CHARACTERIZATIONS OF *-LIE DERIVABLE MAPPINGS ON PRIME *-RINGS

Ahmad N. Alkenani, Mohammad Ashraf and Bilal Ahmad Wani

ABSTRACT. Let \mathcal{R} be a *-ring containing a nontrivial self-adjoint idempotent. In this paper it is shown that under some mild conditions on \mathcal{R} , if a mapping $d: \mathcal{R} \to \mathcal{R}$ satisfies

$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)]$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ (depending on U and V), where $\mathcal{Z}(\mathcal{R})$ is the center of \mathcal{R} , such that $d(U+V) = d(U) + d(V) + Z_{U,V}$. Moreover, if \mathcal{R} is a 2-torsion free prime *-ring additionally, then $d = \psi + \xi$, where ψ is an additive *-derivation of \mathcal{R} into its central closure \mathcal{T} and ξ is a mapping from \mathcal{R} into its extended centroid \mathcal{C} such that $\xi(U+V) =$ $\xi(U) + \xi(V) + Z_{U,V}$ and $\xi([U,V]) = 0$ for all $U, V \in \mathcal{R}$. Finally, the above ring theoretic results have been applied to some special classes of algebras such as nest algebras and von Neumann algebras.

1. INTRODUCTION

Throughout this paper \mathcal{R} will denote an associative ring with the center $\mathcal{Z}(\mathcal{R})$. Recall that a ring \mathcal{R} is said to be *n*-torsion free, where n > 1 is an integer, if nU = 0 implies U = 0 for all $U \in \mathcal{R}$. A ring \mathcal{R} is said to be prime if for any $U, V \in \mathcal{R}, U\mathcal{R}V = \{0\}$ implies U = 0 or V = 0. An additive mapping $x \mapsto x^*$ on a ring \mathcal{R} is called involution in case $(UV)^* = V^*U^*$ and $(U^*)^* = U$ hold for all $U, V \in \mathcal{R}$. A ring equipped with an involution is called a ring with involution or *-ring (see [7]). An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be a derivation on \mathcal{R} if d(UV) = d(U)V + Ud(V) for all $U, V \in \mathcal{R}$. In particular, derivation d is called an inner derivation if there exists some $X \in \mathcal{R}$ such that d(U) = UX - XU for all $U \in \mathcal{R}$. An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is called a Lie derivation if d([U, V]) = [d(U), V] + [U, d(V)] holds for all $U, V \in \mathcal{R}$, where [U, V] = UV - VU is the usual Lie product. If the condition of additivity is dropped from the above definition, then the corresponding Lie derivation is

²⁰¹⁰ Mathematics Subject Classification. 16N60, 16W25, 16W10.

Key words and phrases. Prime rings, Lie derivable mappings, involution, extended centroid, central closure.

⁵¹

called a Lie derivable map. Obviously, every derivation is a Lie derivation. However, the converse statements are not true in general.

Let \mathcal{R} be a *-ring. An additive mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be an additive *-derivation on \mathcal{R} if d(UV) = d(U)V + Ud(V) and $d(U^*) = d(U)^*$ for all $U, V \in \mathcal{R}$. More generally, a mapping $d : \mathcal{R} \to \mathcal{R}$ is said to be a *-Lie derivable mapping if $d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)]$. Indeed, if $d(U^*) = d(U)^*$ for all $U \in \mathcal{R}$, then d is a Lie derivable mapping if and only if d is a *-Lie derivable mapping. An additive *-Lie derivable mapping is said to be a *-Lie derivation. It is not difficult to observe that any *-derivation is a *-Lie derivation but the converse is not true in general.

There has been a great interest in the study of characterizations of Lie derivations and *-Lie derivations for many years. The first quite surprising result is due to Martindale III who proved that every multiplicative bijective mapping from a prime ring containing a nontrivial idempotent onto an arbitrary ring is additive (see [14]). Miers [16] initially established that every Lie derivation d on a von Neumann algebra \mathfrak{A} can be uniquely written as the sum $d = \psi + \xi$ where ψ is an inner derivation of \mathfrak{A} and ξ is a linear mapping from \mathfrak{A} into its center $Z(\mathfrak{A})$ vanishing on each commutator. Yu and Zhang [18] proved that every Lie derivable mapping of a triangular algebra is the sum of an additive derivation and a mapping from triangular algebra into its center sending commutators to zero. Mathieu and Villena [15] gave the characterizations of Lie derivations on C^* -algebras. W. Jing and F. Lu [8] showed that every Lie derivable mapping on a 2-torsion free prime ring \mathcal{R} can be expressed as $d = \psi + \xi$, where $\psi : \mathcal{R} \to \mathcal{T}$ is an additive derivation and $\xi : \mathcal{R} \to \mathcal{C}$ is nearly additive i.e. $\xi(U+V) = \xi(U) + \xi(V) + Z_{U,V}$ where $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ (depending on U and V in \mathcal{R}) and vanishes on each commutator. Yu and Zhang [19] proved that every *-Lie derivable mapping from a factor von Neumann algebra into itself is an additive *-derivation. Also, Li, Chen and Wang [9] obtained the same result for *-Lie derivable mappings on von Neumann algebras and proved that every *-Lie derivable mapping on a von Neumann algebra with no central abelian projections can be expressed as the sum of an additive *-derivation and a mapping with image in the centre vanishing on commutators. In addition, the characterization of Lie derivations and *-Lie derivations on various algebras are considered in[1], [2], [5], [4], [6], [8], [12], [13], [17], [20].

Motivated by the results due to W. Jing & F. Lu [8] and C. Li et al. [9], in Section 2, we investigate the additivity of *-Lie derivable mappings on *-rings and show that every *-Lie derivable mapping on \mathcal{R} is almost additive in the sense that for any $U, V \in \mathcal{R}$ there exists $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ (depending on U and V) such that $d(U + V) = d(U) + d(V) + Z_{U,V}$. In Section 3, we study the characterization of *-Lie derivable mappings on prime *-rings. Under some mild conditions on \mathcal{R} , we prove that, if d is an additive Lie derivable mapping on \mathcal{R} , then $d = \psi + \xi$, where ψ is an additive *-derivation of \mathcal{R} into its central closure \mathcal{T} and ξ is a mapping from \mathcal{R} into its extended centroid \mathcal{C} such that $\xi(U+V) = \xi(U) + \xi(V) + Z_{U,V}$ and $\xi([U,V]) = 0$ for all $U, V \in \mathcal{R}$. Finally, the above ring theoretic results have been applied to some special class of algebras such as nest algebras and von Neumann algebras.

2. Additivity of *-Lie derivable mappings on *-rings

In this section, we examine the additivity of *-Lie derivable mappings on rings. Let \mathcal{R} be a *-ring with a nontrivial self-adjoint idempotent P. We write Q = I - P. It is to be noted that \mathcal{R} may be without identity element. It is obvious that PQ = QP = 0. By the Peirce decomposition of \mathcal{R} , we have $\mathcal{R} = \mathfrak{A}_{11} + \mathfrak{A}_{12} + \mathfrak{A}_{21} + \mathfrak{A}_{22}$, where $\mathfrak{A}_{11} = P\mathcal{R}P$, $\mathfrak{A}_{12} = P\mathcal{R}Q$, $\mathfrak{A}_{21} = Q\mathcal{R}P$ and $\mathfrak{A}_{22} = Q\mathcal{R}Q$. Throughout this paper, U_{ij} will denote an arbitrary element of \mathfrak{A}_{ij} and any element $U \in \mathcal{R}$ can be expressed as $U = U_{11} + U_{12} + U_{21} + U_{22}$.

The main result of this section starts as follows.

THEOREM 2.1. Let \mathcal{R} be a *-ring containing a nontrivial self-adjoint idempotent P and satisfying the following conditions:

- (G₁) If $U_{ii}V_{ij} = V_{ij}U_{jj}$ for all $V_{ij} \in \mathfrak{A}_{ij}$ and $1 \leq i \neq j \leq 2$, then $U_{ii} + U_{jj} \in \mathcal{Z}(\mathcal{R})$.
- (G₂) If $U_{ij}V_{jk} = 0$ for all $V_{jk} \in \mathfrak{A}_{jk}$ and $1 \leq i, j, k \leq 2$, then $U_{ij} = 0$.

