CHARACTERIZATIONS OF *-LIE DERIVABLE MAPPINGS ON PRIME *-RINGS

Ahmad N. Alkenani, Mohammad Ashraf and Bilal Ahmad Wani

Abstract

Let \mathcal{R} be a $*$-ring containing a nontrivial self-adjoint idempotent. In this paper it is shown that under some mild conditions on \mathcal{R}, if a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ satisfies $$
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right]
$$ for all $U, V \in \mathcal{R}$, then there exists $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ (depending on U and V), where $\mathcal{Z}(\mathcal{R})$ is the center of \mathcal{R}, such that $d(U+V)=d(U)+d(V)+Z_{U, V}$. Moreover, if \mathcal{R} is a 2 -torsion free prime $*$-ring additionally, then $d=\psi+\xi$, where ψ is an additive $*$-derivation of \mathcal{R} into its central closure \mathcal{T} and ξ is a mapping from \mathcal{R} into its extended centroid \mathcal{C} such that $\xi(U+V)=$ $\xi(U)+\xi(V)+Z_{U, V}$ and $\xi([U, V])=0$ for all $U, V \in \mathcal{R}$. Finally, the above ring theoretic results have been applied to some special classes of algebras such as nest algebras and von Neumann algebras.

1. Introduction

Throughout this paper \mathcal{R} will denote an associative ring with the center $\mathcal{Z}(\mathcal{R})$. Recall that a ring \mathcal{R} is said to be n-torsion free, where $n>1$ is an integer, if $n U=0$ implies $U=0$ for all $U \in \mathcal{R}$. A ring \mathcal{R} is said to be prime if for any $U, V \in \mathcal{R}, U \mathcal{R} V=\{0\}$ implies $U=0$ or $V=0$. An additive mapping $x \mapsto x^{*}$ on a ring \mathcal{R} is called involution in case $(U V)^{*}=V^{*} U^{*}$ and $\left(U^{*}\right)^{*}=U$ hold for all $U, V \in \mathcal{R}$. A ring equipped with an involution is called a ring with involution or $*$-ring (see [7]). An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a derivation on \mathcal{R} if $d(U V)=d(U) V+U d(V)$ for all $U, V \in \mathcal{R}$. In particular, derivation d is called an inner derivation if there exists some $X \in \mathcal{R}$ such that $d(U)=U X-X U$ for all $U \in \mathcal{R}$. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is called a Lie derivation if $d([U, V])=[d(U), V]+[U, d(V)]$ holds for all $U, V \in \mathcal{R}$, where $[U, V]=U V-V U$ is the usual Lie product. If the condition of additivity is dropped from the above definition, then the corresponding Lie derivation is

[^0]called a Lie derivable map. Obviously, every derivation is a Lie derivation. However, the converse statements are not true in general.

Let \mathcal{R} be a $*$-ring. An additive mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be an additive $*$-derivation on \mathcal{R} if $d(U V)=d(U) V+U d(V)$ and $d\left(U^{*}\right)=d(U)^{*}$ for all $U, V \in \mathcal{R}$. More generally, a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ is said to be a *-Lie derivable mapping if $d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right]$. Indeed, if $d\left(U^{*}\right)=d(U)^{*}$ for all $U \in \mathcal{R}$, then d is a Lie derivable mapping if and only if d is a $*$-Lie derivable mapping. An additive $*$-Lie derivable mapping is said to be a $*$-Lie derivation. It is not difficult to observe that any $*$-derivation is $\mathrm{a} *$-Lie derivation but the converse is not true in general.

There has been a great interest in the study of characterizations of Lie derivations and $*$-Lie derivations for many years. The first quite surprising result is due to Martindale III who proved that every multiplicative bijective mapping from a prime ring containing a nontrivial idempotent onto an arbitrary ring is additive (see [14]). Miers [16] initially established that every Lie derivation d on a von Neumann algebra \mathfrak{A} can be uniquely written as the sum $d=\psi+\xi$ where ψ is an inner derivation of \mathfrak{A} and ξ is a linear mapping from \mathfrak{A} into its center $Z(\mathfrak{A})$ vanishing on each commutator. Yu and Zhang [18] proved that every Lie derivable mapping of a triangular algebra is the sum of an additive derivation and a mapping from triangular algebra into its center sending commutators to zero. Mathieu and Villena [15] gave the characterizations of Lie derivations on C^{*}-algebras. W. Jing and F. Lu [8] showed that every Lie derivable mapping on a 2 -torsion free prime $\operatorname{ring} \mathcal{R}$ can be expressed as $d=\psi+\xi$, where $\psi: \mathcal{R} \rightarrow \mathcal{T}$ is an additive derivation and $\xi: \mathcal{R} \rightarrow \mathcal{C}$ is nearly additive i.e. $\xi(U+V)=\xi(U)+\xi(V)+Z_{U, V}$ where $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ (depending on U and V in \mathcal{R}) and vanishes on each commutator. Yu and Zhang [19] proved that every *-Lie derivable mapping from a factor von Neumann algebra into itself is an additive *-derivation. Also, Li, Chen and Wang [9] obtained the same result for $*$-Lie derivable mappings on von Neumann algebras and proved that every $*$-Lie derivable mapping on a von Neumann algebra with no central abelian projections can be expressed as the sum of an additive $*$-derivation and a mapping with image in the centre vanishing on commutators. In addition, the characterization of Lie derivations and $*$ Lie derivations on various algebras are considered in[1], [2], [5], [4], [6], [8], [12],[13], [17], [20].

Motivated by the results due to W. Jing \& F. Lu [8] and C. Li et al. [9], in Section 2, we investigate the additivity of $*$-Lie derivable mappings on $*$-rings and show that every $*$-Lie derivable mapping on \mathcal{R} is almost additive in the sense that for any $U, V \in \mathcal{R}$ there exists $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ (depending on U and $V)$ such that $d(U+V)=d(U)+d(V)+Z_{U, V}$. In Section 3, we study the characterization of $*$-Lie derivable mappings on prime $*$-rings. Under some mild conditions on \mathcal{R}, we prove that, if d is an additive Lie derivable mapping on \mathcal{R}, then $d=\psi+\xi$, where ψ is an additive $*$-derivation of \mathcal{R} into its central
closure \mathcal{T} and ξ is a mapping from \mathcal{R} into its extended centroid \mathcal{C} such that $\xi(U+V)=\xi(U)+\xi(V)+Z_{U, V}$ and $\xi([U, V])=0$ for all $U, V \in \mathcal{R}$. Finally, the above ring theoretic results have been applied to some special class of algebras such as nest algebras and von Neumann algebras.

2. Additivity of $*$-Lie derivable mappings on $*$-RINGS

In this section, we examine the additivity of $*$-Lie derivable mappings on rings. Let \mathcal{R} be a $*$-ring with a nontrivial self-adjoint idempotent P. We write $Q=I-P$. It is to be noted that \mathcal{R} may be without identity element. It is obvious that $P Q=Q P=0$. By the Peirce decomposition of \mathcal{R}, we have $\mathcal{R}=\mathfrak{A}_{11}+\mathfrak{A}_{12}+\mathfrak{A}_{21}+\mathfrak{A}_{22}$, where $\mathfrak{A}_{11}=P \mathcal{R} P, \mathfrak{A}_{12}=P \mathcal{R} Q, \mathfrak{A}_{21}=Q \mathcal{R} P$ and $\mathfrak{A}_{22}=Q \mathcal{R} Q$. Throughout this paper, $U_{i j}$ will denote an arbitrary element of $\mathfrak{A}_{\mathfrak{i j}}$ and any element $U \in \mathcal{R}$ can be expressed as $U=U_{11}+U_{12}+U_{21}+U_{22}$.

The main result of this section starts as follows.
THEOREM 2.1. Let \mathcal{R} be a *-ring containing a nontrivial self-adjoint idempotent P and satisfying the following conditions:
$\left(G_{1}\right)$ If $U_{i i} V_{i j}=V_{i j} U_{j j}$ for all $V_{i j} \in \mathfrak{A}_{i j}$ and $1 \leq i \neq j \leq 2$, then $U_{i i}+U_{j j} \in$ $\mathcal{Z}(\mathcal{R})$.
$\left(G_{2}\right)$ If $U_{i j} V_{j k}=0$ for all $V_{j k} \in \mathfrak{A}_{j k}$ and $1 \leq i, j, k \leq 2$, then $U_{i j}=0$.
If a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ satisfies

$$
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right]
$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ such that $d(U+V)=$ $d(U)+d(V)+Z_{U, V}$.

Throughout assume that \mathcal{R} satisfies the hypothesis of Theorem 2.1. The proof of the above theorem is given in a series of the following Lemmas.

Lemma 2.2. $d(0)=0$.
Proof. $d(0)=d\left(\left[0^{*}, 0\right]\right)=\left[d(0)^{*}, 0\right]+\left[0^{*}, d(0)\right]=0$.
Lemma 2.3. For any $U_{i i} \in \mathfrak{A}_{\mathfrak{i} \mathfrak{i}}, V_{i j} \in \mathfrak{A}_{\mathfrak{i} \mathfrak{j}}, 1 \leq i \neq j \leq 2$, there exists $Z_{U_{i i}, V_{i j}} \in \mathcal{Z}(\mathcal{R})$ such that
(i) $d\left(U_{i i}+V_{i j}\right)=d\left(U_{i i}\right)+d\left(V_{i j}\right)+Z_{U_{i i}, V_{i j}}$,
(ii) $d\left(U_{i i}+V_{j i}\right)=d\left(U_{i i}\right)+d\left(V_{j i}\right)+Z_{U_{i i}, V_{j i}}$.

