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CHARACTERIZATIONS OF ∗-LIE DERIVABLE MAPPINGS

ON PRIME ∗-RINGS

Ahmad N. Alkenani, Mohammad Ashraf and Bilal Ahmad Wani

Abstract. Let R be a ∗-ring containing a nontrivial self-adjoint
idempotent. In this paper it is shown that under some mild conditions on
R, if a mapping d : R → R satisfies

d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )]

for all U, V ∈ R, then there exists ZU,V ∈ Z(R) (depending on U and V ),
where Z(R) is the center of R, such that d(U +V ) = d(U) + d(V ) +ZU,V .
Moreover, if R is a 2-torsion free prime ∗-ring additionally, then d = ψ+ ξ,
where ψ is an additive ∗-derivation of R into its central closure T and ξ

is a mapping from R into its extended centroid C such that ξ(U + V ) =
ξ(U) + ξ(V ) +ZU,V and ξ([U, V ]) = 0 for all U, V ∈ R. Finally, the above
ring theoretic results have been applied to some special classes of algebras
such as nest algebras and von Neumann algebras.

1. Introduction

Throughout this paper R will denote an associative ring with the center
Z(R). Recall that a ring R is said to be n-torsion free, where n > 1 is an
integer, if nU = 0 implies U = 0 for all U ∈ R. A ring R is said to be prime if
for any U, V ∈ R, URV = {0} implies U = 0 or V = 0. An additive mapping
x 7→ x∗ on a ring R is called involution in case (UV )∗ = V ∗U∗ and (U∗)∗ = U
hold for all U, V ∈ R. A ring equipped with an involution is called a ring with
involution or ∗-ring (see [7]). An additive mapping d : R → R is said to be a
derivation on R if d(UV ) = d(U)V + Ud(V ) for all U, V ∈ R. In particular,
derivation d is called an inner derivation if there exists some X ∈ R such that
d(U) = UX −XU for all U ∈ R. An additive mapping d : R → R is called a
Lie derivation if d([U, V ]) = [d(U), V ]+[U, d(V )] holds for all U, V ∈ R, where
[U, V ] = UV − V U is the usual Lie product. If the condition of additivity is
dropped from the above definition, then the corresponding Lie derivation is
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called a Lie derivable map. Obviously, every derivation is a Lie derivation.
However, the converse statements are not true in general.

Let R be a ∗-ring. An additive mapping d : R → R is said to be an
additive ∗-derivation on R if d(UV ) = d(U)V + Ud(V ) and d(U∗) = d(U)∗

for all U, V ∈ R. More generally, a mapping d : R → R is said to be a
∗-Lie derivable mapping if d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )]. Indeed, if
d(U∗) = d(U)∗ for all U ∈ R, then d is a Lie derivable mapping if and only if
d is a ∗-Lie derivable mapping. An additive ∗-Lie derivable mapping is said
to be a ∗-Lie derivation. It is not difficult to observe that any ∗-derivation is
a ∗-Lie derivation but the converse is not true in general.

There has been a great interest in the study of characterizations of Lie
derivations and ∗-Lie derivations for many years. The first quite surprising
result is due to Martindale III who proved that every multiplicative bijective
mapping from a prime ring containing a nontrivial idempotent onto an arbi-
trary ring is additive (see [14]). Miers [16] initially established that every Lie
derivation d on a von Neumann algebra A can be uniquely written as the sum
d = ψ+ ξ where ψ is an inner derivation of A and ξ is a linear mapping from
A into its center Z(A) vanishing on each commutator. Yu and Zhang [18]
proved that every Lie derivable mapping of a triangular algebra is the sum of
an additive derivation and a mapping from triangular algebra into its center
sending commutators to zero. Mathieu and Villena [15] gave the characteri-
zations of Lie derivations on C∗-algebras. W. Jing and F. Lu [8] showed that
every Lie derivable mapping on a 2-torsion free prime ring R can be expressed
as d = ψ + ξ, where ψ : R → T is an additive derivation and ξ : R → C is
nearly additive i.e. ξ(U + V ) = ξ(U) + ξ(V ) + ZU,V where ZU,V ∈ Z(R)
(depending on U and V in R) and vanishes on each commutator. Yu and
Zhang [19] proved that every ∗-Lie derivable mapping from a factor von Neu-
mann algebra into itself is an additive ∗-derivation. Also, Li, Chen and Wang
[9] obtained the same result for ∗-Lie derivable mappings on von Neumann
algebras and proved that every ∗-Lie derivable mapping on a von Neumann
algebra with no central abelian projections can be expressed as the sum of
an additive ∗-derivation and a mapping with image in the centre vanishing
on commutators. In addition, the characterization of Lie derivations and ∗-
Lie derivations on various algebras are considered in[1], [2], [5], [4],[6], [8],
[12],[13], [17], [20].

Motivated by the results due to W. Jing & F. Lu [8] and C. Li et al. [9], in
Section 2, we investigate the additivity of ∗-Lie derivable mappings on ∗-rings
and show that every ∗-Lie derivable mapping on R is almost additive in the
sense that for any U, V ∈ R there exists ZU,V ∈ Z(R) (depending on U and
V ) such that d(U + V ) = d(U) + d(V ) + ZU,V . In Section 3, we study the
characterization of ∗-Lie derivable mappings on prime ∗-rings. Under some
mild conditions on R, we prove that, if d is an additive Lie derivable mapping
on R, then d = ψ+ ξ, where ψ is an additive ∗-derivation of R into its central
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closure T and ξ is a mapping from R into its extended centroid C such that
ξ(U + V ) = ξ(U) + ξ(V ) + ZU,V and ξ([U, V ]) = 0 for all U, V ∈ R. Finally,
the above ring theoretic results have been applied to some special class of
algebras such as nest algebras and von Neumann algebras.

