student’s t-test detected that MDF Slope parameter is
significantly different (p < 0.05) between LBPR and
other two subject groups for all measurement sites as
shown in Table 2. This confirms that MDF Slope can be
used to disjunct LBPR patients from other two subject
groups. For all muscle sites, there was no significant dif-
ference between CLBP and control group confirming
inability of MDF Slope to act as classification feature
between them in this experiment. Therefore, binary
classification was performed only between LBPR and
CLBP patients, and between LBPR patients and control
group.

Classification

The overall accuracy of decision tree classification
between CLBP and LBPR is slightly better if Gini diver-
sity index is used as split criterion: 86.8%. The situation
is opposite for classification of LBPR and control group,
where Maximum deviance reduction gives slightly bet-
ter result of 82.4%. The overall accuracy (%) of classifi-
cation between LBPR and CLBP patients, and between
LBPR and control group are presented in Table 3 for
both split criterions. In case of classification between

Table 1. MDF Slope (Hz/min) for all three groups LBPR, CLBP
and control group. Mean value (standard deviation).

L1-L2 left L4-L5 left L1-L2 right L4-L5 right

LBPR −10.3 (5.8) −13.0 (8.0) −9.5 (3.7) −12.1 (8.9)
CLBP −16.2 (5.3) −25.1 (9.8) −15.8 (4.7) −25.5 (7.9)
Control group −17.5 (7.0) −25.1 (8.3) −17.5 (5.9) −24.6 (8.1)

Table 2. Student’s t-test of the MDF Slope parameter between
groups, p-values.

L1-L2 left L4-L5 left L1-L2 right L4-L5 right

LBPR and control group 0.0006 0.0001 < 0.0001 0.0001
CLBP and control group 0.2081 0.4974 0.1118 0.3279
LBPR and CLBP 0.0026 0.0002 < 0.0001 0.0001

Table 3. The overall accuracy (%) of classification between
LBPR and CLBP groups, and LBPR and control group for two split
criterions.

Gini diversity index
Maximum deviance

reduction

LBPR vs. CLBP 86.8% 84.2%
LBPR vs. control group 80.4% 82.4%

Table 4. Confusion matrix for decision tree classification
between LBPR and CLBP subjects in absolute numbers and in
accuracy (%).

Gini diversity index
Maximum deviance

reduction

True class CLBP 23 (92%) 2 (8%) 22 (88%) 3 (12%)
LBPR 3 (23.1%) 10 (76.9%) 3 (23.1%) 10 (76.9%)

CLBP LBPR CLBP LBPR
Predicted class Predicted class

Table 5. Confusion matrix for decision tree classification
between LBPR and control group subjects in absolute numbers
and in accuracy (%).

Gini diversity index
Maximum deviance

reduction

True class Control
group

32 (84.2%) 6 (15.8%) 33 (86.8%) 5 (13.2%)

LBPR 4 (30.8%) 9 (69.2%) 4 (30.8%) 9 (69.2%)
control group LBPR control group LBPR

Predicted class Predicted class

LPBR andCLBP patients, the difference in overall accu-
racy arising from choice of the split criterion is 2.6%,
and in case of classification between LBPR patients and
control group it is 2%. Classification results also indi-
cate somewhat better overall accuracy in classification
between CLBP and LBPR when compared to results of
classification between LBPR and control subjects.

Evaluation of decision tree classification is given in
form of confusionmatrices in Tables 4 and 5 presenting
absolute numbers and accuracy (%) for classification
combinations between true class and predicted one.
Results show that differences in accuracy arising from
split criterion are not significant if taking into account
small number of samples, e.g. small change in absolute
numbers of classification results in changes of accuracy
for several percentages.

Discussion

Classifying LBPR fromCLBP patients

In the present study, we found that low back patients
with radiculopathy could be differentiated from control
subjects and from CLBP patients. When compared to
results of others whowere dealing with classification on
LBP and NLBP the achieved accuracy of decision tree
classification between LBPR and CLBP, and between
LBPR and control subjects, is within the range reported
by others or even smaller [8,26,50,51].
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Split criterions

Difference in overall accuracy of classification between
two split criterions from Table 3 is close to theoreti-
cal prediction of Raileanu and Stoffel of 2% [48]. In the
case of classification between LBPR and CLBP patients
the difference is higher than in case of classification
between LBPR patients and control group.

CLBP and control subjects do not differentiate

Unlike previously reported results on classification
between low back patients and control subjects this
study, which is single parameter based, showed that
it was not possible to distinguish between CLBP and
control subjects. This may be due to many different
reasons.

Previous works have used classification methods
such as logistic regression [13] or different types of
discriminant analysis [6–8,26,50–52] where a group of
preselected surface EMG parameters were prescreened
for multicollinearity by computing correlation matrix
to eliminate those highly correlated. Such selection of
parameters had to be done on study by study basis,
even though some authors have reused classification
model without any changes [10]. Nevertheless, it is pos-
sible that approach with multiparameter feature space
enables classification between CLBP and control sub-
jects while single parameter does not. It remains open
whether decision tree classification with multiparam-
eter feature space might provide better classification
results and possibility to distinct CLBP and control
subjects.