Proof. (i) Let $A=d\left(U_{i i}+V_{i j}\right)-d\left(U_{i i}\right)-d\left(V_{i j}\right)$. For any $U_{i i} \in \mathfrak{A}_{\mathfrak{i} i}$, $V_{i j} \in \mathfrak{A}_{\mathfrak{i j}}$, we have

$$
\begin{aligned}
d\left(V_{i j}\right) & =d\left(\left[P^{*}, U_{i i}+V_{i j}\right]\right) \\
& =\left[d(P)^{*}, U_{i i}+V_{i j}\right]+\left[P^{*}, d\left(U_{i i}+V_{i j}\right)\right]
\end{aligned}
$$

On the other hand by Lemma 2.2, we have

$$
\begin{aligned}
d\left(V_{i j}\right) & =d\left(\left[P^{*}, U_{i i}\right]\right)+d\left(\left[P^{*}, V_{i j}\right]\right) \\
& =\left[d(P)^{*}, U_{i i}+V_{i j}\right]+\left[P^{*}, d\left(U_{i i}\right)+d\left(V_{i j}\right)\right]
\end{aligned}
$$

Comparing the above two identities, we get $[P, A]=0$. Hence $A_{i j}=A_{j i}=0$.
For any $W_{j i} \in \mathfrak{A}_{\mathfrak{j i}}$, we compute

$$
\begin{aligned}
d\left(-U_{i i} W_{j i}^{*}\right) & =d\left(\left[W_{j i}^{*}, U_{i i}+V_{i j}\right]\right) \\
& =\left[d\left(W_{j i}\right)^{*}, U_{i i}+V_{i j}\right]+\left[W_{j i}^{*}, d\left(U_{i i}+V_{i j}\right)\right]
\end{aligned}
$$

Using Lemma 2.2, $d\left(-U_{i i} W_{j i}^{*}\right)$ can also be expressed as

$$
\begin{aligned}
d\left(-U_{i i} W_{j i}^{*}\right) & =d\left(\left[W_{j i}^{*}, U_{i i}\right]\right)+d\left(\left[W_{j i}^{*}, V_{i j}\right]\right) \\
& =\left[d\left(W_{j i}\right)^{*}, U_{i i}+V_{i j}\right]+\left[W_{j i}^{*}, d\left(U_{i i}\right)+d\left(V_{i j}\right)\right] .
\end{aligned}
$$

From the above two equations it follows that $\left[W_{j i}^{*}, A\right]=0$. In other words $W_{j i}^{*} A=A W_{j i}^{*}$ for all $W_{j i} \in \mathfrak{A}_{\mathfrak{j} \mathfrak{i}}$. By the condition $\left(G_{1}\right)$, we see that $A_{i i}+A_{j j} \in$ $\mathcal{Z}(\mathcal{R})$. Hence $d\left(U_{i i}+V_{i j}\right)=d\left(U_{i i}\right)+d\left(V_{i j}\right)+Z_{U_{i i}, V_{i j}}$ for some $Z_{U_{i i}, V_{i j}} \in \mathcal{Z}(\mathcal{R})$. Similarly, one can get (ii).

Lemma 2.4. For any $U_{i j}, V_{i j} \in \mathfrak{A}_{\mathfrak{i} \mathfrak{j}}, 1 \leq i \neq j \leq 2$, we have

$$
d\left(U_{i j}+V_{i j}\right)=d\left(U_{i j}\right)+d\left(V_{i j}\right)
$$

Proof. By Lemma 2.3, we see that

$$
\begin{aligned}
d\left(U_{i j}+V_{i j}\right)= & d\left(\left[\left(U_{i j}^{*}+P\right)^{*}, V_{i j}+Q\right]\right) \\
= & {\left[d\left(U_{i j}^{*}+P\right)^{*}, V_{i j}+Q\right]+\left[\left(U_{i j}^{*}+P\right)^{*}, d\left(V_{i j}+Q\right)\right] } \\
= & {\left[d\left(U_{i j}^{*}\right)^{*}+d(P)^{*}, V_{i j}+Q\right]+\left[\left(U_{i j}^{*}+P\right)^{*}, d\left(V_{i j}\right)+d(Q)\right] } \\
= & {\left[d\left(U_{i j}^{*}\right)^{*}, V_{i j}\right]+\left[d\left(U_{i j}^{*}\right)^{*}, Q\right]+\left[d(P)^{*}, V_{i j}\right]+\left[d(P)^{*}, Q\right] } \\
& +\left[U_{i j}, d\left(V_{i j}\right)\right]+\left[U_{i j}, d(Q)\right]+\left[P, d\left(V_{i j}\right)\right]+[P, d(Q)] \\
= & d\left(\left[\left(U_{i j}^{*}\right)^{*}, V_{i j}\right]\right)+d\left(\left[\left(U_{i j}^{*}\right)^{*}, Q\right]\right)+d\left(\left[P^{*}, V_{i j}\right]\right)+d\left(\left[P^{*}, Q\right]\right) \\
= & d\left(U_{i j}\right)+d\left(V_{i j}\right)
\end{aligned}
$$

Lemma 2.5. For any $U_{i i}, V_{i i} \in \mathfrak{A}_{\mathfrak{i} i}, i=1,2$, there exists $Z_{U_{i i}, V_{i i}} \in \mathcal{Z}(\mathcal{R})$ such that

$$
d\left(U_{i i}+V_{i i}\right)=d\left(U_{i i}\right)+d\left(V_{i i}\right)+Z_{U_{i i}, V_{i i}}
$$

Proof. Let $A=d\left(U_{11}+V_{11}\right)-d\left(U_{11}\right)-d\left(V_{11}\right)$. For any $U_{11}, V_{11} \in \mathfrak{A}_{11}$, we have

$$
\begin{aligned}
0 & =d\left(\left[Q^{*}, U_{11}+V_{11}\right]\right) \\
& =\left[d(Q)^{*}, U_{11}+V_{11}\right]+\left[Q^{*}, d\left(U_{11}+V_{11}\right)\right] .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
0 & =d\left(\left[Q^{*}, U_{11}\right]\right)+d\left(\left[Q^{*}, V_{11}\right]\right) \\
& =\left[d(Q)^{*}, U_{11}+V_{11}\right]+\left[Q^{*}, d\left(U_{11}\right)+d\left(V_{11}\right)\right]
\end{aligned}
$$

Comparing the above two identities, we get $[Q, A]=0$. Hence $A_{12}=A_{21}=0$.
For any $W_{12} \in \mathfrak{A}_{12}$, we compute

$$
\begin{aligned}
d\left(W_{12}^{*}\left(U_{11}+V_{11}\right)\right) & =d\left(\left[W_{12}^{*}, U_{11}+V_{11}\right]\right) \\
& =\left[d\left(W_{12}\right)^{*}, U_{11}+V_{11}\right]+\left[W_{12}^{*}, d\left(U_{11}+V_{11}\right)\right]
\end{aligned}
$$

On the other hand by using Lemma 2.4, we have

$$
\begin{aligned}
d\left(W_{12}^{*}\left(U_{11}+V_{11}\right)\right) & =d\left(W_{12}^{*} U_{11}\right)+d\left(W_{12}^{*} V_{11}\right) \\
& =d\left(\left[W_{12}^{*}, U_{11}\right]\right)+d\left(\left[W_{12}^{*}, V_{11}\right]\right) \\
& =\left[d\left(W_{12}\right)^{*}, U_{11}+V_{11}\right]+\left[W_{12}^{*}, d\left(U_{11}\right)+d\left(V_{11}\right)\right]
\end{aligned}
$$

Comparing the above two equations, we have $\left[W_{12}^{*}, A\right]=0$. Thus $W_{12}^{*} A_{11}=$ $A_{22} W_{12}^{*}$ for all $W_{12} \in \mathfrak{A}_{12}$. By using the condition $\left(G_{1}\right)$, we see that $A_{11}+$ $A_{22} \in \mathcal{Z}(\mathcal{R})$. Therefore $d\left(U_{11}+V_{11}\right)=d\left(U_{11}\right)+d\left(V_{11}\right)+Z_{U_{11}, V_{11}}$ for all $U_{11}, V_{11} \in \mathfrak{A}_{11}$ and for some $Z_{U_{11}, V_{11}} \in \mathcal{Z}(\mathcal{R})$. Similarly, the result is true for the case when $i=2$.

Lemma 2.6. For any $U_{12} \in \mathfrak{A}_{12}$ and $V_{21} \in \mathfrak{A}_{21}$, we have

$$
d\left(U_{12}+V_{21}\right)=d\left(U_{12}\right)+d\left(V_{21}\right)
$$

Proof. Suppose $A=d\left(U_{12}+V_{21}\right)-d\left(U_{12}\right)-d\left(V_{21}\right)$. For any $U_{12} \in \mathfrak{A}_{12}$ and $V_{21} \in \mathfrak{A}_{21}$, we compute

$$
\begin{aligned}
d\left(U_{12}+V_{21}\right)= & d\left(\left[P^{*}, U_{12}-V_{21}\right]\right) \\
= & {\left[d(P)^{*}, U_{12}-V_{21}\right]+\left[P^{*}, d\left(U_{12}-V_{21}\right)\right] } \\
= & d\left(\left[P^{*}, U_{12}\right]\right)-\left[P, d\left(U_{12}\right)\right]+d\left(\left[P^{*},-V_{21}\right]\right)-\left[P^{*}, d\left(-V_{21}\right)\right] \\
& +\left[P^{*}, d\left(U_{12}-V_{21}\right)\right] \\
= & d\left(U_{12}\right)+d\left(V_{21}\right)+\left[P^{*}, d\left(U_{12}-V_{21}\right)-d\left(U_{12}\right)-d\left(-V_{21}\right)\right] .
\end{aligned}
$$

Consequently $A=P\left(d\left(U_{12}-V_{21}\right)-d\left(U_{12}\right)-d\left(-V_{21}\right)\right)-\left(d\left(U_{12}-V_{21}\right)-\right.$ $\left.d\left(U_{12}\right)-d\left(-V_{21}\right)\right) P$. Hence we see that $A_{11}=A_{22}=0$.