2. Additivity of ∗-Lie derivable mappings on ∗-rings

In this section, we examine the additivity of ∗-Lie derivable mappings on
rings. Let R be a ∗-ring with a nontrivial self-adjoint idempotent P . We
write Q = I − P . It is to be noted that R may be without identity element.
It is obvious that PQ = QP = 0. By the Peirce decomposition of R, we have
R = A11+A12+A21+A22, where A11 = PRP , A12 = PRQ, A21 = QRP and
A22 = QRQ. Throughout this paper, Uij will denote an arbitrary element of
Aij and any element U ∈ R can be expressed as U = U11 + U12 + U21 + U22.

The main result of this section starts as follows.

Theorem 2.1. Let R be a ∗-ring containing a nontrivial self-adjoint
idempotent P and satisfying the following conditions:

(G1) If UiiVij = VijUjj for all Vij ∈ Aij and 1 ≤ i 6= j ≤ 2, then Uii +Ujj ∈
Z(R).

(G2) If UijVjk = 0 for all Vjk ∈ Ajk and 1 ≤ i, j, k ≤ 2, then Uij = 0.

If a mapping d : R → R satisfies

d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )],

for all U, V ∈ R, then there exists ZU,V ∈ Z(R) such that d(U + V ) =
d(U) + d(V ) + ZU,V .

Throughout assume that R satisfies the hypothesis of Theorem 2.1. The
proof of the above theorem is given in a series of the following Lemmas.

Lemma 2.2. d(0) = 0.

Proof. d(0) = d([0∗, 0]) = [d(0)∗, 0] + [0∗, d(0)] = 0.

Lemma 2.3. For any Uii ∈ Aii, Vij ∈ Aij, 1 ≤ i 6= j ≤ 2, there exists
ZUii,Vij

∈ Z(R) such that

(i) d(Uii + Vij) = d(Uii) + d(Vij) + ZUii,Vij
,

(ii) d(Uii + Vji) = d(Uii) + d(Vji) + ZUii,Vji
.

Proof. (i) Let A = d(Uii + Vij) − d(Uii) − d(Vij). For any Uii ∈ Aii,
Vij ∈ Aij, we have

d(Vij) = d([P ∗, Uii + Vij ])

= [d(P )∗, Uii + Vij ] + [P ∗, d(Uii + Vij)].
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On the other hand by Lemma 2.2, we have

d(Vij) = d([P ∗, Uii]) + d([P ∗, Vij ])

= [d(P )∗, Uii + Vij ] + [P ∗, d(Uii) + d(Vij)].

Comparing the above two identities, we get [P,A] = 0. Hence Aij = Aji = 0.
For any Wji ∈ Aji, we compute

d(−UiiW
∗
ji) = d([W ∗

ji, Uii + Vij ])

= [d(Wji)∗, Uii + Vij ] + [W ∗
ji, d(Uii + Vij)].

Using Lemma 2.2, d(−UiiW
∗
ji) can also be expressed as

d(−UiiW
∗
ji) = d([W ∗

ji, Uii]) + d([W ∗
ji, Vij ])

= [d(Wji)∗, Uii + Vij ] + [W ∗
ji, d(Uii) + d(Vij)].

From the above two equations it follows that [W ∗
ji, A] = 0. In other words

W ∗
jiA = AW ∗

ji for all Wji ∈ Aji. By the condition (G1), we see that Aii+Ajj ∈
Z(R). Hence d(Uii +Vij) = d(Uii)+d(Vij)+ZUii,Vij

for some ZUii,Vij
∈ Z(R).

Similarly, one can get (ii).

Lemma 2.4. For any Uij , Vij ∈ Aij, 1 ≤ i 6= j ≤ 2, we have

d(Uij + Vij) = d(Uij) + d(Vij).

Proof. By Lemma 2.3, we see that

d(Uij + Vij) = d([(U∗
ij + P )∗, Vij +Q])

= [d(U∗
ij + P )∗, Vij +Q] + [(U∗

ij + P )∗, d(Vij +Q)]

= [d(U∗
ij)∗ + d(P )∗, Vij +Q] + [(U∗

ij + P )∗, d(Vij) + d(Q)]

= [d(U∗
ij)∗, Vij ] + [d(U∗

ij)∗, Q] + [d(P )∗, Vij ] + [d(P )∗, Q]

+ [Uij , d(Vij)] + [Uij , d(Q)] + [P, d(Vij)] + [P, d(Q)]

= d([(U∗
ij)∗, Vij ]) + d([(U∗

ij)∗, Q]) + d([P ∗, Vij ]) + d([P ∗, Q])

= d(Uij) + d(Vij).

Lemma 2.5. For any Uii, Vii ∈ Aii, i = 1, 2, there exists ZUii,Vii
∈ Z(R)

such that

d(Uii + Vii) = d(Uii) + d(Vii) + ZUii,Vii
.

Proof. Let A = d(U11 +V11) − d(U11) − d(V11). For any U11, V11 ∈ A11,
we have

0 = d([Q∗, U11 + V11])

= [d(Q)∗, U11 + V11] + [Q∗, d(U11 + V11)].
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On the other hand, we have

0 = d([Q∗, U11]) + d([Q∗, V11])

= [d(Q)∗, U11 + V11] + [Q∗, d(U11) + d(V11)].

Comparing the above two identities, we get [Q,A] = 0. Hence A12 = A21 = 0.
For any W12 ∈ A12, we compute

d(W ∗
12(U11 + V11)) = d([W ∗

12, U11 + V11])

= [d(W12)∗, U11 + V11] + [W ∗
12, d(U11 + V11)].