If a mapping $d : \mathcal{R} \to \mathcal{R}$ satisfies

$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)],$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ such that $d(U + V) = d(U) + d(V) + Z_{U,V}$.

Throughout assume that \mathcal{R} satisfies the hypothesis of Theorem 2.1. The proof of the above theorem is given in a series of the following Lemmas.

LEMMA 2.2. d(0) = 0.

PROOF.
$$d(0) = d([0^*, 0]) = [d(0)^*, 0] + [0^*, d(0)] = 0.$$

LEMMA 2.3. For any $U_{ii} \in \mathfrak{A}_{ii}, V_{ij} \in \mathfrak{A}_{ij}, 1 \leq i \neq j \leq 2$, there exists $Z_{U_{ii},V_{ij}} \in \mathcal{Z}(\mathcal{R})$ such that

(i) $d(U_{ii} + V_{ij}) = d(U_{ii}) + d(V_{ij}) + Z_{U_{ii},V_{ij}},$ (ii) $d(U_{ii} + V_{ji}) = d(U_{ii}) + d(V_{ji}) + Z_{U_{ii},V_{ji}}.$

PROOF. (i) Let $A = d(U_{ii} + V_{ij}) - d(U_{ii}) - d(V_{ij})$. For any $U_{ii} \in \mathfrak{A}_{ii}$, $V_{ij} \in \mathfrak{A}_{ij}$, we have

$$d(V_{ij}) = d([P^*, U_{ii} + V_{ij}])$$

= $[d(P)^*, U_{ii} + V_{ij}] + [P^*, d(U_{ii} + V_{ij})].$

On the other hand by Lemma 2.2, we have

$$d(V_{ij}) = d([P^*, U_{ii}]) + d([P^*, V_{ij}])$$

= $[d(P)^*, U_{ii} + V_{ij}] + [P^*, d(U_{ii}) + d(V_{ij})].$

Comparing the above two identities, we get [P, A] = 0. Hence $A_{ij} = A_{ji} = 0$. For any $W_{ji} \in \mathfrak{A}_{ji}$, we compute

$$d(-U_{ii}W_{ji}^*) = d([W_{ji}^*, U_{ii} + V_{ij}])$$

= $[d(W_{ji})^*, U_{ii} + V_{ij}] + [W_{ji}^*, d(U_{ii} + V_{ij})]$

Using Lemma 2.2, $d(-U_{ii}W_{ji}^*)$ can also be expressed as

$$d(-U_{ii}W_{ji}^*) = d([W_{ji}^*, U_{ii}]) + d([W_{ji}^*, V_{ij}])$$

= $[d(W_{ji})^*, U_{ii} + V_{ij}] + [W_{ji}^*, d(U_{ii}) + d(V_{ij})].$

From the above two equations it follows that $[W_{ji}^*, A] = 0$. In other words $W_{ji}^*A = AW_{ji}^*$ for all $W_{ji} \in \mathfrak{A}_{ji}$. By the condition (G_1) , we see that $A_{ii} + A_{jj} \in \mathcal{Z}(\mathcal{R})$. Hence $d(U_{ii} + V_{ij}) = d(U_{ii}) + d(V_{ij}) + Z_{U_{ii},V_{ij}}$ for some $Z_{U_{ii},V_{ij}} \in \mathcal{Z}(\mathcal{R})$. Similarly, one can get (ii).

LEMMA 2.4. For any $U_{ij}, V_{ij} \in \mathfrak{A}_{ij}, 1 \leq i \neq j \leq 2$, we have

$$d(U_{ij} + V_{ij}) = d(U_{ij}) + d(V_{ij}).$$

PROOF. By Lemma 2.3, we see that

$$\begin{aligned} d(U_{ij} + V_{ij}) &= d([(U_{ij}^* + P)^*, V_{ij} + Q]) \\ &= [d(U_{ij}^* + P)^*, V_{ij} + Q] + [(U_{ij}^* + P)^*, d(V_{ij} + Q)] \\ &= [d(U_{ij}^*)^* + d(P)^*, V_{ij} + Q] + [(U_{ij}^* + P)^*, d(V_{ij}) + d(Q)] \\ &= [d(U_{ij}^*)^*, V_{ij}] + [d(U_{ij}^*)^*, Q] + [d(P)^*, V_{ij}] + [d(P)^*, Q] \\ &+ [U_{ij}, d(V_{ij})] + [U_{ij}, d(Q)] + [P, d(V_{ij})] + [P, d(Q)] \\ &= d([(U_{ij}^*)^*, V_{ij}]) + d([(U_{ij}^*)^*, Q]) + d([P^*, V_{ij}]) + d([P^*, Q]) \\ &= d(U_{ij}) + d(V_{ij}). \end{aligned}$$

LEMMA 2.5. For any $U_{ii}, V_{ii} \in \mathfrak{A}_{\mathfrak{i}\mathfrak{i}}, i = 1, 2$, there exists $Z_{U_{ii}, V_{ii}} \in \mathcal{Z}(\mathcal{R})$ such that

$$d(U_{ii} + V_{ii}) = d(U_{ii}) + d(V_{ii}) + Z_{U_{ii}, V_{ii}}$$

PROOF. Let $A = d(U_{11} + V_{11}) - d(U_{11}) - d(V_{11})$. For any $U_{11}, V_{11} \in \mathfrak{A}_{11}$, we have

$$0 = d([Q^*, U_{11} + V_{11}])$$

= $[d(Q)^*, U_{11} + V_{11}] + [Q^*, d(U_{11} + V_{11})]$

On the other hand, we have

$$0 = d([Q^*, U_{11}]) + d([Q^*, V_{11}])$$

= $[d(Q)^*, U_{11} + V_{11}] + [Q^*, d(U_{11}) + d(V_{11})].$

Comparing the above two identities, we get [Q, A] = 0. Hence $A_{12} = A_{21} = 0$. For any $W_{12} \in \mathfrak{A}_{12}$, we compute

$$d(W_{12}^*(U_{11} + V_{11})) = d([W_{12}^*, U_{11} + V_{11}])$$

= $[d(W_{12})^*, U_{11} + V_{11}] + [W_{12}^*, d(U_{11} + V_{11})].$

On the other hand by using Lemma 2.4, we have

$$d(W_{12}^*(U_{11} + V_{11})) = d(W_{12}^*U_{11}) + d(W_{12}^*V_{11})$$

= $d([W_{12}^*, U_{11}]) + d([W_{12}^*, V_{11}])$
= $[d(W_{12})^*, U_{11} + V_{11}] + [W_{12}^*, d(U_{11}) + d(V_{11})]$

Comparing the above two equations, we have $[W_{12}^*, A] = 0$. Thus $W_{12}^*A_{11} = A_{22}W_{12}^*$ for all $W_{12} \in \mathfrak{A}_{12}$. By using the condition (G_1) , we see that $A_{11} + A_{22} \in \mathcal{Z}(\mathcal{R})$. Therefore $d(U_{11} + V_{11}) = d(U_{11}) + d(V_{11}) + Z_{U_{11},V_{11}}$ for all $U_{11}, V_{11} \in \mathfrak{A}_{11}$ and for some $Z_{U_{11},V_{11}} \in \mathcal{Z}(\mathcal{R})$. Similarly, the result is true for the case when i = 2.

LEMMA 2.6. For any $U_{12} \in \mathfrak{A}_{12}$ and $V_{21} \in \mathfrak{A}_{21}$, we have

$$d(U_{12} + V_{21}) = d(U_{12}) + d(V_{21})$$

PROOF. Suppose $A = d(U_{12} + V_{21}) - d(U_{12}) - d(V_{21})$. For any $U_{12} \in \mathfrak{A}_{12}$ and $V_{21} \in \mathfrak{A}_{21}$, we compute

$$d(U_{12} + V_{21}) = d([P^*, U_{12} - V_{21}])$$

= $[d(P)^*, U_{12} - V_{21}] + [P^*, d(U_{12} - V_{21})]$
= $d([P^*, U_{12}]) - [P, d(U_{12})] + d([P^*, -V_{21}]) - [P^*, d(-V_{21})]$
+ $[P^*, d(U_{12} - V_{21})]$
= $d(U_{12}) + d(V_{21}) + [P^*, d(U_{12} - V_{21}) - d(U_{12}) - d(-V_{21})].$

Consequently $A = P(d(U_{12} - V_{21}) - d(U_{12}) - d(-V_{21})) - (d(U_{12} - V_{21}) - d(U_{12}) - d(-V_{21}))P$. Hence we see that $A_{11} = A_{22} = 0$.