For any $W_{12} \in \mathfrak{A}_{12}$, we have

$$
\begin{aligned}
d\left(\left[W_{12}^{*}, U_{12}\right]\right) & =d\left(\left[W_{12}^{*}, U_{12}+V_{21}\right]\right) \\
& =\left[d\left(W_{12}\right)^{*}, U_{12}+V_{21}\right]+\left[W_{12}^{*}, d\left(U_{12}+V_{21}\right)\right]
\end{aligned}
$$

On the other hand, by Lemma, 2.2 we have

$$
\begin{aligned}
d\left(\left[W_{12}^{*}, U_{12}\right]\right) & =d\left(\left[W_{12}^{*}, U_{12}\right]\right)+d\left(\left[W_{12}^{*}, V_{21}\right]\right) \\
& =\left[d\left(W_{12}\right)^{*}, U_{12}+V_{21}\right]+\left[W_{12}^{*}, d\left(U_{12}\right)+d\left(V_{21}\right)\right]
\end{aligned}
$$

Comparing the above two identities, we get $\left[W_{12}^{*}, A\right]=0$. This gives that $A_{12} W_{12}^{*}=0$ for all $W_{12} \in \mathfrak{A}_{12}$. By the condition $\left(G_{2}\right)$, we see that $A_{12}=0$. Similarly, we obtain that $A_{21}=0$. Thus we are done.

Lemma 2.7. For any $U_{11} \in \mathfrak{A}_{11}, V_{12} \in \mathfrak{A}_{12}$ and $W_{22} \in \mathfrak{A}_{22}$, we have

$$
d\left(U_{11}+V_{12}+W_{22}\right)=d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{22}\right)+Z_{U_{11}, V_{12}, W_{22}}
$$

Proof. Suppose $A=d\left(U_{11}+V_{12}+W_{22}\right)-d\left(U_{11}\right)-d\left(V_{12}\right)-d\left(W_{22}\right)$. For any $U_{11} \in \mathfrak{A}_{11}, V_{12} \in \mathfrak{A}_{12}$ and $W_{22} \in \mathfrak{A}_{22}$, we compute

$$
\begin{aligned}
d\left(V_{12}\right) & =d\left(\left[P^{*}, U_{11}+V_{12}+W_{22}\right]\right) \\
& =\left[d(P)^{*}, U_{11}+V_{12}+W_{22}\right]+\left[P^{*}, d\left(U_{11}+V_{12}+W_{22}\right)\right]
\end{aligned}
$$

On the other hand, by Lemma, 2.2 we have

$$
\begin{aligned}
d\left(V_{12}\right) & =d\left(\left[P^{*}, U_{11}\right]\right)+d\left(\left[P^{*}, V_{12}\right]\right)+d\left(\left[P^{*}, W_{22}\right]\right) \\
& =\left[d(P)^{*}, U_{11}+V_{12}+W_{22}\right]+\left[P^{*}, d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{22}\right)\right]
\end{aligned}
$$

Comparing the above two identities, we get $\left[P^{*}, A\right]=0$. This gives that $A_{12}=A_{21}=0$.

Now for any $S_{21} \in \mathfrak{A}_{21}$, we see that

$$
\begin{aligned}
& d\left(\left[S_{21}^{*}, U_{11}+V_{12}+W_{22}\right]\right) \\
& =\left[d\left(S_{21}\right)^{*}, U_{11}+V_{12}+W_{22}\right]+\left[S_{21}^{*}, d\left(U_{11}+V_{12}+W_{22}\right)\right]
\end{aligned}
$$

On the other hand, by Lemmas $2.2 \& 2.4$ we have

$$
\begin{aligned}
d\left(\left[S_{21}^{*}, U_{11}+V_{12}+W_{22}\right]\right)= & d\left(\left[S_{21}^{*}, U_{11}+W_{22}\right]\right)+d\left(\left[S_{21}^{*}, V_{12}\right]\right) \\
= & d\left(S_{21}^{*} W_{22}-U_{11} S_{21}^{*}\right)+d\left(\left[S_{21}^{*}, V_{12}\right]\right) \\
= & d\left(S_{21}^{*} W_{22}\right)+d\left(-U_{11} S_{21}^{*}\right)+d\left(\left[S_{21}^{*}, V_{12}\right]\right) \\
= & d\left(\left[S_{21}^{*}, W_{22}\right]\right)+d\left(\left[S_{21}^{*}, U_{11}\right]\right)+d\left(\left[S_{21}^{*}, V_{12}\right]\right) \\
= & {\left[d\left(S_{21}\right)^{*}, U_{11}+V_{12}+W_{22}\right] } \\
& +\left[S_{21}^{*}, d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{22}\right)\right] .
\end{aligned}
$$

Comparing the above two identities, we get $\left[S_{21}^{*}, A\right]=0$. This gives that $S_{21}^{*} A_{22}=A_{11} S_{21}^{*}$ for all $S_{21} \in \mathfrak{A}_{21}$. By the condition $\left(G_{1}\right)$, we get $A_{11}+A_{22} \in$ $\mathcal{Z}(\mathcal{R})$. Thus we have obtained that $d\left(U_{11}+V_{12}+W_{22}\right)=d\left(U_{11}\right)+d\left(V_{12}\right)+$ $d\left(W_{22}\right)+Z_{U_{11}, V_{12}, W_{22}}$ for some $Z_{U_{11}, V_{12}, W_{22}} \in \mathcal{Z}(\mathcal{R})$.

Lemma 2.8. For any $U_{11} \in \mathfrak{A}_{11}, V_{12} \in \mathfrak{A}_{12}$, $W_{21} \in \mathfrak{A}_{21}$ and $X_{22} \in \mathfrak{A}_{22}$, we have

$$
\begin{aligned}
& d\left(U_{11}+V_{12}+W_{21}+X_{22}\right) \\
& \quad=d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{21}\right)+d\left(X_{22}\right)+Z_{U_{11}, V_{12}, W_{21}, X_{22}}
\end{aligned}
$$

Proof. Assume $A=d\left(U_{11}+V_{12}+W_{21}+X_{22}\right)-d\left(U_{11}\right)-d\left(V_{12}\right)-$ $d\left(W_{21}\right)-d\left(X_{22}\right)$. For any $U_{11} \in \mathfrak{A}_{11}, V_{12} \in \mathfrak{A}_{12}, W_{21} \in \mathfrak{A}_{21}$ and $X_{22} \in \mathfrak{A}_{22}$, we see that

$$
\begin{aligned}
d\left(V_{12}-W_{21}\right)= & d\left(\left[P^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right]\right) \\
= & {\left[d(P)^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right] } \\
& +\left[P^{*}, d\left(U_{11}+V_{12}+W_{21}+X_{22}\right)\right] .
\end{aligned}
$$

On the other hand, by using Lemmas $2.2 \& 2.6$, we have

$$
\begin{aligned}
d\left(V_{12}-W_{21}\right)= & d\left(\left[P^{*}, U_{11}\right]\right)+d\left(\left[P^{*}, V_{12}\right]\right)+d\left(\left[P^{*}, W_{21}\right]\right)+d\left(\left[P^{*}, X_{22}\right]\right) \\
= & {\left[d(P)^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right] } \\
& +\left[P^{*}, d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{21}\right)+d\left(X_{22}\right)\right] .
\end{aligned}
$$

Comparing the above two equations, we have $[P, A]=0$. This gives that $A_{12}=A_{21}=0$.

Now for any $S_{12} \in \mathfrak{A}_{12}$, we compute

$$
\begin{aligned}
& d\left(\left[S_{12}^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right]\right) \\
& =\left[d\left(S_{12}\right)^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right]+\left[S_{12}^{*}, d\left(U_{11}+V_{12}+W_{21}+X_{22}\right)\right]
\end{aligned}
$$

On the other hand, by using Lemma 2.7, we have

$$
\begin{aligned}
d(& {\left.\left[S_{12}^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right]\right) } \\
= & d\left(\left[S_{12}^{*}, U_{11}+V_{12}+X_{22}\right]\right)+d\left(\left[S_{12}^{*}, W_{21}\right]\right) \\
= & {\left[d\left(S_{12}\right)^{*}, U_{11}+V_{12}+X_{22}\right]+\left[S_{21}^{*}, d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(X_{22}\right)\right] } \\
& +\left[d\left(S_{12}\right)^{*}, W_{21}\right]+\left[S_{12}^{*}, d\left(W_{21}\right)\right] \\
= & {\left[d\left(S_{12}\right)^{*}, U_{11}+V_{12}+W_{21}+X_{22}\right] } \\
& \quad+\left[S_{21}^{*}, d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{21}\right)+d\left(X_{22}\right)\right] .
\end{aligned}
$$

Comparing the above two identities, we get $\left[S_{12}^{*}, A\right]=0$. This gives that $S_{12}^{*} A_{11}=A_{22} S_{12}^{*}$ for all $S_{12} \in \mathfrak{A}_{12}$. By using condition $\left(G_{1}\right)$, we see that $A_{11}+A_{22} \in \mathcal{Z}(\mathcal{R})$. Thus we have obtained that $d\left(U_{11}+V_{12}+W_{21}+X_{22}\right)=$ $d\left(U_{11}\right)+d\left(V_{12}\right)+d\left(W_{21}\right)+d\left(X_{22}\right)+Z_{U_{11}, V_{12}, W_{21}, X_{22}}$ for some $Z_{U_{11}, V_{12}, W_{21}, X_{22}} \in$ $\mathcal{Z}(\mathcal{R})$.