On the other hand by using Lemma 2.4, we have

d(W ∗
12(U11 + V11)) = d(W ∗

12U11) + d(W ∗
12V11)

= d([W ∗
12, U11]) + d([W ∗

12, V11])

= [d(W12)∗, U11 + V11] + [W ∗
12, d(U11) + d(V11)].

Comparing the above two equations, we have [W ∗
12, A] = 0. Thus W ∗

12A11 =
A22W

∗
12 for all W12 ∈ A12. By using the condition (G1), we see that A11 +

A22 ∈ Z(R). Therefore d(U11 + V11) = d(U11) + d(V11) + ZU11,V11 for all
U11, V11 ∈ A11 and for some ZU11,V11 ∈ Z(R). Similarly, the result is true for
the case when i = 2.

Lemma 2.6. For any U12 ∈ A12 and V21 ∈ A21, we have

d(U12 + V21) = d(U12) + d(V21).

Proof. Suppose A = d(U12 +V21) − d(U12) − d(V21). For any U12 ∈ A12

and V21 ∈ A21, we compute

d(U12 + V21) = d([P ∗, U12 − V21])

= [d(P )∗, U12 − V21] + [P ∗, d(U12 − V21)]

= d([P ∗, U12]) − [P, d(U12)] + d([P ∗,−V21]) − [P ∗, d(−V21)]

+ [P ∗, d(U12 − V21)]

= d(U12) + d(V21) + [P ∗, d(U12 − V21) − d(U12) − d(−V21)].

Consequently A = P (d(U12 − V21) − d(U12) − d(−V21)) − (d(U12 − V21) −
d(U12) − d(−V21))P . Hence we see that A11 = A22 = 0.

For any W12 ∈ A12, we have

d([W ∗
12, U12]) = d([W ∗

12, U12 + V21])

= [d(W12)∗, U12 + V21] + [W ∗
12, d(U12 + V21)].

On the other hand, by Lemma, 2.2 we have

d([W ∗
12, U12]) = d([W ∗

12, U12]) + d([W ∗
12, V21])

= [d(W12)∗, U12 + V21] + [W ∗
12, d(U12) + d(V21)].
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Comparing the above two identities, we get [W ∗
12, A] = 0. This gives that

A12W
∗
12 = 0 for all W12 ∈ A12. By the condition (G2), we see that A12 = 0.

Similarly, we obtain that A21 = 0. Thus we are done.

Lemma 2.7. For any U11 ∈ A11, V12 ∈ A12 and W22 ∈ A22, we have

d(U11 + V12 +W22) = d(U11) + d(V12) + d(W22) + ZU11,V12,W22 .

Proof. Suppose A = d(U11 + V12 + W22) − d(U11) − d(V12) − d(W22).
For any U11 ∈ A11, V12 ∈ A12 and W22 ∈ A22, we compute

d(V12) = d([P ∗, U11 + V12 +W22])

= [d(P )∗, U11 + V12 +W22] + [P ∗, d(U11 + V12 +W22)].

On the other hand, by Lemma, 2.2 we have

d(V12) = d([P ∗, U11]) + d([P ∗, V12]) + d([P ∗,W22])

= [d(P )∗, U11 + V12 +W22] + [P ∗, d(U11) + d(V12) + d(W22)].

Comparing the above two identities, we get [P ∗, A] = 0. This gives that
A12 = A21 = 0.

Now for any S21 ∈ A21, we see that

d([S∗
21, U11 + V12 +W22])

= [d(S21)∗, U11 + V12 +W22] + [S∗
21, d(U11 + V12 +W22)].

On the other hand, by Lemmas 2.2 & 2.4 we have

d([S∗
21, U11 + V12 +W22]) = d([S∗

21, U11 +W22]) + d([S∗
21, V12])

= d(S∗
21W22 − U11S

∗
21) + d([S∗

21, V12])

= d(S∗
21W22) + d(−U11S

∗
21) + d([S∗

21, V12])

= d([S∗
21,W22]) + d([S∗

21, U11]) + d([S∗
21, V12])

= [d(S21)∗, U11 + V12 +W22]

+ [S∗
21, d(U11) + d(V12) + d(W22)].

Comparing the above two identities, we get [S∗
21, A] = 0. This gives that

S∗
21A22 = A11S

∗
21 for all S21 ∈ A21. By the condition (G1), we get A11 +A22 ∈

Z(R). Thus we have obtained that d(U11 + V12 + W22) = d(U11) + d(V12) +
d(W22) + ZU11,V12,W22 for some ZU11,V12,W22 ∈ Z(R).

Lemma 2.8. For any U11 ∈ A11, V12 ∈ A12, W21 ∈ A21 and X22 ∈ A22,
we have

d(U11 + V12 +W21 +X22)

= d(U11) + d(V12) + d(W21) + d(X22) + ZU11,V12,W21,X22 .
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Proof. Assume A = d(U11 + V12 + W21 + X22) − d(U11) − d(V12) −
d(W21) − d(X22). For any U11 ∈ A11, V12 ∈ A12, W21 ∈ A21 and X22 ∈ A22,
we see that

d(V12 −W21) = d([P ∗, U11 + V12 +W21 +X22])

= [d(P )∗, U11 + V12 +W21 +X22]

+ [P ∗, d(U11 + V12 +W21 +X22)].

On the other hand, by using Lemmas 2.2 & 2.6, we have

d(V12 −W21) = d([P ∗, U11]) + d([P ∗, V12]) + d([P ∗,W21]) + d([P ∗, X22])

= [d(P )∗, U11 + V12 +W21 +X22]

+ [P ∗, d(U11) + d(V12) + d(W21) + d(X22)].

Comparing the above two equations, we have [P,A] = 0. This gives that
A12 = A21 = 0.