For any $W_{12} \in \mathfrak{A}_{12}$, we have

$$d([W_{12}^*, U_{12}]) = d([W_{12}^*, U_{12} + V_{21}])$$

= $[d(W_{12})^*, U_{12} + V_{21}] + [W_{12}^*, d(U_{12} + V_{21})].$

On the other hand, by Lemma, 2.2 we have

$$d([W_{12}^*, U_{12}]) = d([W_{12}^*, U_{12}]) + d([W_{12}^*, V_{21}])$$

= $[d(W_{12})^*, U_{12} + V_{21}] + [W_{12}^*, d(U_{12}) + d(V_{21})].$

Comparing the above two identities, we get $[W_{12}^*, A] = 0$. This gives that $A_{12}W_{12}^* = 0$ for all $W_{12} \in \mathfrak{A}_{12}$. By the condition (G_2) , we see that $A_{12} = 0$. Similarly, we obtain that $A_{21} = 0$. Thus we are done.

LEMMA 2.7. For any $U_{11} \in \mathfrak{A}_{11}$, $V_{12} \in \mathfrak{A}_{12}$ and $W_{22} \in \mathfrak{A}_{22}$, we have

$$d(U_{11} + V_{12} + W_{22}) = d(U_{11}) + d(V_{12}) + d(W_{22}) + Z_{U_{11}, V_{12}, W_{22}}$$

PROOF. Suppose $A = d(U_{11} + V_{12} + W_{22}) - d(U_{11}) - d(V_{12}) - d(W_{22})$. For any $U_{11} \in \mathfrak{A}_{11}, V_{12} \in \mathfrak{A}_{12}$ and $W_{22} \in \mathfrak{A}_{22}$, we compute

$$d(V_{12}) = d([P^*, U_{11} + V_{12} + W_{22}])$$

= $[d(P)^*, U_{11} + V_{12} + W_{22}] + [P^*, d(U_{11} + V_{12} + W_{22})].$

On the other hand, by Lemma, 2.2 we have

$$d(V_{12}) = d([P^*, U_{11}]) + d([P^*, V_{12}]) + d([P^*, W_{22}])$$

= $[d(P)^*, U_{11} + V_{12} + W_{22}] + [P^*, d(U_{11}) + d(V_{12}) + d(W_{22})].$

Comparing the above two identities, we get $[P^*, A] = 0$. This gives that $A_{12} = A_{21} = 0$.

Now for any $S_{21} \in \mathfrak{A}_{21}$, we see that

$$d([S_{21}^*, U_{11} + V_{12} + W_{22}])$$

= $[d(S_{21})^*, U_{11} + V_{12} + W_{22}] + [S_{21}^*, d(U_{11} + V_{12} + W_{22})].$

On the other hand, by Lemmas 2.2 & 2.4 we have

$$d([S_{21}^*, U_{11} + V_{12} + W_{22}]) = d([S_{21}^*, U_{11} + W_{22}]) + d([S_{21}^*, V_{12}])$$

= $d(S_{21}^*W_{22} - U_{11}S_{21}^*) + d([S_{21}^*, V_{12}])$
= $d(S_{21}^*W_{22}) + d(-U_{11}S_{21}^*) + d([S_{21}^*, V_{12}])$
= $d([S_{21}^*, W_{22}]) + d([S_{21}^*, U_{11}]) + d([S_{21}^*, V_{12}])$
= $[d(S_{21})^*, U_{11} + V_{12} + W_{22}]$
+ $[S_{21}^*, d(U_{11}) + d(V_{12}) + d(W_{22})].$

Comparing the above two identities, we get $[S_{21}^*, A] = 0$. This gives that $S_{21}^*A_{22} = A_{11}S_{21}^*$ for all $S_{21} \in \mathfrak{A}_{21}$. By the condition (G_1) , we get $A_{11} + A_{22} \in \mathcal{Z}(\mathcal{R})$. Thus we have obtained that $d(U_{11} + V_{12} + W_{22}) = d(U_{11}) + d(V_{12}) + d(W_{22}) + Z_{U_{11},V_{12},W_{22}}$ for some $Z_{U_{11},V_{12},W_{22}} \in \mathcal{Z}(\mathcal{R})$.

LEMMA 2.8. For any $U_{11} \in \mathfrak{A}_{11}$, $V_{12} \in \mathfrak{A}_{12}$, $W_{21} \in \mathfrak{A}_{21}$ and $X_{22} \in \mathfrak{A}_{22}$, we have

$$d(U_{11} + V_{12} + W_{21} + X_{22})$$

= $d(U_{11}) + d(V_{12}) + d(W_{21}) + d(X_{22}) + Z_{U_{11},V_{12},W_{21},X_{22}}$

PROOF. Assume $A = d(U_{11} + V_{12} + W_{21} + X_{22}) - d(U_{11}) - d(V_{12}) - d(W_{21}) - d(X_{22})$. For any $U_{11} \in \mathfrak{A}_{11}$, $V_{12} \in \mathfrak{A}_{12}$, $W_{21} \in \mathfrak{A}_{21}$ and $X_{22} \in \mathfrak{A}_{22}$, we see that

$$d(V_{12} - W_{21}) = d([P^*, U_{11} + V_{12} + W_{21} + X_{22}])$$

= $[d(P)^*, U_{11} + V_{12} + W_{21} + X_{22}]$
+ $[P^*, d(U_{11} + V_{12} + W_{21} + X_{22})].$

On the other hand, by using Lemmas 2.2 & 2.6, we have

$$d(V_{12} - W_{21}) = d([P^*, U_{11}]) + d([P^*, V_{12}]) + d([P^*, W_{21}]) + d([P^*, X_{22}])$$

= $[d(P)^*, U_{11} + V_{12} + W_{21} + X_{22}]$
+ $[P^*, d(U_{11}) + d(V_{12}) + d(W_{21}) + d(X_{22})].$

Comparing the above two equations, we have [P, A] = 0. This gives that $A_{12} = A_{21} = 0$.

Now for any $S_{12} \in \mathfrak{A}_{12}$, we compute

$$d([S_{12}^*, U_{11} + V_{12} + W_{21} + X_{22}])$$

= $[d(S_{12})^*, U_{11} + V_{12} + W_{21} + X_{22}] + [S_{12}^*, d(U_{11} + V_{12} + W_{21} + X_{22})].$

On the other hand, by using Lemma 2.7, we have

$$\begin{aligned} d([S_{12}^*, U_{11} + V_{12} + W_{21} + X_{22}]) \\ &= d([S_{12}^*, U_{11} + V_{12} + X_{22}]) + d([S_{12}^*, W_{21}]) \\ &= [d(S_{12})^*, U_{11} + V_{12} + X_{22}] + [S_{21}^*, d(U_{11}) + d(V_{12}) + d(X_{22})] \\ &+ [d(S_{12})^*, W_{21}] + [S_{12}^*, d(W_{21})] \\ &= [d(S_{12})^*, U_{11} + V_{12} + W_{21} + X_{22}] \\ &+ [S_{21}^*, d(U_{11}) + d(V_{12}) + d(W_{21}) + d(X_{22})]. \end{aligned}$$

Comparing the above two identities, we get $[S_{12}^*, A] = 0$. This gives that $S_{12}^*A_{11} = A_{22}S_{12}^*$ for all $S_{12} \in \mathfrak{A}_{12}$. By using condition (G_1) , we see that $A_{11} + A_{22} \in \mathcal{Z}(\mathcal{R})$. Thus we have obtained that $d(U_{11} + V_{12} + W_{21} + X_{22}) = d(U_{11}) + d(V_{12}) + d(W_{21}) + d(X_{22}) + Z_{U_{11},V_{12},W_{21},X_{22}}$ for some $Z_{U_{11},V_{12},W_{21},X_{22}} \in \mathcal{Z}(\mathcal{R})$.