Proof of Theorem 2.1. Now take $U=U_{11}+U_{12}+U_{21}+U_{22}$ and $V=V_{11}+V_{12}+V_{21}+V_{22}$. By using Lemmas $2.4,2.5 \& 2.8$, we see that

$$
\begin{aligned}
d(U+V)= & d\left(U_{11}+U_{12}+U_{21}+U_{22}+V_{11}+V_{12}+V_{21}+V_{22}\right) \\
= & d\left(\left(U_{11}+V_{11}\right)+\left(U_{12}+V_{12}\right)+\left(U_{21}+V_{21}\right)+\left(U_{22}+V_{22}\right)\right) \\
= & d\left(U_{11}+V_{11}\right)+d\left(U_{12}+V_{12}\right)+d\left(U_{21}+V_{21}\right) \\
& +d\left(U_{22}+V_{22}\right)+Z_{1} \\
= & d\left(U_{11}\right)+d\left(V_{11}\right)+Z_{2}+d\left(U_{12}\right)+d\left(V_{12}\right)+d\left(U_{21}\right) \\
& +d\left(V_{21}\right)+d\left(U_{22}\right)+d\left(V_{22}\right)+Z_{3}+Z_{1} \\
= & \left(d\left(U_{11}\right)+d\left(U_{12}\right)+d\left(U_{21}\right)+d\left(U_{22}\right)\right)+\left(d\left(V_{11}\right)\right. \\
& \left.+d\left(V_{12}\right)+d\left(V_{21}\right)+d\left(V_{22}\right)\right)+Z_{1}+Z_{2}+Z_{3} \\
= & d\left(U_{11}+U_{12}+U_{21}+U_{22}\right)-Z_{4}+d\left(V_{11}+V_{12}+V_{21}+V_{22}\right) \\
& -Z_{5}+Z_{1}+Z_{2}+Z_{3} \\
= & d(U)+d(V)+\left(Z_{1}+Z_{2}+Z_{3}-Z_{4}-Z_{5}\right) .
\end{aligned}
$$

Take $Z_{U, V}=Z_{1}+Z_{2}+Z_{3}-Z_{4}-Z_{5}$. Thus we see that $d(U+V)=d(U)+$ $d(V)+Z_{U, V}$ for some $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$. This completes the proof of our main theorem.

Now we apply Theorem 2.1 to prime $*$-rings and nest algebras. We begin with the following important lemma.

Lemma 2.9. Let \mathcal{R} be a prime $*$-ring containing a nontrivial self-adjoint idempotent P with centre $\mathcal{Z}(\mathcal{R})$.
(i) If $U_{i j} V_{j k}=0$ for all $V_{j k} \in \mathfrak{A}_{\mathfrak{j k}}$ and $1 \leq i, j, k \neq 2$ then $U_{i j}=0$.
(ii) If $U_{11} V_{12}=V_{12} U_{22}$ for all $V_{12} \in \mathfrak{A}_{12}$, then $U_{11}+U_{22} \in \mathcal{Z}(\mathcal{R})$.

Proof. (i) is the direct consequence of the primeness of \mathcal{R}.
(ii) For any $V_{11} \in \mathfrak{A}_{11}$ and $V_{12} \in \mathfrak{A}_{12}$, we get $U_{11} V_{11} V_{12}=V_{11} V_{12} U_{22}=$ $V_{11} U_{11} V_{12}$ for all $V_{12} \in \mathfrak{A}_{12}$. As \mathcal{R} is prime, we have $U_{11} V_{11}=V_{11} U_{11}$.

For any $V_{12} \in \mathfrak{A}_{12}$ and $V_{22} \in \mathfrak{A}_{22}$, we get $V_{12} V_{22} U_{22}=U_{11} V_{12} V_{22}=$ $V_{12} U_{22} V_{22}$ for all $V_{12} \in \mathfrak{A}_{12}$. It follows by the primeness of \mathcal{R} that $V_{22} U_{22}=$ $U_{22} V_{22}$.

For any $V_{12} \in \mathfrak{A}_{12}$ and $V_{21} \in \mathfrak{A}_{21}$, we get $U_{22} V_{21} V_{12}=V_{21} V_{12} U_{22}=$ $V_{21} U_{11} V_{12}$ for all $V_{12} \in \mathfrak{A}_{12}$. It follows that $U_{22} V_{21}=V_{21} U_{11}$.

For any $V \in \mathcal{R}$, we have

$$
\begin{aligned}
\left(U_{11}+U_{22}\right) V & =\left(U_{11}+U_{22}\right)\left(V_{11}+V_{12}+V_{21}+V_{22}\right) \\
& =U_{11} V_{11}+U_{11} V_{12}+U_{22} V_{21}+U_{22} V_{22} \\
& =V_{11} U_{11}+V_{12} U_{22}+V_{21} U_{11}+V_{22} U_{22} \\
& =\left(V_{11}+V_{12}+V_{21}+V_{22}\right)\left(U_{11}+U_{22}\right) \\
& =V\left(U_{11}+U_{22}\right) .
\end{aligned}
$$

Hence it follows that $U_{11}+U_{22} \in \mathcal{Z}(\mathcal{R})$.
It follows from Lemma 2.9 that every prime $*$-ring with nontrivial selfadjoint idempotent satisfies the conditions $\left(G_{1}\right)$ and $\left(G_{2}\right)$ of Theorem 2.1. So we have the following immediate corollary.

Corollary 2.10. Let \mathcal{R} be a prime $*$-ring containing a nontrivial selfadjoint idempotent P. If a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ satisfies

$$
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right],
$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ such that $d(U+V)=$ $d(U)+d(V)+Z_{U, V}$.

Let \mathcal{H} be a complex Hilbert space. Recall that a nest \mathcal{N} of projections on \mathcal{H} is a chain of orthogonal projections on \mathcal{H} containing zero operator 0 and the identity operator I and is closed in the strong operator topology. By $\mathcal{B}(\mathcal{H})$, we mean the algebra of all bounded linear operators on \mathcal{H}. The nest algebra $\mathcal{T}(\mathcal{N})$ corresponding to the nest \mathcal{N} is the set of all operators U in $\mathcal{B}(\mathcal{H})$ such that $U P=P U P$ for all $P \in \mathcal{N}$. It is to be noted that $\mathcal{T}(\mathcal{N})$ is a weak $*$ - closed operator algebra. A nest is said to be nontrivial if it contains at least one nontrivial projection. The centre of the nest algebra $\mathcal{T}(\mathcal{N})$ is $\mathbb{C} I$, where \mathbb{C} is the complex field. It is to be noted that by every nest algebra $\mathcal{T}(\mathcal{N})$ with non trivial projection P satisfies the conditions $\left(G_{1}\right)$ and $\left(G_{2}\right)$ of Theorem 2.1 (see [10, Lemma 2.6]). Thus we have the following immediate corollary.

Corollary 2.11. Let \mathcal{N} be a nontrivial nest on a complex Hilbert space \mathcal{H} and $\mathcal{T}(\mathcal{N})$ be the associated nest algebra. If a mapping $d: \mathcal{T}(\mathcal{N}) \rightarrow \mathcal{T}(\mathcal{N})$ satisfies

$$
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right]
$$

for all $U, V \in \mathcal{T}(\mathcal{N})$, then there exists $\lambda_{U, V} \in \mathbb{C}$ such that $d(U+V)=$ $d(U)+d(V)+\lambda_{U, V} I$.

3. Characterization of *-Lie derivable mappings on Prime *-Rings

In this section, we list some notations and results which will be used frequently to prove our results. Let \mathcal{R} be a prime $*$-ring containing a nontrivial self-adjoint idempotent P with the centre $\mathcal{Z}(\mathcal{R})$. The maximal right ring of quotients is denoted by $\mathcal{Q}_{m r}(\mathcal{R})$ and the two-sided right ring of quotients of \mathcal{R} by $\mathcal{Q}_{r}(\mathcal{R})$. The centre of $\mathcal{Q}_{r}(\mathcal{R})$ is called the extended centroid of \mathcal{R} and is denoted by \mathcal{C}. It is to be noted that \mathcal{C} of any prime ring is a field. The subring $\mathcal{R C}$ of $\mathcal{Q}_{m r}(\mathcal{R})$ is called the central closure of \mathcal{R} which is also prime for any prime ring. We denote the central closure of \mathcal{R} by \mathcal{T}.

We facilitate our discussion with the following known results.

Lemma 3.1 ([3, Theorem 2.3.4]). If \mathcal{R} is a prime ring and $U, V \in \mathcal{Q}_{m r}(\mathcal{R})$ such that $U X V=V X U$ for all $X \in \mathcal{R}$, then $U=C V$ for some $C \in \mathcal{C}$. In otherwords U and V are \mathcal{C}-dependent.

Lemma 3.2 ([11, Lemma 2 (ii)]). For $U=U_{11}+U_{12}+U_{21}+U_{22} \in \mathcal{R}$. If $U_{i j} V_{j k}=0$ for every $U_{i j} \in \mathfrak{A}_{\mathfrak{i j}}, 1 \leq i, j, k \leq 2$, then $V_{j k}=0$. Dually, if $V_{k i} U_{i j}=0$ for every $U_{i j} \in \mathfrak{A}_{\mathfrak{i j}}, 1 \leq i, j, k \leq 2$, then $V_{k i}=0$.

Theorem 3.3. Let \mathcal{R} be a 2 -torsion free prime $*$-ring containing a nontrivial self-adjoint idempotent P. If a mapping $d: \mathcal{R} \rightarrow \mathcal{R}$ satisfies

$$
\begin{equation*}
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right] \tag{3.1}
\end{equation*}
$$

for all $U, V \in \mathcal{R}$, then there exists $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ such that $d(U+V)=$ $d(U)+d(V)+Z_{U, V}$ and $d=\psi+\xi$, where ψ is an additive $*$-derivation from \mathcal{R} into its central closure \mathcal{T} and ξ is a mapping from \mathcal{R} into its extended centriod \mathcal{C} such that $\xi(U+V)=\xi(U)+\xi(V)+Z_{U, V}$ and $\xi([U, V])=0$ for all $U, V \in \mathcal{R}$.