Now for any S12 ∈ A12, we compute

d([S∗
12, U11 + V12 +W21 +X22])

= [d(S12)∗, U11 + V12 +W21 +X22] + [S∗
12, d(U11 + V12 +W21 +X22)].

On the other hand, by using Lemma 2.7, we have

d([S∗
12, U11 + V12 +W21 +X22])

= d([S∗
12, U11 + V12 +X22]) + d([S∗

12,W21])

= [d(S12)∗, U11 + V12 +X22] + [S∗
21, d(U11) + d(V12) + d(X22)]

+ [d(S12)∗,W21] + [S∗
12, d(W21)]

= [d(S12)∗, U11 + V12 +W21 +X22]

+ [S∗
21, d(U11) + d(V12) + d(W21) + d(X22)].

Comparing the above two identities, we get [S∗
12, A] = 0. This gives that

S∗
12A11 = A22S

∗
12 for all S12 ∈ A12. By using condition (G1), we see that

A11 +A22 ∈ Z(R). Thus we have obtained that d(U11 + V12 +W21 +X22) =
d(U11)+d(V12)+d(W21)+d(X22)+ZU11,V12,W21,X22 for some ZU11,V12,W21,X22 ∈
Z(R).
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Proof of Theorem 2.1. Now take U = U11 + U12 + U21 + U22 and
V = V11 + V12 + V21 + V22. By using Lemmas 2.4, 2.5 & 2.8, we see that

d(U + V ) = d(U11 + U12 + U21 + U22 + V11 + V12 + V21 + V22)

= d((U11 + V11) + (U12 + V12) + (U21 + V21) + (U22 + V22))

= d(U11 + V11) + d(U12 + V12) + d(U21 + V21)

+ d(U22 + V22) + Z1

= d(U11) + d(V11) + Z2 + d(U12) + d(V12) + d(U21)

+ d(V21) + d(U22) + d(V22) + Z3 + Z1

= (d(U11) + d(U12) + d(U21) + d(U22)) + (d(V11)

+ d(V12) + d(V21) + d(V22)) + Z1 + Z2 + Z3

= d(U11 + U12 + U21 + U22) − Z4 + d(V11 + V12 + V21 + V22)

− Z5 + Z1 + Z2 + Z3

= d(U) + d(V ) + (Z1 + Z2 + Z3 − Z4 − Z5).

Take ZU,V = Z1 + Z2 + Z3 − Z4 − Z5. Thus we see that d(U + V ) = d(U) +
d(V ) + ZU,V for some ZU,V ∈ Z(R). This completes the proof of our main
theorem.

Now we apply Theorem 2.1 to prime ∗-rings and nest algebras. We begin
with the following important lemma.

Lemma 2.9. Let R be a prime ∗-ring containing a nontrivial self-adjoint
idempotent P with centre Z(R).

(i) If UijVjk = 0 for all Vjk ∈ Ajk and 1 ≤ i, j, k 6= 2 then Uij = 0.
(ii) If U11V12 = V12U22 for all V12 ∈ A12, then U11 + U22 ∈ Z(R).

Proof. (i) is the direct consequence of the primeness of R.
(ii) For any V11 ∈ A11 and V12 ∈ A12, we get U11V11V12 = V11V12U22 =

V11U11V12 for all V12 ∈ A12. As R is prime, we have U11V11 = V11U11.
For any V12 ∈ A12 and V22 ∈ A22, we get V12V22U22 = U11V12V22 =

V12U22V22 for all V12 ∈ A12. It follows by the primeness of R that V22U22 =
U22V22.

For any V12 ∈ A12 and V21 ∈ A21, we get U22V21V12 = V21V12U22 =
V21U11V12 for all V12 ∈ A12. It follows that U22V21 = V21U11.

For any V ∈ R, we have

(U11 + U22)V = (U11 + U22)(V11 + V12 + V21 + V22)

= U11V11 + U11V12 + U22V21 + U22V22

= V11U11 + V12U22 + V21U11 + V22U22

= (V11 + V12 + V21 + V22)(U11 + U22)

= V (U11 + U22).
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Hence it follows that U11 + U22 ∈ Z(R).

It follows from Lemma 2.9 that every prime ∗-ring with nontrivial self-
adjoint idempotent satisfies the conditions (G1) and (G2) of Theorem 2.1. So
we have the following immediate corollary.

Corollary 2.10. Let R be a prime ∗-ring containing a nontrivial self-
adjoint idempotent P . If a mapping d : R → R satisfies

d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )],

for all U, V ∈ R, then there exists ZU,V ∈ Z(R) such that d(U + V ) =
d(U) + d(V ) + ZU,V .

Let H be a complex Hilbert space. Recall that a nest N of projections
on H is a chain of orthogonal projections on H containing zero operator 0
and the identity operator I and is closed in the strong operator topology. By
B(H), we mean the algebra of all bounded linear operators on H. The nest
algebra T (N ) corresponding to the nest N is the set of all operators U in
B(H) such that UP = PUP for all P ∈ N . It is to be noted that T (N ) is a
weak ∗- closed operator algebra. A nest is said to be nontrivial if it contains
at least one nontrivial projection. The centre of the nest algebra T (N ) is CI,
where C is the complex field. It is to be noted that by every nest algebra
T (N ) with non trivial projection P satisfies the conditions (G1) and (G2) of
Theorem 2.1 (see [10, Lemma 2.6]). Thus we have the following immediate
corollary.

Corollary 2.11. Let N be a nontrivial nest on a complex Hilbert space
H and T (N ) be the associated nest algebra. If a mapping d : T (N ) → T (N )
satisfies

d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )]

for all U, V ∈ T (N ), then there exists λU,V ∈ C such that d(U + V ) =
d(U) + d(V ) + λU,V I.