Second reason for inability to differentiate between
CLBP and control groups may be due to fact that the
subjects own body weight of the upper body was used
to produce local muscle fatigue instead of most com-
monly used controlled percentage of MVC. Yoshitake
and Moritani [53] conducted experiment by strapping
subject in prone position to rigid table creating some-
what similar conditions to one achieved by the tilting
device, Figure 2. They reported that keeping the upper
body in prone position requires from paraspinal mus-
cles to contract on average at 45% of MVC. The exact
value of the % of MVC at which paraspinal muscles
contract depends on the ratio of the upper body weight
and total back muscle strength (citation [7] according
to Yoshitake and Moritani [53]). Several years later, a
group of authors [21] have found that subjects upper
body weight, with body being positioned for Sorensen
test, does not have exact relationship to percentage of
MVC. For majority of the subjects, it was between 40%
and 60%MVC. In their study subjects that fitted within
the boundaries were included. None of the subjects
were above the interval and those below the interval
were excluded. This leads us to conclusion that the load
of the upper body part during Sorensen test might be

lower than 60% MVC. Since the relationship between
MDF Slope and % MVC is nonlinear with differentia-
tion in MDF Slope between controls and low back pain
patients only for specific electrode sites and force levels
at and above 60% MVC [1,13] it is possible that failure
to differentiate in this study between CLBP and control
group might have origin partially in this fact.

The third possible reason is related to selection of
subjects. Zarakowska, as cited in Roy et al. [26], cat-
egorized subjects with low back pain into “avoider”
and “confronter” groups based on their behavioural
response to pain. The analysis showed that only the
“avoider” group with low back pain could be accurately
discriminated from the non-low back pain group. It was
postulated that “avoider” group tends to refrain from
physical activity and as a result develops distinct mus-
cle fatigability. In contrast, the confronter group does
not have evidence of impairment and members were
classified as indistinguishable from the controls. In our
study, only the subjects able to maintain static contrac-
tion over 45 s have been kept in the study. Such duration
of contraction could have resulted in selecting predom-
inantly confronter type of subjects. It remains open to
check if shorter duration could improve possibility to
differentiate between CLBP and control subjects.

The fourth possible reason is of physiological nature.
As presented by De Luca [54] the rate of the blood flow
in the muscle can affect the surface EMG spectral vari-
ables. During isometric contractions at high force levels
the internal pressure of the muscle remains reasonably
constant and does not alter the rate of the blood flow
in the muscle as in the case of dynamic contractions.
Sustained contractions are isometric, leaving the pos-
sibility that dynamics of blood flow in the muscle act
similarly in CLBP and control group and thus masking
the effects in surface EMG that would otherwise allow
differentiation between these groups.

LBPR tend to fatigue slower

Roy, De Luca, and Casavant [1] reported a significant
difference in MDF Slope between CLBP patients and
control subjects only at 80% MVC for data recorded
fromm. iliocostalis at level L2 andm. multifidus at level
L5. It was reported that control subjects have signifi-
cantly smaller MDF Slope.

Similarly, Peach and McGill [13] presented results
where the difference in MDF Slope between CLBP
patients and control subjects exist also for 60% MVC
for data recorded fromm. erector spinae at level L3 and
m. erector spinae at level L5. Nevertheless, they reported
that control subjects have higher MDF Slope.

These opposite findings on how fast control sub-
jects fatigue in comparison to chronic low back patients
do have one commonality – a significant difference in
MDF Slope between the groups. Our results as shown
in Table 1 do not support such findings. Instead, it is
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notable that LBPR patients tend to fatigue slower than
CLBP patients and control subjects.

Time-frequency analysis for nonstationary surface
EMG

In the study, we have chosen Hilbert–Huang trans-
form (HHT) to estimate the power spectrum of surface
EMG signal. It is a novel approach, still rarely used for
surface EMG analysis, which has not been used pre-
viously for analysis of surface EMG of the lower back
muscles. Since HHT enables analysis of nonstationary
signals there is no requirement on surface EMG to be
either stationary or quasi stationary. This removes pre-
vious limitations to analyse dynamic contractions [26]
and opens the possibility to improve classification accu-
racy. There are also other signal processing methods
suitable for muscle fatigue evaluation in biomechan-
ical applications that allow analysis of nonstationary
signals [38].

Objectivity

The ten-fold cross validation was used in this work to
protect from overfitting and to eliminate any subjec-
tive selection of subjects which is potential risk present
in classification methods relying on holdout groups for
accuracy validation [6,55].

Conclusion

We measured surface EMG signal above lower back
muscles during static contractions and analysed poten-
tial of belonging MDF Slope parameter to discriminate
between three groups of subjects: CLBP patients, low
back pain patients with radiculopathy and control sub-
jects without low back pain. Typical classification in sci-
entific literature is only between low back pain patients
and healthy subjects.

A significant difference ofMDF Slope parameter was
present for all muscle sites, but only between low back
pain patients with radiculopathy and other two groups
of subjects. We exploited this finding to design deci-
sion tree-based classification model using MDF Slope
as classification feature. To protect from overfitting and
ensure objectivity of themodel ten-fold cross validation
was used to partition the data set into folds, train and
test the model.

The overall accuracy of the classification between
low back pain patients with radiculopathy and CLBP
patients was at best 86.8% (Gini diversity index as
split criterion) and higher in comparison to classifi-
cation from control subjects in which case the over-
all accuracy was at best 82.4% (Maximum deviance
reduction as split criterion). The results of classification
show that MDF Slope-based decision tree classification
can further be explored and utilized to contribute to

differential electromyographic diagnostics of CLBP and
LBPR.
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