$$\begin{split} & \text{PROOF OF THEOREM 2.1. Now take } U = U_{11} + U_{12} + U_{21} + U_{22} \text{ and} \\ & V = V_{11} + V_{12} + V_{21} + V_{22}. \text{ By using Lemmas 2.4, 2.5 & 2.8, we see that} \\ & d(U+V) = d(U_{11} + U_{12} + U_{21} + U_{22} + V_{11} + V_{12} + V_{21} + V_{22}) \\ & = d((U_{11} + V_{11}) + (U_{12} + V_{12}) + (U_{21} + V_{21}) + (U_{22} + V_{22})) \\ & = d(U_{11} + V_{11}) + d(U_{12} + V_{12}) + d(U_{21} + V_{21}) \\ & + d(U_{22} + V_{22}) + Z_1 \\ & = d(U_{11}) + d(V_{11}) + Z_2 + d(U_{12}) + d(V_{12}) + d(U_{21}) \\ & + d(V_{21}) + d(U_{22}) + d(V_{22}) + Z_3 + Z_1 \\ & = (d(U_{11}) + d(U_{12}) + d(U_{21}) + d(U_{22})) + (d(V_{11}) \\ & + d(V_{12}) + d(V_{21}) + d(V_{22})) + Z_1 + Z_2 + Z_3 \\ & = d(U_{11} + U_{12} + U_{21} + U_{22}) - Z_4 + d(V_{11} + V_{12} + V_{21} + V_{22}) \\ & - Z_5 + Z_1 + Z_2 + Z_3 \\ & = d(U) + d(V) + (Z_1 + Z_2 + Z_3 - Z_4 - Z_5). \end{split}$$

Take $Z_{U,V} = Z_1 + Z_2 + Z_3 - Z_4 - Z_5$. Thus we see that $d(U + V) = d(U) + d(V) + Z_{U,V}$ for some $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$. This completes the proof of our main theorem.

Now we apply Theorem 2.1 to prime *-rings and nest algebras. We begin with the following important lemma.

LEMMA 2.9. Let \mathcal{R} be a prime *-ring containing a nontrivial self-adjoint idempotent P with centre $\mathcal{Z}(\mathcal{R})$.

- (i) If $U_{ij}V_{jk} = 0$ for all $V_{jk} \in \mathfrak{A}_{j\mathfrak{k}}$ and $1 \leq i, j, k \neq 2$ then $U_{ij} = 0$.
- (*ii*) If $U_{11}V_{12} = V_{12}U_{22}$ for all $V_{12} \in \mathfrak{A}_{12}$, then $U_{11} + U_{22} \in \mathcal{Z}(\mathcal{R})$.

PROOF. (i) is the direct consequence of the primeness of \mathcal{R} .

(*ii*) For any $V_{11} \in \mathfrak{A}_{11}$ and $V_{12} \in \mathfrak{A}_{12}$, we get $U_{11}V_{11}V_{12} = V_{11}V_{12}U_{22} = V_{11}U_{11}V_{12}$ for all $V_{12} \in \mathfrak{A}_{12}$. As \mathcal{R} is prime, we have $U_{11}V_{11} = V_{11}U_{11}$.

For any $V_{12} \in \mathfrak{A}_{12}$ and $V_{22} \in \mathfrak{A}_{22}$, we get $V_{12}V_{22}U_{22} = U_{11}V_{12}V_{22} = V_{12}U_{22}V_{22}$ for all $V_{12} \in \mathfrak{A}_{12}$. It follows by the primeness of \mathcal{R} that $V_{22}U_{22} = U_{22}V_{22}$.

For any $V_{12} \in \mathfrak{A}_{12}$ and $V_{21} \in \mathfrak{A}_{21}$, we get $U_{22}V_{21}V_{12} = V_{21}V_{12}U_{22} = V_{21}U_{11}V_{12}$ for all $V_{12} \in \mathfrak{A}_{12}$. It follows that $U_{22}V_{21} = V_{21}U_{11}$.

For any $V \in \mathcal{R}$, we have

$$(U_{11} + U_{22})V = (U_{11} + U_{22})(V_{11} + V_{12} + V_{21} + V_{22})$$

= $U_{11}V_{11} + U_{11}V_{12} + U_{22}V_{21} + U_{22}V_{22}$
= $V_{11}U_{11} + V_{12}U_{22} + V_{21}U_{11} + V_{22}U_{22}$
= $(V_{11} + V_{12} + V_{21} + V_{22})(U_{11} + U_{22})$
= $V(U_{11} + U_{22}).$

Hence it follows that $U_{11} + U_{22} \in \mathcal{Z}(\mathcal{R})$.

It follows from Lemma 2.9 that every prime *-ring with nontrivial selfadjoint idempotent satisfies the conditions (G_1) and (G_2) of Theorem 2.1. So we have the following immediate corollary.

COROLLARY 2.10. Let \mathcal{R} be a prime *-ring containing a nontrivial selfadjoint idempotent P. If a mapping $d : \mathcal{R} \to \mathcal{R}$ satisfies

$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)],$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ such that $d(U + V) = d(U) + d(V) + Z_{U,V}$.

Let \mathcal{H} be a complex Hilbert space. Recall that a nest \mathcal{N} of projections on \mathcal{H} is a chain of orthogonal projections on \mathcal{H} containing zero operator 0 and the identity operator I and is closed in the strong operator topology. By $\mathcal{B}(\mathcal{H})$, we mean the algebra of all bounded linear operators on \mathcal{H} . The nest algebra $\mathcal{T}(\mathcal{N})$ corresponding to the nest \mathcal{N} is the set of all operators U in $\mathcal{B}(\mathcal{H})$ such that UP = PUP for all $P \in \mathcal{N}$. It is to be noted that $\mathcal{T}(\mathcal{N})$ is a weak *- closed operator algebra. A nest is said to be nontrivial if it contains at least one nontrivial projection. The centre of the nest algebra $\mathcal{T}(\mathcal{N})$ is $\mathbb{C}I$, where \mathbb{C} is the complex field. It is to be noted that by every nest algebra $\mathcal{T}(\mathcal{N})$ with non trivial projection P satisfies the conditions (G_1) and (G_2) of Theorem 2.1 (see [10, Lemma 2.6]). Thus we have the following immediate corollary.

COROLLARY 2.11. Let \mathcal{N} be a nontrivial nest on a complex Hilbert space \mathcal{H} and $\mathcal{T}(\mathcal{N})$ be the associated nest algebra. If a mapping $d: \mathcal{T}(\mathcal{N}) \to \mathcal{T}(\mathcal{N})$ satisfies

$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)]$$

for all $U, V \in \mathcal{T}(\mathcal{N})$, then there exists $\lambda_{U,V} \in \mathbb{C}$ such that $d(U + V) = d(U) + d(V) + \lambda_{U,V}I$.

3. Characterization of *-Lie derivable mappings on Prime *-rings

In this section, we list some notations and results which will be used frequently to prove our results. Let \mathcal{R} be a prime *-ring containing a nontrivial self-adjoint idempotent P with the centre $\mathcal{Z}(\mathcal{R})$. The maximal right ring of quotients is denoted by $\mathcal{Q}_{mr}(\mathcal{R})$ and the two-sided right ring of quotients of \mathcal{R} by $\mathcal{Q}_r(\mathcal{R})$. The centre of $\mathcal{Q}_r(\mathcal{R})$ is called the extended centroid of \mathcal{R} and is denoted by \mathcal{C} . It is to be noted that \mathcal{C} of any prime ring is a field. The subring \mathcal{RC} of $\mathcal{Q}_{mr}(\mathcal{R})$ is called the central closure of \mathcal{R} which is also prime for any prime ring. We denote the central closure of \mathcal{R} by \mathcal{T} .

We facilitate our discussion with the following known results.

Π

LEMMA 3.1 ([3, Theorem 2.3.4]). If \mathcal{R} is a prime ring and $U, V \in \mathcal{Q}_{mr}(\mathcal{R})$ such that UXV = VXU for all $X \in \mathcal{R}$, then U = CV for some $C \in \mathcal{C}$. In otherwords U and V are C-dependent.

LEMMA 3.2 ([11, Lemma 2 (ii)]). For $U = U_{11} + U_{12} + U_{21} + U_{22} \in \mathcal{R}$. If $U_{ij}V_{jk} = 0$ for every $U_{ij} \in \mathfrak{A}_{ij}, 1 \leq i, j, k \leq 2$, then $V_{jk} = 0$. Dually, if $V_{ki}U_{ij} = 0$ for every $U_{ij} \in \mathfrak{A}_{ij}, 1 \leq i, j, k \leq 2$, then $V_{ki} = 0$.