3. Characterization of ∗-Lie derivable mappings on Prime ∗-rings

In this section, we list some notations and results which will be used
frequently to prove our results. Let R be a prime ∗-ring containing a nontrivial
self-adjoint idempotent P with the centre Z(R). The maximal right ring of
quotients is denoted by Qmr(R) and the two-sided right ring of quotients of
R by Qr(R). The centre of Qr(R) is called the extended centroid of R and
is denoted by C. It is to be noted that C of any prime ring is a field. The
subring RC of Qmr(R) is called the central closure of R which is also prime
for any prime ring. We denote the central closure of R by T .

We facilitate our discussion with the following known results.
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Lemma 3.1 ([3, Theorem 2.3.4]). If R is a prime ring and U, V ∈ Qmr(R)
such that UXV = VXU for all X ∈ R, then U = CV for some C ∈ C. In
otherwords U and V are C-dependent.

Lemma 3.2 ([11, Lemma 2 (ii)]). For U = U11 + U12 + U21 + U22 ∈ R.
If UijVjk = 0 for every Uij ∈ Aij, 1 ≤ i, j, k ≤ 2, then Vjk = 0. Dually, if
VkiUij = 0 for every Uij ∈ Aij, 1 ≤ i, j, k ≤ 2, then Vki = 0.

Theorem 3.3. Let R be a 2-torsion free prime ∗-ring containing a non-
trivial self-adjoint idempotent P . If a mapping d : R → R satisfies

d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )],(3.1)

for all U, V ∈ R, then there exists ZU,V ∈ Z(R) such that d(U + V ) =
d(U) + d(V ) + ZU,V and d = ψ + ξ, where ψ is an additive ∗-derivation from
R into its central closure T and ξ is a mapping from R into its extended
centriod C such that ξ(U +V ) = ξ(U) + ξ(V ) +ZU,V and ξ([U, V ]) = 0 for all
U, V ∈ R.

Now we shall use the hypothesis of Theorem 3.3 freely without any specific
mention in proving the following lemmas.

Lemma 3.4. For any non trivial self-adjoint idempotents P and Q =
I − P , we have

(i) Pd(P )P +Qd(P )Q ∈ Z(R),
(ii) Pd(P )Q = Pd(P )∗Q, Qd(P )P = Qd(P )∗P .

Proof.

(i) For any U12 ∈ A12, we have

d(U12) = d([P ∗, U12])

= [d(P )∗, U12] + [P ∗, d(U12)]

= d(P )∗U12 − U12d(P )∗ + P ∗d(U12) − d(U12)P ∗.

Multiplying the above identity from the left by P and from the right
by Q, we arrive at

Pd(P )∗PU12 = U12Qd(P )∗Q.

By using Lemma 2.9, it follows that Pd(P )P +Qd(P )Q ∈ Z(R).
(ii) We compute

0 = d([P ∗, P ])

= [d(P )∗, P ] + [P ∗, d(P )]

= d(P )∗P − Pd(P )∗ + Pd(P ) − d(P )P.

Multiplying the above identity from the left by P and from the right
by Q, we arrive at Pd(P )Q = Pd(P )∗Q. Similarly, we can also obtain
Qd(P )P = Qd(P )∗P .
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In the sequel, we define φ : R → R by

φ(U) = d(U) + [S,U ] for all U ∈ R
where S = Pd(P )Q−Qd(P )P . It is to be noted that by Lemma 3.4, we have
S∗ = −S.

Lemma 3.5.

(i) φ([U∗, V ]) = [φ(U)∗, V ] + [U∗, φ(V )],
(ii) φ(P ) ∈ Z(R),

(iii) φ(Q) ∈ Z(R),
(iv) φ(U + V ) = φ(U) + φ(V ) + ZU,V , ZU,V ∈ Z(R),
(v) φ is additive on Aij , 1 ≤ i 6= j ≤ 2.

Proof. Since (i), (iv) and (v) are easy to verify, we prove only (ii) and
(iii).

(ii) By the definition of φ, we see that

φ(P ) = d(P ) + [S, P ]

= d(P ) −Qd(P )P − Pd(P )Q

= d(P )P + d(P )Q−Qd(P )P − Pd(P )Q {since P +Q = I}
= Pd(P )P +Qd(P )Q ∈ Z(R).

(iii) In order to prove that φ(Q) ∈ Z(R), we first show that φ(PUQ +
QUP ) = Pφ(U)Q + Qφ(U)P for all U ∈ R. Since [P ∗, [P ∗, U ]] =
PU − 2PUP + UP = PUQ+QUP , it follows, applying (i) twice,

φ(PUQ+QUP ) = φ([P ∗, [P ∗, U ]]) = [P ∗, [P ∗, φ(U)]](3.2)

= Pφ(U)Q +Qφ(U)P.

By Lemma 3.4(i), Pd(Q)P +Qd(Q)Q ∈ Z(R). By the definition of φ,
we see that

φ(Q) = d(Q) + [S,Q] = d(Q) + Pd(P )Q +Qd(P )P.

The above equation gives us that Pd(Q)P = Pφ(Q)P and Qd(Q)Q =
Qφ(Q)Q and hence Pd(Q)P +Qd(Q)Q = Pφ(Q)P +Qφ(Q)Q.

Now we know that φ(Q) = Pφ(Q)P + Pφ(Q)Q + Qφ(Q)P +
Qφ(Q)Q, by (3.2), we have

Pφ(Q)Q +Qφ(Q)P = φ(PQQ+QQP ) = 0.

Consequently, we get φ(Q) = Pφ(Q)P +Qφ(Q)Q ∈ Z(R).

Lemma 3.6. φ(Aij) ⊆ Aij, 1 ≤ i 6= j ≤ 2.