Now we shall use the hypothesis of Theorem 3.3 freely without any specific mention in proving the following lemmas.

Lemma 3.4. For any non trivial self-adjoint idempotents P and $Q=$ $I-P$, we have
(i) $P d(P) P+Q d(P) Q \in \mathcal{Z}(\mathcal{R})$,
(ii) $P d(P) Q=P d(P)^{*} Q, Q d(P) P=Q d(P)^{*} P$.

Proof.
(i) For any $U_{12} \in \mathfrak{A}_{12}$, we have

$$
\begin{aligned}
d\left(U_{12}\right) & =d\left(\left[P^{*}, U_{12}\right]\right) \\
& =\left[d(P)^{*}, U_{12}\right]+\left[P^{*}, d\left(U_{12}\right)\right] \\
& =d(P)^{*} U_{12}-U_{12} d(P)^{*}+P^{*} d\left(U_{12}\right)-d\left(U_{12}\right) P^{*}
\end{aligned}
$$

Multiplying the above identity from the left by P and from the right by Q, we arrive at

$$
P d(P)^{*} P U_{12}=U_{12} Q d(P)^{*} Q
$$

By using Lemma 2.9, it follows that $P d(P) P+Q d(P) Q \in \mathcal{Z}(\mathcal{R})$.
(ii) We compute

$$
\begin{aligned}
0 & =d\left(\left[P^{*}, P\right]\right) \\
& =\left[d(P)^{*}, P\right]+\left[P^{*}, d(P)\right] \\
& =d(P)^{*} P-P d(P)^{*}+P d(P)-d(P) P .
\end{aligned}
$$

Multiplying the above identity from the left by P and from the right by Q, we arrive at $P d(P) Q=P d(P)^{*} Q$. Similarly, we can also obtain $Q d(P) P=Q d(P)^{*} P$.

In the sequel, we define $\phi: \mathcal{R} \rightarrow \mathcal{R}$ by

$$
\phi(U)=d(U)+[S, U] \text { for all } U \in \mathcal{R}
$$

where $S=P d(P) Q-Q d(P) P$. It is to be noted that by Lemma 3.4, we have $S^{*}=-S$.

Lemma 3.5.

(i) $\phi\left(\left[U^{*}, V\right]\right)=\left[\phi(U)^{*}, V\right]+\left[U^{*}, \phi(V)\right]$,
(ii) $\phi(P) \in \mathcal{Z}(\mathcal{R})$,
(iii) $\phi(Q) \in \mathcal{Z}(\mathcal{R})$,
(iv) $\phi(U+V)=\phi(U)+\phi(V)+\mathcal{Z}_{U, V}, \mathcal{Z}_{U, V} \in \mathcal{Z}(\mathcal{R})$,
$(v) \phi$ is additive on $\mathfrak{A}_{i j}, 1 \leq i \neq j \leq 2$.
Proof. Since $(i),(i v)$ and (v) are easy to verify, we prove only $(i i)$ and (iii).
(ii) By the definition of ϕ, we see that

$$
\begin{aligned}
\phi(P) & =d(P)+[S, P] \\
& =d(P)-Q d(P) P-P d(P) Q \\
& =d(P) P+d(P) Q-Q d(P) P-P d(P) Q\{\text { since } P+Q=I\} \\
& =P d(P) P+Q d(P) Q \in \mathcal{Z}(\mathcal{R})
\end{aligned}
$$

(iii) In order to prove that $\phi(Q) \in \mathcal{Z}(\mathcal{R})$, we first show that $\phi(P U Q+$ $Q U P)=P \phi(U) Q+Q \phi(U) P$ for all $U \in \mathcal{R}$. Since $\left[P^{*},\left[P^{*}, U\right]\right]=$ $P U-2 P U P+U P=P U Q+Q U P$, it follows, applying (i) twice,

$$
\begin{aligned}
\phi(P U Q+Q U P) & =\phi\left(\left[P^{*},\left[P^{*}, U\right]\right]\right)=\left[P^{*},\left[P^{*}, \phi(U)\right]\right] \\
& =P \phi(U) Q+Q \phi(U) P
\end{aligned}
$$

By Lemma 3.4(i), $\operatorname{Pd}(Q) P+Q d(Q) Q \in \mathcal{Z}(\mathcal{R})$. By the definition of ϕ, we see that

$$
\phi(Q)=d(Q)+[S, Q]=d(Q)+P d(P) Q+Q d(P) P
$$

The above equation gives us that $P d(Q) P=P \phi(Q) P$ and $Q d(Q) Q=$ $Q \phi(Q) Q$ and hence $P d(Q) P+Q d(Q) Q=P \phi(Q) P+Q \phi(Q) Q$.

Now we know that $\phi(Q)=P \phi(Q) P+P \phi(Q) Q+Q \phi(Q) P+$ $Q \phi(Q) Q$, by (3.2), we have

$$
P \phi(Q) Q+Q \phi(Q) P=\phi(P Q Q+Q Q P)=0
$$

Consequently, we get $\phi(Q)=P \phi(Q) P+Q \phi(Q) Q \in \mathcal{Z}(\mathcal{R})$.
Lemma 3.6. $\phi\left(\mathfrak{A}_{i j}\right) \subseteq \mathfrak{A}_{i j}, 1 \leq i \neq j \leq 2$.
Proof. For $U_{12} \in \mathfrak{A}_{12}$, we have $U_{12}=\left[P^{*}, U_{12}\right]$. Compute

$$
\phi\left(U_{12}\right)=\phi\left(\left[P^{*}, U_{12}\right]\right)=\left[P, \phi\left(U_{12}\right)\right]=P \phi\left(U_{12}\right)-\phi\left(U_{12}\right) P
$$

and hence we see that $P \phi\left(U_{12}\right) P=Q \phi\left(U_{12}\right) P=Q \phi\left(U_{12}\right) Q=0$. This implies that $\phi\left(\mathfrak{A}_{12}\right) \subseteq \mathfrak{A}_{12}$. Similarly, $\phi\left(U_{21}\right)=Q \phi\left(U_{21}\right) P \in \mathfrak{A}_{21}$ for each $U_{21} \in \mathfrak{A}_{21}$ and therefore $\phi\left(\mathfrak{A}_{21}\right) \subseteq \mathfrak{A}_{21}$.

Lemma 3.7. There is a functional $f_{i}: \mathfrak{A}_{i i} \rightarrow \mathcal{C}$ such that $\phi\left(U_{i i}\right)-f_{i}\left(U_{i i}\right) \in$ $\mathcal{T}_{i i}$ for all $U_{i i} \in \mathfrak{A}_{\mathfrak{i}}, i=1,2$.

Proof. For $U_{11} \in \mathfrak{A}_{11}$, by Lemma 3.5(ii), we have

$$
0=\phi\left(\left[P^{*}, U_{11}\right]\right)=\left[P^{*}, \phi\left(U_{11}\right)\right]=P \phi\left(U_{11}\right)-\phi\left(U_{11}\right) P
$$

and hence we see that $P \phi\left(U_{11}\right) Q=Q \phi\left(U_{11}\right) P=0$. Thus, it can be assumed that $\phi\left(U_{11}\right)=A_{11}+A_{22}$ and similarly, $\phi\left(U_{22}\right)=B_{11}+B_{22}$, here $A_{i i}, B_{i i} \in$ $\mathfrak{A}_{\mathfrak{i} \mathfrak{i}}, i=1,2$. Since $\left[U_{11}^{*}, U_{22}\right]=0$, a simple calculation gives $\left[A_{22}^{*}, U_{22}\right]=0$ for all $U_{22} \in \mathfrak{A}_{22} ;\left[U_{11}^{*}, B_{11}\right]=0$ for all $U_{11} \in \mathfrak{A}_{11}$. Since $\left[A_{22}^{*}, U_{22}\right]=$ 0 for all $U_{22} \in \mathfrak{A}_{22}$, we see that $A_{22}^{*} X Q=Q X A_{22}^{*}$ for any $X \in \mathcal{R}$. As both $A_{22}^{*}, Q \in \mathcal{Q}_{m r}(\mathcal{R})$, by Lemma $3.1, A_{22}^{*}=Q C$ for some $C \in \mathcal{C}$. A simple calculation gives us that $\phi\left(U_{11}\right) \in \mathcal{T}_{11}+\mathcal{C}$. Similarly one can see that $\phi\left(\mathfrak{A}_{22}\right) \in \mathcal{T}_{22}+\mathcal{C}$. Therefore, there exist scalars $f_{1}\left(U_{11}\right)$ and $f_{2}\left(U_{22}\right)$ such that $A_{22}=f_{1}\left(U_{11}\right) Q$ and $B_{11}=f_{2}\left(U_{22}\right) P$. Hence $\phi\left(U_{11}\right)-f_{1}\left(U_{11}\right) I \in \mathcal{T}_{11}$ and $\phi\left(U_{22}\right)-f_{2}\left(U_{22}\right) I \in \mathcal{T}_{22}$.

Now for any $U \in \mathcal{R}$, we define a mapping $\Delta: \mathcal{R} \rightarrow \mathcal{T}$ by $\Delta(U)=$ $\phi(P U P)+\phi(P U Q)+\phi(Q U P)+\phi(Q U Q)-\left(f_{1}(P U P)+f_{2}(Q U Q)\right) I$. Further, by the definitions of $\phi(U)$ and $\Delta(U)$ and by Corollary 2.10 , it is clear that the difference $\phi(U)-\Delta(U) \in \mathcal{C}$. So, define a mapping $\xi: \mathcal{R} \rightarrow \mathcal{C}$ by $\xi(U)=$ $\phi(U)-\Delta(U)$ for all $U \in \mathcal{R}$. By Lemmas 3.6 and 3.7, Δ has the following properties.