THEOREM 3.3. Let \mathcal{R} be a 2-torsion free prime *-ring containing a nontrivial self-adjoint idempotent P. If a mapping $d : \mathcal{R} \to \mathcal{R}$ satisfies

(3.1)
$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)],$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ such that $d(U + V) = d(U) + d(V) + Z_{U,V}$ and $d = \psi + \xi$, where ψ is an additive *-derivation from \mathcal{R} into its central closure \mathcal{T} and ξ is a mapping from \mathcal{R} into its extended centroid \mathcal{C} such that $\xi(U + V) = \xi(U) + \xi(V) + Z_{U,V}$ and $\xi([U,V]) = 0$ for all $U, V \in \mathcal{R}$.

Now we shall use the hypothesis of Theorem 3.3 freely without any specific mention in proving the following lemmas.

LEMMA 3.4. For any non trivial self-adjoint idempotents P and Q = I - P, we have

(i)
$$Pd(P)P + Qd(P)Q \in \mathcal{Z}(\mathcal{R}),$$

(*ii*)
$$Pd(P)Q = Pd(P)^*Q$$
, $Qd(P)P = Qd(P)^*P$

Proof.

(i) For any $U_{12} \in \mathfrak{A}_{12}$, we have

$$d(U_{12}) = d([P^*, U_{12}])$$

= $[d(P)^*, U_{12}] + [P^*, d(U_{12})]$
= $d(P)^*U_{12} - U_{12}d(P)^* + P^*d(U_{12}) - d(U_{12})P^*$

Multiplying the above identity from the left by P and from the right by Q, we arrive at

$$Pd(P)^*PU_{12} = U_{12}Qd(P)^*Q.$$

By using Lemma 2.9, it follows that $Pd(P)P + Qd(P)Q \in \mathcal{Z}(\mathcal{R})$. (*ii*) We compute

$$0 = d([P^*, P])$$

= $[d(P)^*, P] + [P^*, d(P)]$
= $d(P)^*P - Pd(P)^* + Pd(P) - d(P)P.$

Multiplying the above identity from the left by P and from the right by Q, we arrive at $Pd(P)Q = Pd(P)^*Q$. Similarly, we can also obtain $Qd(P)P = Qd(P)^*P$.

In the sequel, we define $\phi : \mathcal{R} \to \mathcal{R}$ by

$$\phi(U) = d(U) + [S, U]$$
 for all $U \in \mathcal{R}$

where S = Pd(P)Q - Qd(P)P. It is to be noted that by Lemma 3.4, we have $S^* = -S$.

Lemma 3.5.

- (i) $\phi([U^*, V]) = [\phi(U)^*, V] + [U^*, \phi(V)],$
- (*ii*) $\phi(P) \in \mathcal{Z}(\mathcal{R})$,
- (*iii*) $\phi(Q) \in \mathcal{Z}(\mathcal{R}),$
- $(iv) \ \phi(U+V) = \phi(U) + \phi(V) + \mathcal{Z}_{U,V}, \ \mathcal{Z}_{U,V} \in \mathcal{Z}(\mathcal{R}),$
- (v) ϕ is additive on \mathfrak{A}_{ij} , $1 \leq i \neq j \leq 2$.

PROOF. Since (i), (iv) and (v) are easy to verify, we prove only (ii) and (iii).

(*ii*) By the definition of ϕ , we see that

$$\begin{split} \phi(P) &= d(P) + [S, P] \\ &= d(P) - Qd(P)P - Pd(P)Q \\ &= d(P)P + d(P)Q - Qd(P)P - Pd(P)Q \text{ {since }} P + Q = I \text{ } \\ &= Pd(P)P + Qd(P)Q \in \mathcal{Z}(\mathcal{R}). \end{split}$$

(*iii*) In order to prove that $\phi(Q) \in \mathcal{Z}(\mathcal{R})$, we first show that $\phi(PUQ + QUP) = P\phi(U)Q + Q\phi(U)P$ for all $U \in \mathcal{R}$. Since $[P^*, [P^*, U]] = PU - 2PUP + UP = PUQ + QUP$, it follows, applying (*i*) twice,

(3.2)
$$\phi(PUQ + QUP) = \phi([P^*, [P^*, U]]) = [P^*, [P^*, \phi(U)]]$$
$$= P\phi(U)Q + Q\phi(U)P.$$

By Lemma 3.4(i), $Pd(Q)P + Qd(Q)Q \in \mathcal{Z}(\mathcal{R})$. By the definition of ϕ , we see that

$$\phi(Q) = d(Q) + [S, Q] = d(Q) + Pd(P)Q + Qd(P)P.$$

The above equation gives us that $Pd(Q)P = P\phi(Q)P$ and $Qd(Q)Q = Q\phi(Q)Q$ and hence $Pd(Q)P + Qd(Q)Q = P\phi(Q)P + Q\phi(Q)Q$.

Now we know that $\phi(Q) = P\phi(Q)P + P\phi(Q)Q + Q\phi(Q)P + Q\phi(Q)Q$, by (3.2), we have

$$P\phi(Q)Q + Q\phi(Q)P = \phi(PQQ + QQP) = 0.$$

Consequently, we get
$$\phi(Q) = P\phi(Q)P + Q\phi(Q)Q \in \mathcal{Z}(\mathcal{R}).$$

LEMMA 3.6. $\phi(\mathfrak{A}_{ij}) \subseteq \mathfrak{A}_{ij}, 1 \leq i \neq j \leq 2.$

PROOF. For $U_{12} \in \mathfrak{A}_{12}$, we have $U_{12} = [P^*, U_{12}]$. Compute

$$\phi(U_{12}) = \phi([P^*, U_{12}]) = [P, \phi(U_{12})] = P\phi(U_{12}) - \phi(U_{12})P,$$

Π

and hence we see that $P\phi(U_{12})P = Q\phi(U_{12})P = Q\phi(U_{12})Q = 0$. This implies that $\phi(\mathfrak{A}_{12}) \subseteq \mathfrak{A}_{12}$. Similarly, $\phi(U_{21}) = Q\phi(U_{21})P \in \mathfrak{A}_{21}$ for each $U_{21} \in \mathfrak{A}_{21}$ and therefore $\phi(\mathfrak{A}_{21}) \subseteq \mathfrak{A}_{21}$.

LEMMA 3.7. There is a functional $f_i : \mathfrak{A}_{ii} \to \mathcal{C}$ such that $\phi(U_{ii}) - f_i(U_{ii}) \in \mathcal{T}_{ii}$ for all $U_{ii} \in \mathfrak{A}_{ii}$, i = 1, 2.

PROOF. For $U_{11} \in \mathfrak{A}_{11}$, by Lemma 3.5(*ii*), we have

$$0 = \phi([P^*, U_{11}]) = [P^*, \phi(U_{11})] = P\phi(U_{11}) - \phi(U_{11})P,$$

and hence we see that $P\phi(U_{11})Q = Q\phi(U_{11})P = 0$. Thus, it can be assumed that $\phi(U_{11}) = A_{11} + A_{22}$ and similarly, $\phi(U_{22}) = B_{11} + B_{22}$, here $A_{ii}, B_{ii} \in \mathfrak{A}_{ii}, i = 1, 2$. Since $[U_{11}^*, U_{22}] = 0$, a simple calculation gives $[A_{22}^*, U_{22}] = 0$ for all $U_{22} \in \mathfrak{A}_{22}$; $[U_{11}^*, B_{11}] = 0$ for all $U_{11} \in \mathfrak{A}_{11}$. Since $[A_{22}^*, U_{22}] = 0$ for all $U_{22} \in \mathfrak{A}_{22}$, we see that $A_{22}^*XQ = QXA_{22}^*$ for any $X \in \mathcal{R}$. As both $A_{22}^*, Q \in \mathcal{Q}_{mr}(\mathcal{R})$, by Lemma 3.1, $A_{22}^* = QC$ for some $C \in \mathcal{C}$. A simple calculation gives us that $\phi(U_{11}) \in \mathcal{T}_{11} + \mathcal{C}$. Similarly one can see that $A_{22} = f_1(U_{11})Q$ and $B_{11} = f_2(U_{22})P$. Hence $\phi(U_{11}) - f_1(U_{11})I \in \mathcal{T}_{11}$ and $\phi(U_{22}) - f_2(U_{22})I \in \mathcal{T}_{22}$.