Proof. For U12 ∈ A12, we have U12 = [P ∗, U12]. Compute

φ(U12) = φ([P ∗, U12]) = [P, φ(U12)] = Pφ(U12) − φ(U12)P,
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and hence we see that Pφ(U12)P = Qφ(U12)P = Qφ(U12)Q = 0. This implies
that φ(A12) ⊆ A12. Similarly, φ(U21) = Qφ(U21)P ∈ A21 for each U21 ∈ A21

and therefore φ(A21) ⊆ A21.

Lemma 3.7. There is a functional fi : Aii → C such that φ(Uii)−fi(Uii) ∈
Tii for all Uii ∈ Aii, i = 1, 2.

Proof. For U11 ∈ A11, by Lemma 3.5(ii), we have

0 = φ([P ∗, U11]) = [P ∗, φ(U11)] = Pφ(U11) − φ(U11)P,

and hence we see that Pφ(U11)Q = Qφ(U11)P = 0. Thus, it can be assumed
that φ(U11) = A11 + A22 and similarly, φ(U22) = B11 + B22, here Aii, Bii ∈
Aii, i = 1, 2. Since [U∗

11, U22] = 0, a simple calculation gives [A∗
22, U22] = 0

for all U22 ∈ A22; [U∗
11, B11] = 0 for all U11 ∈ A11. Since [A∗

22, U22] =
0 for all U22 ∈ A22, we see that A∗

22XQ = QXA∗
22 for any X ∈ R. As

both A∗
22, Q ∈ Qmr(R), by Lemma 3.1, A∗

22 = QC for some C ∈ C. A
simple calculation gives us that φ(U11) ∈ T11 + C. Similarly one can see that
φ(A22) ∈ T22 +C. Therefore, there exist scalars f1(U11) and f2(U22) such that
A22 = f1(U11)Q and B11 = f2(U22)P . Hence φ(U11) − f1(U11)I ∈ T11 and
φ(U22) − f2(U22)I ∈ T22.

Now for any U ∈ R, we define a mapping ∆ : R → T by ∆(U) =
φ(PUP )+φ(PUQ)+φ(QUP )+φ(QUQ)− (f1(PUP )+f2(QUQ))I. Further,
by the definitions of φ(U) and ∆(U) and by Corollary 2.10, it is clear that
the difference φ(U) − ∆(U) ∈ C. So, define a mapping ξ : R → C by ξ(U) =
φ(U) − ∆(U) for all U ∈ R. By Lemmas 3.6 and 3.7, ∆ has the following
properties.

Lemma 3.8. Let Uij ∈ Aij, 1 ≤ i, j ≤ 2. Then

(i) ∆(Uij) ∈ Tij , 1 ≤ i 6= j ≤ 2,
(ii) ∆(U12) = φ(U12) and ∆(U21) = φ(U21),

(iii) ∆(Uii) ∈ Aii, i = 1, 2,
(iv) ∆(U11 + U12 + U21 + U22) = ∆(U11) + ∆(U12) + ∆(U21) + ∆(U22).

Now, we shall show that ∆ is an additive ∗-derivation. First, we shall
prove the additivity of ∆.

By Lemma 2.4 and Lemma 3.8(ii), we get the following result.

Lemma 3.9. ∆ is additive on A12 and A21.

Lemma 3.10. Let Uii ∈ Aii, Uij ∈ Aij, 1 ≤ i 6= j ≤ 2. Then

(i) ∆(U∗
ij) = ∆(Uij)∗,

(ii) ∆(UiiVij) = ∆(Uii)Vij + Uii∆(Vij),
(iii) ∆(VijUjj) = ∆(Vij)Ujj + Vij∆(Ujj),
(iv) ∆(P ) = ∆(Q) = 0.

Proof.
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(i) By Lemmas 3.5 & 3.8, for any V21 ∈ A21, we compute

∆(V ∗
21) = ∆([V ∗

21, Q])

= [φ(V21), Q] + [V21, φ(Q)]

= ∆(V21)∗.

Similarly, it is easy to prove the other case.
(ii) Since [V ∗

21, U11] = −U11V
∗

21, by Lemmas 3.7 & 3.8, we have

−∆(U11V
∗

21) = −φ(U11V
∗

21) = φ([V ∗
21, U11])

= [φ(V21)∗, U11] + [V ∗
21, φ(U11)]

= [∆(V21)∗, U11] + [V ∗
21,∆(U11)]

= −∆(U11)V ∗
21 − U11∆(V21)∗.

Thus, we have ∆(U11V
∗

21) = ∆(U11)V ∗
21 + U11∆(V21)∗. Hence

∆(U11V12) = ∆(U11(V ∗
12)∗) = ∆(U11)V12 +U11∆(V ∗

12)∗ = ∆(U11)V12 +
U11∆(V12). Similarly, it is easy to prove the other identity.

(iii) Proof is same as that of part (ii).
(iv) Since ∆(V12) = ∆(PV12) = ∆(P )V12 + P∆(V12), multiplying above

expression by P from the left we have P∆(P )PV12 = 0, which implies
P∆(P )P = 0 because R is prime. By Lemma 3.8, ∆(P ) ∈ A11, hence
∆(P ) = P∆(P )P = 0. Similarly, ∆(Q) = 0.

Lemma 3.11. ∆ is additive on A11 and A22.

Proof. Let U11, V11 ∈ A11. For any W12 ∈ A12, by Lemma 3.10, we
have

∆((U11 + V11)W12) = ∆(U11 + V11)W12 + (U11 + V11)∆(W12).

On the other hand, by Lemmas 3.9 & 3.10, we have

∆((U11 + V11)W12)

= ∆(U11W12 + V11W12) = ∆(U11W12) + ∆(V11W12)

= ∆(U11)W12 + U11∆(W12) + ∆(V11)W12 + V11∆(W12).