Lemma 3.8. Let $U_{i j} \in \mathfrak{A}_{\mathfrak{i} \mathfrak{j}}, 1 \leq i, j \leq 2$. Then
(i) $\Delta\left(U_{i j}\right) \in \mathcal{T}_{i j}, 1 \leq i \neq j \leq 2$,
(ii) $\Delta\left(U_{12}\right)=\phi\left(U_{12}\right)$ and $\Delta\left(U_{21}\right)=\phi\left(U_{21}\right)$,
(iii) $\Delta\left(U_{i i}\right) \in \mathfrak{A}_{\mathfrak{i i}}, i=1,2$,
(iv) $\Delta\left(U_{11}+U_{12}+U_{21}+U_{22}\right)=\Delta\left(U_{11}\right)+\Delta\left(U_{12}\right)+\Delta\left(U_{21}\right)+\Delta\left(U_{22}\right)$.

Now, we shall show that Δ is an additive $*$-derivation. First, we shall prove the additivity of Δ.

By Lemma 2.4 and Lemma 3.8(ii), we get the following result.
Lemma 3.9. Δ is additive on \mathfrak{A}_{12} and \mathfrak{A}_{21}.
Lemma 3.10. Let $U_{i i} \in \mathfrak{A}_{\mathfrak{i i}}, U_{i j} \in \mathfrak{A}_{\mathfrak{i j}}, 1 \leq i \neq j \leq 2$. Then
(i) $\Delta\left(U_{i j}^{*}\right)=\Delta\left(U_{i j}\right)^{*}$,
(ii) $\Delta\left(U_{i i} V_{i j}\right)=\Delta\left(U_{i i}\right) V_{i j}+U_{i i} \Delta\left(V_{i j}\right)$,
(iii) $\Delta\left(V_{i j} U_{j j}\right)=\Delta\left(V_{i j}\right) U_{j j}+V_{i j} \Delta\left(U_{j j}\right)$,
(iv) $\Delta(P)=\Delta(Q)=0$.

Proof.
(i) By Lemmas $3.5 \& 3.8$, for any $V_{21} \in \mathfrak{A}_{21}$, we compute

$$
\begin{aligned}
\Delta\left(V_{21}^{*}\right) & =\Delta\left(\left[V_{21}^{*}, Q\right]\right) \\
& =\left[\phi\left(V_{21}\right), Q\right]+\left[V_{21}, \phi(Q)\right] \\
& =\Delta\left(V_{21}\right)^{*} .
\end{aligned}
$$

Similarly, it is easy to prove the other case.
(ii) Since $\left[V_{21}^{*}, U_{11}\right]=-U_{11} V_{21}^{*}$, by Lemmas $3.7 \& 3.8$, we have

$$
\begin{aligned}
-\Delta\left(U_{11} V_{21}^{*}\right) & =-\phi\left(U_{11} V_{21}^{*}\right)=\phi\left(\left[V_{21}^{*}, U_{11}\right]\right) \\
& =\left[\phi\left(V_{21}\right)^{*}, U_{11}\right]+\left[V_{21}^{*}, \phi\left(U_{11}\right)\right] \\
& =\left[\Delta\left(V_{21}\right)^{*}, U_{11}\right]+\left[V_{21}^{*}, \Delta\left(U_{11}\right)\right] \\
& =-\Delta\left(U_{11}\right) V_{21}^{*}-U_{11} \Delta\left(V_{21}\right)^{*}
\end{aligned}
$$

Thus, we have $\Delta\left(U_{11} V_{21}^{*}\right)=\Delta\left(U_{11}\right) V_{21}^{*}+U_{11} \Delta\left(V_{21}\right)^{*}$. Hence $\Delta\left(U_{11} V_{12}\right)=\Delta\left(U_{11}\left(V_{12}^{*}\right)^{*}\right)=\Delta\left(U_{11}\right) V_{12}+U_{11} \Delta\left(V_{12}^{*}\right)^{*}=\Delta\left(U_{11}\right) V_{12}+$ $U_{11} \Delta\left(V_{12}\right)$. Similarly, it is easy to prove the other identity.
(iii) Proof is same as that of part (ii).
(iv) Since $\Delta\left(V_{12}\right)=\Delta\left(P V_{12}\right)=\Delta(P) V_{12}+P \Delta\left(V_{12}\right)$, multiplying above expression by P from the left we have $P \Delta(P) P V_{12}=0$, which implies $P \Delta(P) P=0$ because \mathcal{R} is prime. By Lemma 3.8, $\Delta(P) \in \mathfrak{A}_{11}$, hence $\Delta(P)=P \Delta(P) P=0$. Similarly, $\Delta(Q)=0$.

Lemma 3.11. Δ is additive on \mathfrak{A}_{11} and \mathfrak{A}_{22}.
Proof. Let $U_{11}, V_{11} \in \mathfrak{A}_{11}$. For any $W_{12} \in \mathfrak{A}_{12}$, by Lemma 3.10 , we have

$$
\Delta\left(\left(U_{11}+V_{11}\right) W_{12}\right)=\Delta\left(U_{11}+V_{11}\right) W_{12}+\left(U_{11}+V_{11}\right) \Delta\left(W_{12}\right)
$$

On the other hand, by Lemmas $3.9 \& 3.10$, we have

$$
\begin{aligned}
& \Delta\left(\left(U_{11}+V_{11}\right) W_{12}\right) \\
& =\Delta\left(U_{11} W_{12}+V_{11} W_{12}\right)=\Delta\left(U_{11} W_{12}\right)+\Delta\left(V_{11} W_{12}\right) \\
& =\Delta\left(U_{11}\right) W_{12}+U_{11} \Delta\left(W_{12}\right)+\Delta\left(V_{11}\right) W_{12}+V_{11} \Delta\left(W_{12}\right)
\end{aligned}
$$

Comparing the above two identities, we get $\left(\Delta\left(U_{11}+V_{11}\right)-\Delta\left(U_{11}\right)-\right.$ $\left.\Delta\left(V_{11}\right)\right) W_{12}=0$. In other words $\left(\Delta\left(U_{11}+V_{11}\right)-\Delta\left(U_{11}\right)-\Delta\left(V_{11}\right)\right) P \mathcal{R} Q=0$. Since \mathcal{R} is prime, it follows that $\left(\Delta\left(U_{11}+V_{11}\right)-\Delta\left(U_{11}\right)-\Delta\left(V_{11}\right)\right) P=0$. Hence, $\Delta\left(U_{11}+V_{11}\right)=\Delta\left(U_{11}\right)+\Delta\left(V_{11}\right)$ as $\Delta\left(\mathfrak{A}_{11}\right) \subseteq \mathfrak{A}_{11}$. Similarly, Δ is additive on \mathfrak{A}_{22}.

Lemma 3.12. Δ is additive.

Proof. Let $U=\sum_{i, j=1}^{2} U_{i j}, V=\sum_{i, j=1}^{2} V_{i j}$ be in \mathcal{R}. By Lemmas 3.8, $3.9 \& 3.11$, we have

$$
\begin{aligned}
\Delta(U+V) & =\Delta\left(\sum_{i, j=1}^{2}\left(U_{i j}+V_{i j}\right)\right) \\
& =\sum_{i, j=1}^{2} \Delta\left(U_{i j}+V_{i j}\right)=\sum_{i, j=1}^{2}\left(\Delta\left(U_{i j}\right)+\Delta\left(V_{i j}\right)\right) \\
& =\Delta\left(\sum_{i, j=1}^{2} U_{i j}\right)+\Delta\left(\sum_{i, j=1}^{2} V_{i j}\right)=\Delta(U)+\Delta(V)
\end{aligned}
$$

In the sequel, we shall prove that Δ is a derivation.
Lemma 3.13. Let $U_{i i}, V_{i i} \in \mathfrak{A}_{\mathfrak{i}}, i=1,2$. Then $\Delta\left(U_{i i} V_{i i}\right)=\Delta\left(U_{i i}\right) V_{i i}+$ $U_{i i} \Delta\left(V_{i i}\right)$ and $\Delta\left(U_{i i}^{*}\right)=\Delta\left(U_{i i}\right)^{*}$.