Now for any $U \in \mathcal{R}$, we define a mapping $\Delta : \mathcal{R} \to \mathcal{T}$ by $\Delta(U) = \phi(PUP) + \phi(PUQ) + \phi(QUP) + \phi(QUQ) - (f_1(PUP) + f_2(QUQ))I$. Further, by the definitions of $\phi(U)$ and $\Delta(U)$ and by Corollary 2.10, it is clear that the difference $\phi(U) - \Delta(U) \in \mathcal{C}$. So, define a mapping $\xi : \mathcal{R} \to \mathcal{C}$ by $\xi(U) = \phi(U) - \Delta(U)$ for all $U \in \mathcal{R}$. By Lemmas 3.6 and 3.7, Δ has the following properties.

LEMMA 3.8. Let $U_{ij} \in \mathfrak{A}_{ij}, 1 \leq i, j \leq 2$. Then

- (i) $\Delta(U_{ij}) \in \mathcal{T}_{ij}, 1 \le i \ne j \le 2,$
- (*ii*) $\Delta(U_{12}) = \phi(U_{12})$ and $\Delta(U_{21}) = \phi(U_{21})$,
- (*iii*) $\Delta(U_{ii}) \in \mathfrak{A}_{\mathfrak{i}\mathfrak{i}}, i = 1, 2,$

$$(iv) \ \Delta(U_{11} + U_{12} + U_{21} + U_{22}) = \Delta(U_{11}) + \Delta(U_{12}) + \Delta(U_{21}) + \Delta(U_{22}).$$

Now, we shall show that Δ is an additive *-derivation. First, we shall prove the additivity of Δ .

By Lemma 2.4 and Lemma 3.8(ii), we get the following result.

LEMMA 3.9. Δ is additive on \mathfrak{A}_{12} and \mathfrak{A}_{21} .

LEMMA 3.10. Let $U_{ii} \in \mathfrak{A}_{ii}$, $U_{ij} \in \mathfrak{A}_{ij}$, $1 \leq i \neq j \leq 2$. Then (i) $\Delta(U_{ij}^*) = \Delta(U_{ij})^*$, (ii) $\Delta(U_{ii}V_{ij}) = \Delta(U_{ii})V_{ij} + U_{ii}\Delta(V_{ij})$, (iii) $\Delta(V_{ij}U_{jj}) = \Delta(V_{ij})U_{jj} + V_{ij}\Delta(U_{jj})$, (iv) $\Delta(P) = \Delta(Q) = 0$.

Proof.

(i) By Lemmas 3.5 & 3.8, for any $V_{21} \in \mathfrak{A}_{21}$, we compute

$$\Delta(V_{21}^*) = \Delta([V_{21}^*, Q])$$

= $[\phi(V_{21}), Q] + [V_{21}, \phi(Q)]$
= $\Delta(V_{21})^*.$

Similarly, it is easy to prove the other case.

(*ii*) Since $[V_{21}^*, U_{11}] = -U_{11}V_{21}^*$, by Lemmas 3.7 & 3.8, we have

$$-\Delta(U_{11}V_{21}^*) = -\phi(U_{11}V_{21}^*) = \phi([V_{21}^*, U_{11}])$$

= $[\phi(V_{21})^*, U_{11}] + [V_{21}^*, \phi(U_{11})]$
= $[\Delta(V_{21})^*, U_{11}] + [V_{21}^*, \Delta(U_{11})]$
= $-\Delta(U_{11})V_{21}^* - U_{11}\Delta(V_{21})^*.$

Thus, we have $\Delta(U_{11}V_{21}^*) = \Delta(U_{11})V_{21}^* + U_{11}\Delta(V_{21})^*$. Hence $\Delta(U_{11}V_{12}) = \Delta(U_{11}(V_{12}^*)^*) = \Delta(U_{11})V_{12} + U_{11}\Delta(V_{12}^*)^* = \Delta(U_{11})V_{12} + U_{11}\Delta(V_{12})$. Similarly, it is easy to prove the other identity.

- (iii) Proof is same as that of part (ii).
- (iv) Since $\Delta(V_{12}) = \Delta(PV_{12}) = \Delta(P)V_{12} + P\Delta(V_{12})$, multiplying above expression by P from the left we have $P\Delta(P)PV_{12} = 0$, which implies $P\Delta(P)P = 0$ because \mathcal{R} is prime. By Lemma 3.8, $\Delta(P) \in \mathfrak{A}_{11}$, hence $\Delta(P) = P\Delta(P)P = 0$. Similarly, $\Delta(Q) = 0$.

LEMMA 3.11. Δ is additive on \mathfrak{A}_{11} and \mathfrak{A}_{22} .

PROOF. Let $U_{11}, V_{11} \in \mathfrak{A}_{11}$. For any $W_{12} \in \mathfrak{A}_{12}$, by Lemma 3.10, we have

$$\Delta((U_{11}+V_{11})W_{12}) = \Delta(U_{11}+V_{11})W_{12} + (U_{11}+V_{11})\Delta(W_{12}).$$

On the other hand, by Lemmas 3.9 & 3.10, we have

$$\begin{split} &\Delta((U_{11}+V_{11})W_{12}) \\ &= \Delta(U_{11}W_{12}+V_{11}W_{12}) = \Delta(U_{11}W_{12}) + \Delta(V_{11}W_{12}) \\ &= \Delta(U_{11})W_{12} + U_{11}\Delta(W_{12}) + \Delta(V_{11})W_{12} + V_{11}\Delta(W_{12}). \end{split}$$

Comparing the above two identities, we get $(\Delta(U_{11} + V_{11}) - \Delta(U_{11}) - \Delta(V_{11}))W_{12} = 0$. In other words $(\Delta(U_{11} + V_{11}) - \Delta(U_{11}) - \Delta(V_{11}))P\mathcal{R}Q = 0$. Since \mathcal{R} is prime, it follows that $(\Delta(U_{11} + V_{11}) - \Delta(U_{11}) - \Delta(V_{11}))P = 0$. Hence, $\Delta(U_{11} + V_{11}) = \Delta(U_{11}) + \Delta(V_{11})$ as $\Delta(\mathfrak{A}_{11}) \subseteq \mathfrak{A}_{11}$. Similarly, Δ is additive on \mathfrak{A}_{22} .

Lemma 3.12. Δ is additive.

PROOF. Let $U = \sum_{i,j=1}^{2} U_{ij}$, $V = \sum_{i,j=1}^{2} V_{ij}$ be in \mathcal{R} . By Lemmas 3.8, 3.9 & 3.11, we have

$$\Delta(U+V) = \Delta\Big(\sum_{i,j=1}^{2} (U_{ij} + V_{ij})\Big)$$

= $\sum_{i,j=1}^{2} \Delta(U_{ij} + V_{ij}) = \sum_{i,j=1}^{2} (\Delta(U_{ij}) + \Delta(V_{ij}))$
= $\Delta\Big(\sum_{i,j=1}^{2} U_{ij}\Big) + \Delta\Big(\sum_{i,j=1}^{2} V_{ij}\Big) = \Delta(U) + \Delta(V).$

Π

In the sequel, we shall prove that Δ is a derivation.

LEMMA 3.13. Let $U_{ii}, V_{ii} \in \mathfrak{A}_{ii}, i = 1, 2$. Then $\Delta(U_{ii}V_{ii}) = \Delta(U_{ii})V_{ii} + U_{ii}\Delta(V_{ii})$ and $\Delta(U_{ii}^*) = \Delta(U_{ii})^*$.