Comparing the above two identities, we get (∆(U11 + V11) − ∆(U11) −
∆(V11))W12 = 0. In other words (∆(U11 +V11)−∆(U11)−∆(V11))PRQ = 0.
Since R is prime, it follows that (∆(U11 + V11) − ∆(U11) − ∆(V11))P = 0.
Hence, ∆(U11 + V11) = ∆(U11) + ∆(V11) as ∆(A11) ⊆ A11. Similarly, ∆ is
additive on A22.

Lemma 3.12. ∆ is additive.
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Proof. Let U =
∑2

i,j=1 Uij , V =
∑2

i,j=1 Vij be in R. By Lemmas 3.8,
3.9 & 3.11, we have

∆(U + V ) = ∆
( 2∑

i,j=1

(Uij + Vij)
)

=
2∑

i,j=1

∆(Uij + Vij) =
2∑

i,j=1

(∆(Uij) + ∆(Vij))

= ∆
( 2∑

i,j=1

Uij

)
+ ∆

( 2∑

i,j=1

Vij

)
= ∆(U) + ∆(V ).

In the sequel, we shall prove that ∆ is a derivation.

Lemma 3.13. Let Uii, Vii ∈ Aii, i = 1, 2. Then ∆(UiiVii) = ∆(Uii)Vii +
Uii∆(Vii) and ∆(U∗

ii) = ∆(Uii)∗.

Proof. For any U11, V11 ∈ A11 and W12 ∈ A12, we have by Lemma 3.10
that

∆(U11V
∗

11W12) = ∆(U11V
∗

11)W12 + U11V
∗

11∆(W12).

On the other hand by Lemmas 3.5, 3.7, 3.8 & 3.10 we have,

∆(U11V
∗

11W12)

= ∆(U11)V ∗
11W12 + U11∆(V ∗

11W12)

= ∆(U11)V ∗
11W12 + U11φ([V ∗

11,W12])

= ∆(U11)V ∗
11W12 + U11([φ(V11)∗,W12]) + U11([V ∗

11, φ(W12)])

= ∆(U11)V ∗
11W12 + U11([∆(V11)∗,W12]) + U11([V ∗

11,∆(W12)])

= ∆(U11)V ∗
11W12 + U11∆(V11)∗W12 + U11V

∗
11∆(W12).

Comparing the above two identities, we get
(
∆(U11V

∗
11) − ∆(U11)V ∗

11 −
U11∆(V11)∗)W12 = 0. In other words

(
∆(U11V11) − ∆(U11)V11 − U11∆(V11)

)
PRQ = 0.

Since R is prime, it follows that
(
∆(U11V

∗
11) − ∆(U11)V ∗

11 −U11∆(V11)∗)P =
0. Hence, ∆(U11V

∗
11) = ∆(U11)V ∗

11 + U11∆(V11)∗ as ∆(A11) ⊆ A11. Since
U∗

11 = PU∗
11, we see that ∆(U∗

11) = ∆(PU∗
11) = ∆(U11)∗. Thus ∆(U11V11) =

∆(U11)V11 + U11∆(V11). Similarly, ∆(U22V22) = ∆(U22)V22 + U22∆(V22).

Lemma 3.14. Let U12 ∈ A12 and W21 ∈ A21. Then ∆(U12W21) =
∆(U12)W21 + U12∆(W21) and ∆(U21W12) = ∆(U21)W12 + U21∆(W12).
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Proof. For any W21 ∈ A21, by Lemmas 3.8 & 3.10, we compute

φ([[V ∗
12, U12],W ∗

12]) = φ(V ∗
12U12W

∗
12 +W ∗

12U12V
∗

12)

= ∆(V ∗
12U12W

∗
12 +W ∗

12U12V
∗

12)

= ∆(V ∗
12U12W

∗
12) + ∆(W ∗

12U12V
∗

12)

= ∆(V12)∗U12W
∗
12 + V ∗

12∆(U12W
∗
12)

+ ∆(W ∗
12U12)V ∗

12 +W ∗
12U12∆(V12)∗.

On the other hand, by Lemmas 3.5 & 3.8 we have

φ([[V ∗
12, U12],W ∗

12])

= [[φ(V12)∗, U12],W ∗
12] + [[V ∗

12, φ(U12)],W ∗
12] + [[V ∗

12, U12], φ(W12)∗]

= [[∆(V12)∗, U12],W ∗
12] + [[V ∗

12,∆(U12)],W ∗
12] + [[V ∗

12, U12],∆(W12)∗]

= ∆(V12)∗U12W
∗
12 +W ∗

12U12∆(V12)∗ + V ∗
12∆(U12)W ∗

12

+W ∗
12∆(U12)V ∗

12 + V ∗
12U12∆(W12)∗ + ∆(W12)∗U12V

∗
12.

Comparing the above two identities, we arrive at

V ∗
12

(
∆(U12W

∗
12) − ∆(U12)W ∗

12 − U12∆(W12)∗)

=
(

− ∆(W ∗
12U12) + ∆(W12)∗U12 +W ∗

12∆(U12)
)
V ∗

12.

By using Lemma 2.9, we see that

∆(U12W
∗
12) − ∆(U12)W ∗

12 − U12∆(W12)∗ − ∆(W ∗
12U12)

+ ∆(W12)∗U12 +W ∗
12∆(U12) = C ∈ C.

From the later relation we obtain the two identities

∆(U12W
∗
12) − ∆(U12)W ∗

12 − U12∆(W12)∗ = PC

and

∆(W ∗
12U12) − ∆(W12)∗U12 −W ∗

12∆(U12) = −QC.
Since ∆(W ∗

21) = ∆(W21)∗, we have

(3.3)
∆(U12W21) − ∆(U12)W21 − U12∆(W21)

= ∆(U12(W ∗
21)∗) − ∆(U12)W21 − U12∆(W ∗

21)∗ = PC.