Proof. For any $U_{11}, V_{11} \in \mathfrak{A}_{11}$ and $W_{12} \in \mathfrak{A}_{12}$, we have by Lemma 3.10 that

$$
\Delta\left(U_{11} V_{11}^{*} W_{12}\right)=\Delta\left(U_{11} V_{11}^{*}\right) W_{12}+U_{11} V_{11}^{*} \Delta\left(W_{12}\right)
$$

On the other hand by Lemmas 3.5, 3.7, $3.8 \& 3.10$ we have,

$$
\begin{aligned}
& \Delta\left(U_{11} V_{11}^{*} W_{12}\right) \\
& =\Delta\left(U_{11}\right) V_{11}^{*} W_{12}+U_{11} \Delta\left(V_{11}^{*} W_{12}\right) \\
& =\Delta\left(U_{11}\right) V_{11}^{*} W_{12}+U_{11} \phi\left(\left[V_{11}^{*}, W_{12}\right]\right) \\
& =\Delta\left(U_{11}\right) V_{11}^{*} W_{12}+U_{11}\left(\left[\phi\left(V_{11}\right)^{*}, W_{12}\right]\right)+U_{11}\left(\left[V_{11}^{*}, \phi\left(W_{12}\right)\right]\right) \\
& =\Delta\left(U_{11}\right) V_{11}^{*} W_{12}+U_{11}\left(\left[\Delta\left(V_{11}\right)^{*}, W_{12}\right]\right)+U_{11}\left(\left[V_{11}^{*}, \Delta\left(W_{12}\right)\right]\right) \\
& =\Delta\left(U_{11}\right) V_{11}^{*} W_{12}+U_{11} \Delta\left(V_{11}\right)^{*} W_{12}+U_{11} V_{11}^{*} \Delta\left(W_{12}\right)
\end{aligned}
$$

Comparing the above two identities, we get $\left(\Delta\left(U_{11} V_{11}^{*}\right)-\Delta\left(U_{11}\right) V_{11}^{*}-\right.$ $\left.U_{11} \Delta\left(V_{11}\right)^{*}\right) W_{12}=0$. In other words

$$
\left(\Delta\left(U_{11} V_{11}\right)-\Delta\left(U_{11}\right) V_{11}-U_{11} \Delta\left(V_{11}\right)\right) P \mathcal{R} Q=0
$$

Since \mathcal{R} is prime, it follows that $\left(\Delta\left(U_{11} V_{11}^{*}\right)-\Delta\left(U_{11}\right) V_{11}^{*}-U_{11} \Delta\left(V_{11}\right)^{*}\right) P=$ 0 . Hence, $\Delta\left(U_{11} V_{11}^{*}\right)=\Delta\left(U_{11}\right) V_{11}^{*}+U_{11} \Delta\left(V_{11}\right)^{*}$ as $\Delta\left(\mathfrak{A}_{11}\right) \subseteq \mathfrak{A}_{11}$. Since $U_{11}^{*}=P U_{11}^{*}$, we see that $\Delta\left(U_{11}^{*}\right)=\Delta\left(P U_{11}^{*}\right)=\Delta\left(U_{11}\right)^{*}$. Thus $\Delta\left(U_{11} V_{11}\right)=$ $\Delta\left(U_{11}\right) V_{11}+U_{11} \Delta\left(V_{11}\right)$. Similarly, $\Delta\left(U_{22} V_{22}\right)=\Delta\left(U_{22}\right) V_{22}+U_{22} \Delta\left(V_{22}\right)$.

Lemma 3.14. Let $U_{12} \in \mathfrak{A}_{12}$ and $W_{21} \in \mathfrak{A}_{21}$. Then $\Delta\left(U_{12} W_{21}\right)=$ $\Delta\left(U_{12}\right) W_{21}+U_{12} \Delta\left(W_{21}\right)$ and $\Delta\left(U_{21} W_{12}\right)=\Delta\left(U_{21}\right) W_{12}+U_{21} \Delta\left(W_{12}\right)$.

Proof. For any $W_{21} \in \mathfrak{A}_{21}$, by Lemmas $3.8 \& 3.10$, we compute

$$
\begin{aligned}
\phi\left(\left[\left[V_{12}^{*}, U_{12}\right], W_{12}^{*}\right]\right)= & \phi\left(V_{12}^{*} U_{12} W_{12}^{*}+W_{12}^{*} U_{12} V_{12}^{*}\right) \\
= & \Delta\left(V_{12}^{*} U_{12} W_{12}^{*}+W_{12}^{*} U_{12} V_{12}^{*}\right) \\
= & \Delta\left(V_{12}^{*} U_{12} W_{12}^{*}\right)+\Delta\left(W_{12}^{*} U_{12} V_{12}^{*}\right) \\
= & \Delta\left(V_{12}\right)^{*} U_{12} W_{12}^{*}+V_{12}^{*} \Delta\left(U_{12} W_{12}^{*}\right) \\
& \quad+\Delta\left(W_{12}^{*} U_{12}\right) V_{12}^{*}+W_{12}^{*} U_{12} \Delta\left(V_{12}\right)^{*} .
\end{aligned}
$$

On the other hand, by Lemmas $3.5 \& 3.8$ we have

$$
\begin{aligned}
& \phi\left(\left[\left[V_{12}^{*}, U_{12}\right], W_{12}^{*}\right]\right) \\
& =\left[\left[\phi\left(V_{12}\right)^{*}, U_{12}\right], W_{12}^{*}\right]+\left[\left[V_{12}^{*}, \phi\left(U_{12}\right)\right], W_{12}^{*}\right]+\left[\left[V_{12}^{*}, U_{12}\right], \phi\left(W_{12}\right)^{*}\right] \\
& =\left[\left[\Delta\left(V_{12}\right)^{*}, U_{12}\right], W_{12}^{*}\right]+\left[\left[V_{12}^{*}, \Delta\left(U_{12}\right)\right], W_{12}^{*}\right]+\left[\left[V_{12}^{*}, U_{12}\right], \Delta\left(W_{12}\right)^{*}\right] \\
& =\Delta\left(V_{12}\right)^{*} U_{12} W_{12}^{*}+W_{12}^{*} U_{12} \Delta\left(V_{12}\right)^{*}+V_{12}^{*} \Delta\left(U_{12}\right) W_{12}^{*} \\
& \quad+W_{12}^{*} \Delta\left(U_{12}\right) V_{12}^{*}+V_{12}^{*} U_{12} \Delta\left(W_{12}\right)^{*}+\Delta\left(W_{12}\right)^{*} U_{12} V_{12}^{*} .
\end{aligned}
$$

Comparing the above two identities, we arrive at

$$
\begin{aligned}
& V_{12}^{*}\left(\Delta\left(U_{12} W_{12}^{*}\right)-\Delta\left(U_{12}\right) W_{12}^{*}-U_{12} \Delta\left(W_{12}\right)^{*}\right) \\
& =\left(-\Delta\left(W_{12}^{*} U_{12}\right)+\Delta\left(W_{12}\right)^{*} U_{12}+W_{12}^{*} \Delta\left(U_{12}\right)\right) V_{12}^{*}
\end{aligned}
$$

By using Lemma 2.9, we see that

$$
\begin{aligned}
& \Delta\left(U_{12} W_{12}^{*}\right)-\Delta\left(U_{12}\right) W_{12}^{*}-U_{12} \Delta\left(W_{12}\right)^{*}-\Delta\left(W_{12}^{*} U_{12}\right) \\
& \quad+\Delta\left(W_{12}\right)^{*} U_{12}+W_{12}^{*} \Delta\left(U_{12}\right)=C \in \mathcal{C}
\end{aligned}
$$

From the later relation we obtain the two identities

$$
\Delta\left(U_{12} W_{12}^{*}\right)-\Delta\left(U_{12}\right) W_{12}^{*}-U_{12} \Delta\left(W_{12}\right)^{*}=P C
$$

and

$$
\Delta\left(W_{12}^{*} U_{12}\right)-\Delta\left(W_{12}\right)^{*} U_{12}-W_{12}^{*} \Delta\left(U_{12}\right)=-Q C
$$

Since $\Delta\left(W_{21}^{*}\right)=\Delta\left(W_{21}\right)^{*}$, we have

$$
\begin{align*}
& \Delta\left(U_{12} W_{21}\right)-\Delta\left(U_{12}\right) W_{21}-U_{12} \Delta\left(W_{21}\right) \\
& =\Delta\left(U_{12}\left(W_{21}^{*}\right)^{*}\right)-\Delta\left(U_{12}\right) W_{21}-U_{12} \Delta\left(W_{21}^{*}\right)^{*}=P C . \tag{3.3}
\end{align*}
$$

Similarly, we obtain the other identity as

$$
\begin{equation*}
\Delta\left(W_{21} U_{12}\right)-\Delta\left(W_{21}\right) U_{12}-W_{21} \Delta\left(U_{12}\right)=-Q C \tag{3.4}
\end{equation*}
$$

Now it is sufficient to show that $C=0$. Assume $C \neq 0$. Then by using equations (3.3) and (3.4) together with Lemma 3.10, we have

$$
\begin{aligned}
& \Delta\left(U_{12} W_{21} U_{12}\right) \\
& =\Delta\left(U_{12}\right) W_{21} U_{12}+U_{12} \Delta\left(W_{21} U_{12}\right) \\
& =\Delta\left(U_{12}\right) W_{21} U_{12}+U_{12} \Delta\left(W_{21}\right) U_{12}+U_{12} W_{21} \Delta\left(U_{12}\right)-C U_{12}
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta\left(U_{12} W_{21} U_{12}\right) \\
& =\Delta\left(U_{12} W_{21}\right) U_{12}+U_{12} W_{21} \Delta\left(U_{12}\right) \\
& =\Delta\left(U_{12}\right) W_{21} U_{12}+U_{12} \Delta\left(W_{21}\right) U_{12}+U_{12} W_{21} \Delta\left(U_{12}\right)+C U_{12}
\end{aligned}
$$

Comparing the above two identities, we obtain $C U_{12}=0$. Since \mathcal{C} is a field, we have $U_{12}=0$, a contradiction. Consequently, $\Delta\left(U_{12} W_{21}\right)=\Delta\left(U_{12}\right) W_{21}+$ $U_{12} \Delta\left(W_{21}\right)$ and $\Delta\left(U_{21} W_{12}\right)=\Delta\left(U_{21}\right) W_{12}+U_{21} \Delta\left(W_{12}\right)$.