PROOF. For any $U_{11}, V_{11} \in \mathfrak{A}_{11}$ and $W_{12} \in \mathfrak{A}_{12}$, we have by Lemma 3.10 that

$$\Delta(U_{11}V_{11}^*W_{12}) = \Delta(U_{11}V_{11}^*)W_{12} + U_{11}V_{11}^*\Delta(W_{12}).$$

On the other hand by Lemmas 3.5, 3.7, 3.8 & 3.10 we have,

$$\begin{split} \Delta(U_{11}V_{11}^*W_{12}) &= \Delta(U_{11})V_{11}^*W_{12} + U_{11}\Delta(V_{11}^*W_{12}) \\ &= \Delta(U_{11})V_{11}^*W_{12} + U_{11}\phi([V_{11}^*,W_{12}]) \\ &= \Delta(U_{11})V_{11}^*W_{12} + U_{11}([\phi(V_{11})^*,W_{12}]) + U_{11}([V_{11}^*,\phi(W_{12})]) \\ &= \Delta(U_{11})V_{11}^*W_{12} + U_{11}([\Delta(V_{11})^*,W_{12}]) + U_{11}([V_{11}^*,\Delta(W_{12})]) \\ &= \Delta(U_{11})V_{11}^*W_{12} + U_{11}\Delta(V_{11})^*W_{12} + U_{11}V_{11}^*\Delta(W_{12}). \end{split}$$

Comparing the above two identities, we get $(\Delta(U_{11}V_{11}^*) - \Delta(U_{11})V_{11}^* - U_{11}\Delta(V_{11})^*)W_{12} = 0$. In other words

$$\left(\Delta(U_{11}V_{11}) - \Delta(U_{11})V_{11} - U_{11}\Delta(V_{11})\right)P\mathcal{R}Q = 0.$$

Since \mathcal{R} is prime, it follows that $(\Delta(U_{11}V_{11}^*) - \Delta(U_{11})V_{11}^* - U_{11}\Delta(V_{11})^*)P = 0$. Hence, $\Delta(U_{11}V_{11}^*) = \Delta(U_{11})V_{11}^* + U_{11}\Delta(V_{11})^*$ as $\Delta(\mathfrak{A}_{11}) \subseteq \mathfrak{A}_{11}$. Since $U_{11}^* = PU_{11}^*$, we see that $\Delta(U_{11}^*) = \Delta(PU_{11}^*) = \Delta(U_{11})^*$. Thus $\Delta(U_{11}V_{11}) = \Delta(U_{11})V_{11} + U_{11}\Delta(V_{11})$. Similarly, $\Delta(U_{22}V_{22}) = \Delta(U_{22})V_{22} + U_{22}\Delta(V_{22})$.

LEMMA 3.14. Let $U_{12} \in \mathfrak{A}_{12}$ and $W_{21} \in \mathfrak{A}_{21}$. Then $\Delta(U_{12}W_{21}) = \Delta(U_{12})W_{21} + U_{12}\Delta(W_{21})$ and $\Delta(U_{21}W_{12}) = \Delta(U_{21})W_{12} + U_{21}\Delta(W_{12})$.

PROOF. For any $W_{21} \in \mathfrak{A}_{21}$, by Lemmas 3.8 & 3.10, we compute

$$\begin{split} \phi([[V_{12}^*, U_{12}], W_{12}^*]) &= \phi(V_{12}^* U_{12} W_{12}^* + W_{12}^* U_{12} V_{12}^*) \\ &= \Delta(V_{12}^* U_{12} W_{12}^* + W_{12}^* U_{12} V_{12}) \\ &= \Delta(V_{12}^* U_{12} W_{12}^*) + \Delta(W_{12}^* U_{12} V_{12}^*) \\ &= \Delta(V_{12})^* U_{12} W_{12}^* + V_{12}^* \Delta(U_{12} W_{12}^*) \\ &+ \Delta(W_{12}^* U_{12}) V_{12}^* + W_{12}^* U_{12} \Delta(V_{12})^*. \end{split}$$

On the other hand, by Lemmas 3.5 & 3.8 we have

$$\begin{split} \phi([[V_{12}^*, U_{12}], W_{12}^*]) \\ &= [[\phi(V_{12})^*, U_{12}], W_{12}^*] + [[V_{12}^*, \phi(U_{12})], W_{12}^*] + [[V_{12}^*, U_{12}], \phi(W_{12})^*] \\ &= [[\Delta(V_{12})^*, U_{12}], W_{12}^*] + [[V_{12}^*, \Delta(U_{12})], W_{12}^*] + [[V_{12}^*, U_{12}], \Delta(W_{12})^*] \\ &= \Delta(V_{12})^* U_{12} W_{12}^* + W_{12}^* U_{12} \Delta(V_{12})^* + V_{12}^* \Delta(U_{12}) W_{12}^* \\ &\quad + W_{12}^* \Delta(U_{12}) V_{12}^* + V_{12}^* U_{12} \Delta(W_{12})^* + \Delta(W_{12})^* U_{12} V_{12}^*. \end{split}$$

Comparing the above two identities, we arrive at

$$V_{12}^* \left(\Delta (U_{12}W_{12}^*) - \Delta (U_{12})W_{12}^* - U_{12}\Delta (W_{12})^* \right) \\ = \left(-\Delta (W_{12}^*U_{12}) + \Delta (W_{12})^*U_{12} + W_{12}^*\Delta (U_{12}) \right) V_{12}^*.$$

By using Lemma 2.9, we see that

$$\Delta(U_{12}W_{12}^*) - \Delta(U_{12})W_{12}^* - U_{12}\Delta(W_{12})^* - \Delta(W_{12}^*U_{12}) + \Delta(W_{12})^*U_{12} + W_{12}^*\Delta(U_{12}) = C \in \mathcal{C}.$$

From the later relation we obtain the two identities

$$\Delta(U_{12}W_{12}^*) - \Delta(U_{12})W_{12}^* - U_{12}\Delta(W_{12})^* = PC$$

and

$$\Delta(W_{12}^*U_{12}) - \Delta(W_{12})^*U_{12} - W_{12}^*\Delta(U_{12}) = -QC.$$

Since $\Delta(W_{21}^*) = \Delta(W_{21})^*$, we have

(3.3)
$$\begin{aligned} \Delta(U_{12}W_{21}) - \Delta(U_{12})W_{21} - U_{12}\Delta(W_{21}) \\ = \Delta(U_{12}(W_{21}^*)^*) - \Delta(U_{12})W_{21} - U_{12}\Delta(W_{21}^*)^* = PC. \end{aligned}$$

Similarly, we obtain the other identity as

(3.4)
$$\Delta(W_{21}U_{12}) - \Delta(W_{21})U_{12} - W_{21}\Delta(U_{12}) = -QC.$$

Now it is sufficient to show that C = 0. Assume $C \neq 0$. Then by using equations (3.3) and (3.4) together with Lemma 3.10, we have

$$\begin{split} &\Delta(U_{12}W_{21}U_{12}) \\ &= \Delta(U_{12})W_{21}U_{12} + U_{12}\Delta(W_{21}U_{12}) \\ &= \Delta(U_{12})W_{21}U_{12} + U_{12}\Delta(W_{21})U_{12} + U_{12}W_{21}\Delta(U_{12}) - CU_{12}, \end{split}$$

and

66

$$\begin{aligned} \Delta(U_{12}W_{21}U_{12}) \\ &= \Delta(U_{12}W_{21})U_{12} + U_{12}W_{21}\Delta(U_{12}) \\ &= \Delta(U_{12})W_{21}U_{12} + U_{12}\Delta(W_{21})U_{12} + U_{12}W_{21}\Delta(U_{12}) + CU_{12} \end{aligned}$$

Comparing the above two identities, we obtain $CU_{12} = 0$. Since C is a field, we have $U_{12} = 0$, a contradiction. Consequently, $\Delta(U_{12}W_{21}) = \Delta(U_{12})W_{21} + U_{12}\Delta(W_{21})$ and $\Delta(U_{21}W_{12}) = \Delta(U_{21})W_{12} + U_{21}\Delta(W_{12})$.