Similarly, we obtain the other identity as

∆(W21U12) − ∆(W21)U12 −W21∆(U12) = −QC.(3.4)

Now it is sufficient to show that C = 0. Assume C 6= 0. Then by using
equations (3.3) and (3.4) together with Lemma 3.10, we have

∆(U12W21U12)

= ∆(U12)W21U12 + U12∆(W21U12)

= ∆(U12)W21U12 + U12∆(W21)U12 + U12W21∆(U12) − CU12,
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and

∆(U12W21U12)

= ∆(U12W21)U12 + U12W21∆(U12)

= ∆(U12)W21U12 + U12∆(W21)U12 + U12W21∆(U12) + CU12.

Comparing the above two identities, we obtain CU12 = 0. Since C is a field,
we have U12 = 0, a contradiction. Consequently, ∆(U12W21) = ∆(U12)W21 +
U12∆(W21) and ∆(U21W12) = ∆(U21)W12 + U21∆(W12).

Proof of Theorem 3.3. Let U, V ∈ R. Assume that U = U11 +U12 +
U21 + U22 and V = V11 + V12 + V21 + V22. By Lemmas 3.8-3.14, we see that

∆(UV ) = ∆((U11 + U12 + U21 + U22)(V11 + V12 + V21 + V22))

= ∆(U11V11 + U11V12 + U12V21 + U12V22 + U21V11

+ U21V12 + U22V21 + U22V22)

= ∆(U11V11 + U12V21) + ∆(U11V12 + U12V22)

+ ∆(U21V11 + U22V21) + ∆(U21V12 + U22V22)

= ∆(U11V11) + ∆(U12V21) + ∆(U11V12) + ∆(U12V22)

+ ∆(U21V11) + ∆(U22V21) + ∆(U21V12) + ∆(U22V22)

= ∆(U11)V11 + U11∆(V11) + ∆(U12)V21 + U12∆(V21)

+ ∆(U11)V12 + U11∆(V12) + ∆(U12)V22 + U12∆(V22)

+ ∆(U21)V11 + U21∆(V11) + ∆(U22)V21 + U22∆(V21)

+ ∆(U21)V12 + U21∆(V12) + ∆(U22)V22 + U22∆(V22)

= (U11 + U12 + U21 + U22)∆(V11 + V12 + V21 + V22)

+ ∆(U11 + U12 + U21 + U22)(V11 + V12 + V21 + V22)

= U∆(V ) + ∆(U)V.

It is easy to show that ∆(U∗) = ∆(U)∗. Hence, ∆ is an additive ∗-derivation.
Now using the definition of ξ, we see that

ξ(U + V ) = φ(U + V ) − ∆(U + V )

= φ(U) + φ(V ) + ZU,V − ∆(U) − ∆(V )

= ξ(U) + ξ(V ) + ZU,V .

and

ξ([U, V ]) = φ([U, V ]) − ∆([U, V ])

= [φ(U∗)∗, V ] + [U, φ(V )] − ∆([U, V ])

= [∆(U), V ] + [U,∆(V )] − ∆([U, V ]) = 0.

Finally, let us define ψ(U) = ∆(U) − (SU − US) for all U ∈ R, where
S = Pd(P )Q−Qd(P )P . It is easy to check that ψ is an additive ∗-derivation
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on R. By the definitions of ∆ and φ, ψ is an additive ∗-derivation and d(U) =
ψ(U) + ξ(U) for all U ∈ R.

We conclude this section by the following result. Recall that a von Neu-
mann algebra M is called a factor if its centre is CI. It is to be noted that
every factor von Neumann algebra is prime. So we have the following imme-
diate corollary.

Corollary 3.15. Let M be a factor von Neumann algebra. Suppose that
a mapping d : M → M satisfies

d([U∗, V ]) = [d(U)∗, V ] + [U∗, d(V )]

for all U, V ∈ M. Then there exists λU,V ∈ C such that d(U + V ) = d(U) +
d(V ) + λU,V and d = ψ + ξ, where ψ is an additive ∗-derivation on M and ξ
is a mapping from M into C such that ξ(U + V ) = ξ(U) + ξ(V ) + λU,V and
ξ([U, V ]) = 0 for all U, V ∈ M.
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Karakterizacije ∗-Liejevih derivabilnih preslikavanja na prostim

∗-prstenima

Ahmad N. Alkenani, Mohammad Ashraf i Bilal Ahmad Wani

Sažetak. Neka je R ∗-prsten koji sadrži netrivijalni samoad-
jungirajući idempotentni element. U ovom članku se pokazuje da
uz izvjesne pretpostavke na R, ako preslikavanje d : R → R
zadovoljava

d([U∗
, V ]) = [d(U)∗

, V ] + [U∗
, d(V )]

za sve U, V ∈ R, tada postoji ZU,V ∈ Z(R) (koji ovisi o U i
V ), gdje je Z(R) u centru od R, tako da vrijedi d(U + V ) =
d(U)+d(V )+ZU,V . Štoviše, ako je R slobodan od 2-torzije prosti
∗-prsten, tada je d = ψ + ξ, gdje je ψ aditivna ∗-derivacija od R

u njegov centralni zatvarač T i ξ je preslikavanje s R u njegov
prošireni centroid C tako da ξ(U + V ) = ξ(U) + ξ(V ) + ZU,V i
ξ([U, V ]) = 0 za sve U, V ∈ R. Naposljetku, gornji rezultati iz
teorije prstena primijenjeni su na neke specijalne klase algebri kao
što su ugniježdene algebre i von Neumannove algebre.
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