Proof of Theorem 3.3. Let $U, V \in \mathcal{R}$. Assume that $U=U_{11}+U_{12}+$ $U_{21}+U_{22}$ and $V=V_{11}+V_{12}+V_{21}+V_{22}$. By Lemmas 3.8-3.14, we see that

$$
\begin{aligned}
\Delta(U V)= & \Delta\left(\left(U_{11}+U_{12}+U_{21}+U_{22}\right)\left(V_{11}+V_{12}+V_{21}+V_{22}\right)\right) \\
= & \Delta\left(U_{11} V_{11}+U_{11} V_{12}+U_{12} V_{21}+U_{12} V_{22}+U_{21} V_{11}\right. \\
& \left.+U_{21} V_{12}+U_{22} V_{21}+U_{22} V_{22}\right) \\
= & \Delta\left(U_{11} V_{11}+U_{12} V_{21}\right)+\Delta\left(U_{11} V_{12}+U_{12} V_{22}\right) \\
& +\Delta\left(U_{21} V_{11}+U_{22} V_{21}\right)+\Delta\left(U_{21} V_{12}+U_{22} V_{22}\right) \\
= & \Delta\left(U_{11} V_{11}\right)+\Delta\left(U_{12} V_{21}\right)+\Delta\left(U_{11} V_{12}\right)+\Delta\left(U_{12} V_{22}\right) \\
& +\Delta\left(U_{21} V_{11}\right)+\Delta\left(U_{22} V_{21}\right)+\Delta\left(U_{21} V_{12}\right)+\Delta\left(U_{22} V_{22}\right) \\
= & \Delta\left(U_{11}\right) V_{11}+U_{11} \Delta\left(V_{11}\right)+\Delta\left(U_{12}\right) V_{21}+U_{12} \Delta\left(V_{21}\right) \\
& +\Delta\left(U_{11}\right) V_{12}+U_{11} \Delta\left(V_{12}\right)+\Delta\left(U_{12}\right) V_{22}+U_{12} \Delta\left(V_{22}\right) \\
& +\Delta\left(U_{21}\right) V_{11}+U_{21} \Delta\left(V_{11}\right)+\Delta\left(U_{22}\right) V_{21}+U_{22} \Delta\left(V_{21}\right) \\
& +\Delta\left(U_{21}\right) V_{12}+U_{21} \Delta\left(V_{12}\right)+\Delta\left(U_{22}\right) V_{22}+U_{22} \Delta\left(V_{22}\right) \\
= & \left(U_{11}+U_{12}+U_{21}+U_{22}\right) \Delta\left(V_{11}+V_{12}+V_{21}+V_{22}\right) \\
& +\Delta\left(U_{11}+U_{12}+U_{21}+U_{22}\right)\left(V_{11}+V_{12}+V_{21}+V_{22}\right) \\
= & U \Delta(V)+\Delta(U) V .
\end{aligned}
$$

It is easy to show that $\Delta\left(U^{*}\right)=\Delta(U)^{*}$. Hence, Δ is an additive $*$-derivation.
Now using the definition of ξ, we see that

$$
\begin{aligned}
\xi(U+V) & =\phi(U+V)-\Delta(U+V) \\
& =\phi(U)+\phi(V)+Z_{U, V}-\Delta(U)-\Delta(V) \\
& =\xi(U)+\xi(V)+Z_{U, V}
\end{aligned}
$$

and

$$
\begin{aligned}
\xi([U, V]) & =\phi([U, V])-\Delta([U, V]) \\
& =\left[\phi\left(U^{*}\right)^{*}, V\right]+[U, \phi(V)]-\Delta([U, V]) \\
& =[\Delta(U), V]+[U, \Delta(V)]-\Delta([U, V])=0 .
\end{aligned}
$$

Finally, let us define $\psi(U)=\Delta(U)-(S U-U S)$ for all $U \in \mathcal{R}$, where $S=P d(P) Q-Q d(P) P$. It is easy to check that ψ is an additive $*$-derivation
on \mathcal{R}. By the definitions of Δ and ϕ, ψ is an additive $*$-derivation and $d(U)=$ $\psi(U)+\xi(U)$ for all $U \in \mathcal{R}$.

We conclude this section by the following result. Recall that a von Neumann algebra \mathcal{M} is called a factor if its centre is $\mathbb{C} I$. It is to be noted that every factor von Neumann algebra is prime. So we have the following immediate corollary.

Corollary 3.15. Let \mathcal{M} be a factor von Neumann algebra. Suppose that a mapping $d: \mathcal{M} \rightarrow \mathcal{M}$ satisfies

$$
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right]
$$

for all $U, V \in \mathcal{M}$. Then there exists $\lambda_{U, V} \in \mathbb{C}$ such that $d(U+V)=d(U)+$ $d(V)+\lambda_{U, V}$ and $d=\psi+\xi$, where ψ is an additive $*$-derivation on \mathcal{M} and ξ is a mapping from \mathcal{M} into \mathbb{C} such that $\xi(U+V)=\xi(U)+\xi(V)+\lambda_{U, V}$ and $\xi([U, V])=0$ for all $U, V \in \mathcal{M}$.

Acknowledgements.

The authors are highly indebted to the learned referee for his/her valuable comments and insightful suggestions which have improved the paper immensely.

References

[1] M. Ashraf and N. Parveen, On Jordan triple higher derivable mappings in rings, Mediterr. J. Math. 13 (2016), 1465-1477.
[2] M. Ashraf and N. Parveen, Lie triple higher derivable maps on rings, Comm. Algebra 45 (2017), 2256-2275.
[3] K. I. Beidar, M. S. Martinadle III and A. V. Mikhalev, Rings with generalized identities, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 196, Marcel Dekker, New York, 1996.
[4] L. Chen and J. H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Algebra 56 (2008), 725-730.
[5] W. Cheung, Lie derivations of triangular algebras, Linear Multilinear Algebra 51 (2003), 299-310.
[6] M. N. Daif, When is a multiplicative derivation additive?, Internat. J. Math. Math. Sci. 14 (1991), 615-618.
[7] I. N. Herstein, Rings with Involution, The University of Chicago Press, Chicago, London, 1979.
[8] W. Jing and F. Lu, Lie derivable mappings on prime rings, Linear Multilinear Algebra 60 (2012), 167-180.
[9] C. Li, Q. Chen and T. Wang, *-Lie derivable mappings on von Neumann algebras, Commun. Math. Stat. 4 (2016), 81-92.
[10] C. Li, X. Fang, F. Lu and T. Wang, Lie triple derivable mappings on rings, Comm. Algebra 42 (2014), 2510-2527.
[11] F. Lu, Additivity of Jordan maps on standard operator algebras, Linear Algebra Appl. 357 (2002), 123-131.
[12] F. Lu and W. Jing, Characterizations of Lie derivations of $\mathcal{B}(\mathcal{X})$, Linear Algebra Appl. 432 (2010) 89-99.
[13] F. Lu and B. Liu, Lie derivable maps on $\mathcal{B}(\mathcal{X})$, J. Math. Anal. Appl. 372 (2010), 369-376.
[14] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698.
[15] M. Mathieu and A. R. Villena, The structure of Lie derivations on C^{*}-algebras, J. Funct. Anal. 202 (2003), 504-525.
[16] C. R. Mires, Lie derivations of von Neumann algebras, Duke Math. J. 40 (1973), 403-409.
[17] A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226 (2000), 390-409.
[18] W. Y. Yu and J. H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432 (2010), 2953-2960.
[19] W. Y. Yu and J. H. Zhang, Nonlinear *-Lie derivations on factor von Neumann algebras, Linear Algebra Appl. 437 (2012), 1979-1991.
[20] F. Zhang and J. Zhang, Nonlinear Lie derivations on factor von Neumann algebras, Acta Math. Sinica (Chin. Ser.) 54 (2011), 791-802.

Karakterizacije *-Liejevih derivabilnih preslikavanja na prostim *-prstenima

Ahmad N. Alkenani, Mohammad Ashraf i Bilal Ahmad Wani

Sažetak. Neka je \mathcal{R} *-prsten koji sadrži netrivijalni samoadjungirajući idempotentni element. U ovom članku se pokazuje da uz izvjesne pretpostavke na \mathcal{R}, ako preslikavanje $d: \mathcal{R} \rightarrow \mathcal{R}$ zadovoljava

$$
d\left(\left[U^{*}, V\right]\right)=\left[d(U)^{*}, V\right]+\left[U^{*}, d(V)\right]
$$

za sve $U, V \in \mathcal{R}$, tada postoji $Z_{U, V} \in \mathcal{Z}(\mathcal{R})$ (koji ovisi o U i $V)$, gdje je $\mathcal{Z}(\mathcal{R})$ u centru od \mathcal{R}, tako da vrijedi $d(U+V)=$ $d(U)+d(V)+Z_{U, V}$. Štoviše, ako je \mathcal{R} slobodan od 2-torzije prosti $*$-prsten, tada je $d=\psi+\xi$, gdje je ψ aditivna $*$-derivacija od \mathcal{R} u njegov centralni zatvarač \mathcal{T} i ξ je preslikavanje s \mathcal{R} u njegov prošireni centroid \mathcal{C} tako da $\xi(U+V)=\xi(U)+\xi(V)+Z_{U, V}$ i $\xi([U, V])=0$ za sve $U, V \in \mathcal{R}$. Naposljetku, gornji rezultati iz teorije prstena primijenjeni su na neke specijalne klase algebri kao što su ugniježđene algebre i von Neumannove algebre.

Ahmad N. Alkenani
Department of Mathematics
King Abdulaziz University
Jeddah, Saudi Arabia
E-mail: aalkenani10@hotmail.com
Mohammad Ashraf
Department of Mathematics
Aligarh Muslim University
Aligarh, 202002, India
E-mail: mashraf80@hotmail.com
Bilal Ahmad Wani
Department of Mathematics
Aligarh Muslim University
Aligarh, 202002, India
E-mail: bilalwanikmr@gmail.com
Received: 5.6.2018.
Revised: 25.8.2018.; 4.10.2018.
Accepted: 22.10.2018.

[^0]: 2010 Mathematics Subject Classification. 16N60, 16W25, 16W10.
 Key words and phrases. Prime rings, Lie derivable mappings, involution, extended centroid, central closure.