PROOF OF THEOREM 3.3. Let $U, V \in \mathcal{R}$. Assume that $U = U_{11} + U_{12} + U_{21} + U_{22}$ and $V = V_{11} + V_{12} + V_{21} + V_{22}$. By Lemmas 3.8-3.14, we see that

$$\begin{split} \Delta(UV) &= \Delta((U_{11} + U_{12} + U_{21} + U_{22})(V_{11} + V_{12} + V_{21} + V_{22})) \\ &= \Delta(U_{11}V_{11} + U_{11}V_{12} + U_{12}V_{21} + U_{12}V_{22} + U_{21}V_{11} \\ &+ U_{21}V_{12} + U_{22}V_{21} + U_{22}V_{22}) \\ &= \Delta(U_{11}V_{11} + U_{12}V_{21}) + \Delta(U_{11}V_{12} + U_{12}V_{22}) \\ &+ \Delta(U_{21}V_{11} + U_{22}V_{21}) + \Delta(U_{21}V_{12} + U_{22}V_{22}) \\ &= \Delta(U_{11}V_{11}) + \Delta(U_{12}V_{21}) + \Delta(U_{11}V_{12}) + \Delta(U_{12}V_{22}) \\ &+ \Delta(U_{21}V_{11}) + \Delta(U_{22}V_{21}) + \Delta(U_{21}V_{12}) + \Delta(U_{22}V_{22}) \\ &= \Delta(U_{11})V_{11} + U_{11}\Delta(V_{11}) + \Delta(U_{12})V_{21} + U_{12}\Delta(V_{21}) \\ &+ \Delta(U_{21})V_{12} + U_{11}\Delta(V_{12}) + \Delta(U_{12})V_{22} + U_{12}\Delta(V_{22}) \\ &+ \Delta(U_{21})V_{11} + U_{21}\Delta(V_{11}) + \Delta(U_{22})V_{21} + U_{22}\Delta(V_{21}) \\ &+ \Delta(U_{21})V_{12} + U_{21}\Delta(V_{12}) + \Delta(U_{22})V_{22} + U_{22}\Delta(V_{22}) \\ &= (U_{11} + U_{12} + U_{21} + U_{22})\Delta(V_{11} + V_{12} + V_{21} + V_{22}) \\ &+ \Delta(U_{11} + U_{12} + U_{21} + U_{22})(V_{11} + V_{12} + V_{21} + V_{22}) \\ &= U\Delta(V) + \Delta(U)V. \end{split}$$

It is easy to show that $\Delta(U^*) = \Delta(U)^*$. Hence, Δ is an additive *-derivation. Now using the definition of ξ , we see that

$$\xi(U+V) = \phi(U+V) - \Delta(U+V)$$

= $\phi(U) + \phi(V) + Z_{U,V} - \Delta(U) - \Delta(V)$
= $\xi(U) + \xi(V) + Z_{U,V}$.

and

$$\begin{split} \xi([U,V]) &= \phi([U,V]) - \Delta([U,V]) \\ &= [\phi(U^*)^*,V] + [U,\phi(V)] - \Delta([U,V]) \\ &= [\Delta(U),V] + [U,\Delta(V)] - \Delta([U,V]) = 0. \end{split}$$

Finally, let us define $\psi(U) = \Delta(U) - (SU - US)$ for all $U \in \mathcal{R}$, where S = Pd(P)Q - Qd(P)P. It is easy to check that ψ is an additive *-derivation

on \mathcal{R} . By the definitions of Δ and ϕ , ψ is an additive *-derivation and $d(U) = \psi(U) + \xi(U)$ for all $U \in \mathcal{R}$.

We conclude this section by the following result. Recall that a von Neumann algebra \mathcal{M} is called a factor if its centre is $\mathbb{C}I$. It is to be noted that every factor von Neumann algebra is prime. So we have the following immediate corollary.

COROLLARY 3.15. Let \mathcal{M} be a factor von Neumann algebra. Suppose that a mapping $d: \mathcal{M} \to \mathcal{M}$ satisfies

$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)]$$

for all $U, V \in \mathcal{M}$. Then there exists $\lambda_{U,V} \in \mathbb{C}$ such that $d(U+V) = d(U) + d(V) + \lambda_{U,V}$ and $d = \psi + \xi$, where ψ is an additive *-derivation on \mathcal{M} and ξ is a mapping from \mathcal{M} into \mathbb{C} such that $\xi(U+V) = \xi(U) + \xi(V) + \lambda_{U,V}$ and $\xi([U,V]) = 0$ for all $U, V \in \mathcal{M}$.

ACKNOWLEDGEMENTS.

The authors are highly indebted to the learned referee for his/her valuable comments and insightful suggestions which have improved the paper immensely.

References

- M. Ashraf and N. Parveen, On Jordan triple higher derivable mappings in rings, Mediterr. J. Math. 13 (2016), 1465–1477.
- [2] M. Ashraf and N. Parveen, Lie triple higher derivable maps on rings, Comm. Algebra 45 (2017), 2256–2275.
- [3] K. I. Beidar, M. S. Martinadle III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196, Marcel Dekker, New York, 1996.
- [4] L. Chen and J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Algebra 56 (2008), 725–730.
- [5] W. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), 299–310.
- M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci. 14 (1991), 615–618.
- [7] I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, London, 1979.
- [8] W. Jing and F. Lu, *Lie derivable mappings on prime rings*, Linear Multilinear Algebra 60 (2012), 167–180.
- C. Li, Q. Chen and T. Wang, *-Lie derivable mappings on von Neumann algebras, Commun. Math. Stat. 4 (2016), 81–92.
- [10] C. Li, X. Fang, F. Lu and T. Wang, Lie triple derivable mappings on rings, Comm. Algebra 42 (2014), 2510–2527.
- F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123–131.
- [12] F. Lu and W. Jing, Characterizations of Lie derivations of B(X), Linear Algebra Appl. 432 (2010) 89–99.

- [13] F. Lu and B. Liu, Lie derivable maps on $\mathcal{B}(\mathcal{X})$, J. Math. Anal. Appl. **372** (2010), 369–376.
- [14] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695–698.
- [15] M. Mathieu and A. R. Villena, The structure of Lie derivations on C*-algebras, J. Funct. Anal. 202 (2003), 504–525.
- [16] C. R. Mires, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403–409.
- [17] A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226 (2000), 390-409.
- [18] W. Y. Yu and J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010), 2953–2960.
- [19] W. Y. Yu and J. H. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979–1991.
- [20] F. Zhang and J. Zhang, Nonlinear Lie derivations on factor von Neumann algebras, Acta Math. Sinica (Chin. Ser.) 54 (2011), 791–802.

Karakterizacije *-Liejevih derivabilnih preslikavanja na prostim *-prstenima

Ahmad N. Alkenani, Mohammad Ashraf i Bilal Ahmad Wani

SAŽETAK. Neka je \mathcal{R} *-prsten koji sadrži netrivijalni samoadjungirajući idempotentni element. U ovom članku se pokazuje da uz izvjesne pretpostavke na \mathcal{R} , ako preslikavanje $d : \mathcal{R} \to \mathcal{R}$ zadovoljava

$$d([U^*, V]) = [d(U)^*, V] + [U^*, d(V)]$$

za sve $U, V \in \mathcal{R}$, tada postoji $Z_{U,V} \in \mathcal{Z}(\mathcal{R})$ (koji ovisi o U i V), gdje je $\mathcal{Z}(\mathcal{R})$ u centru od \mathcal{R} , tako da vrijedi $d(U + V) = d(U) + d(V) + Z_{U,V}$. Štoviše, ako je \mathcal{R} slobodan od 2-torzije prosti *-prsten, tada je $d = \psi + \xi$, gdje je ψ aditivna *-derivacija od \mathcal{R} u njegov centralni zatvarač \mathcal{T} i ξ je preslikavanje s \mathcal{R} u njegov prošireni centroid \mathcal{C} tako da $\xi(U + V) = \xi(U) + \xi(V) + Z_{U,V}$ i $\xi([U, V]) = 0$ za sve $U, V \in \mathcal{R}$. Naposljetku, gornji rezultati iz teorije prstena primijenjeni su na neke specijalne klase algebri kao što su ugniježđene algebre i von Neumannove algebre.

Ahmad N. Alkenani Department of Mathematics King Abdulaziz University Jeddah, Saudi Arabia *E-mail*: aalkenani10@hotmail.com

Mohammad Ashraf Department of Mathematics Aligarh Muslim University Aligarh, 202002, India *E-mail*: mashraf80@hotmail.com

Bilal Ahmad Wani Department of Mathematics Aligarh Muslim University Aligarh, 202002, India *E-mail*: bilalwanikmr@gmail.com

Received: 5.6.2018. Revised: 25.8.2018.; 4.10.2018. Accepted: 22.10.2018.