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MINDING ISOMETRIES OF RULED SURFACES IN

LORENTZ-MINKOWSKI SPACE

Ljiljana Primorac Gajčić and Željka Milin Šipuš

Abstract. In this paper we study isometries of ruled surfaces in
the Lorentz-Minkowski space that preserve rulings. A special attention is
given to the classes of surfaces having no Euclidean counterparts. We also
construct some examples of isometric ruled surfaces with certain properties
and rulings preserved.

1. Introduction

A classical topic in Euclidean differential geometry is the study of lo-
cal isometries between surfaces. Local isometries, i.e. differentiable mappings
between surfaces that preserve their first fundamental forms (or intrinsic met-
rics), preserve their Gaussian curvatures, but do not determine a surface
uniquely (up to a space isometry). The classical example is the existence
of a local isometry between a right helicoid and a catenoid. It is of particu-
lar interest to study local isometries by adding certain additional conditions
or to study isometries between surfaces of some special classes. There are
results that state how much geometric information of a surface is sufficient
to determine a surface uniquely. Such information is provided by e.g. the
first and the second fundamental form of a surface, but not by its first fun-
damental form and the principal curvatures. Surfaces having the same the
first fundamental forms and the principal curvatures are called the Bonnet
surfaces. They can be defined equivalently as isometric surfaces having the
same mean curvatures. The classical Euclidean result states that any surface
of constant mean curvature admits a one-parameter family of isometric de-
formation. Since right helicoid and catenoid are both minimal, local isometry
between them is obtained through associated family of minimal surfaces. On
the other side, the Bour’s theorem states that there exist local isometries be-
tween helicoidal and rotation surfaces so that helices on the helicoidal surface
correspond to circles on the rotation surfaces. Further, consideration of local

2010 Mathematics Subject Classification. 53A35, 53B30, 53C50.
Key words and phrases. Lorentz-Minkowski space, isometry, ruled surface, B-scroll.

107



108 LJ. PRIMORAC GAJČIĆ AND Ž. MILIN ŠIPUŠ

isometries in the class of ruled surfaces naturally imposes a new question on
conditions for local isometry to preserve rulings of ruled surfaces. Existence
of an isometry between a helicoid (a ruled surface) and a catenoid (a rotation
surface) shows that a condition for the image surface to be ruled is not trivial.
The less known result states that if two ruled surfaces are locally isometric,
then the local isometry preserves their rulings, unless the surfaces are isomet-
ric to a doubly-ruled quadric surface whose rulings correspond to the rulings of
both initial ruled surfaces, [5]. This result also gives the motivation to study
isometries between ruled surfaces that preserve their rulings. In Euclidean
space these mappings were first studied by F. Minding and therefore called
the Minding isometries. A differential geometric treatment of that problem
goes back to Kruppa, [14].

In this paper we analyze the analogous problem in 3-dimensional Lorentz-
Minkowski space. The Lorentz-Minkowski space usually provides a richer con-
text than the Euclidean space since the defined pseudo-metric offers more vari-
ations in geometrical notions, [15]. We give a special attention to the classes
of surfaces which have no Euclidean counterparts. Different topics of the clas-
sical differential geometry of surfaces in the Lorentz-Minkowski space can be
found in many papers. Ruled surfaces have been studied in e.g. [1–3,9,11–13].
The analogue of the Bour’s theorem in the Lorentz-Minkowski space can be
found in [8], and the Bonnet surfaces in [7]. In [16] the so called Bonnet-
Thompsen spacelike surfaces are studied, i.e. spacelike surfaces that are both
maximal and affine minimal. The Minding isometries of ruled surfaces in a
simply isotropic space I1

3 are studied in [17] and in pseudo-Galilean space in
[4].

2. Preliminaries

The Lorentz-Minkowski 3-space R3
1 is a pseudo-Euclidean space endowed

with a non-degenerate indefinite symmetric bilinear form of index 1 (a pseudo-
scalar product) defined by

〈x, y〉 = x1y1 + x2y2 − x3y3

for x = (x1, x2, x3) and y = (y1, y2, y3). A vector x ∈ R3
1 can have one of three

causal character: it is spacelike if 〈x, x〉 > 0 or x = 0, timelike if 〈x, x〉 < 0
and lightlike (null, isotropic) if 〈x, x〉 = 0 and x 6= 0. The pseudo-norm of
a vector x is defined as the real number ‖x‖ =

√
|〈x, x〉| ≥ 0. Similarly, the

causal character of an arbitrary curve α = α(s) ∈ R3
1 is determined by the

causal character of its velocity vector α′(s).
Let S be a smooth immersed surface in R3

1 with a local parametrization
f : U → R

3
1, where U ⊂ R2 is an open set. The causal character of a surface S

is determined by its first fundamental form, i.e. a surface S is called spacelike
(resp. timelike, null or lightlike) if its first fundamental form g is positive
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definite (resp. indefinite, of rank 1). From now on we consider only non-null
surfaces. For spacelike (resp. timelike) surfaces we define locally the unit
normal field

n =
f1 ×L f2

‖f1 ×L f2‖ ,

which is a timelike (resp. spacelike) field. For any two vectors v = (v1, v2, v3)
and w = (w1, w2, w3) ∈ R3

1, the Lorentzian cross-product v ×L w of v and w
is defined as v ×L w = J(v ×w), where × is the Euclidean cross-product and

J =




1 0 0
0 1 0
0 0 −1



 .

The shape operator of a surface S (at point p derived from n) is a self-adjoint
operator with respect to 〈, 〉, 〈Lpv, w〉 = 〈v, Lpw〉, v, w ∈ TpS. The eigenvalues
k1, k2 of the shape operator Lp (real or complex conjugate) are called the
principal curvatures of S. When they are real, the associated eigenvectors
are the principal directions of a surface S in p. There are always two principal
curvatures on the spacelike part of S and the shape operator is diagonalizable.
In the case of timelike surfaces, eigenvalues of Lp can either be real and
different (Lp is diagonalizable), real and equal (Lp need not be diagonalizable)
or complex conjugate (Lp is diagonalizable). The Gaussian curvature of S is
in local coordinates given by

(2.1) K = ǫ
LN −M2

EG− F 2 ,

whereas for the mean curvature we have

(2.2) H =
ǫ

2
LG− 2FM + EN

EG− F 2 ,

where E,F and G are coefficients of the first fundamental form, L,M and N
are coefficients of the second fundamental form and ǫ = 〈n, n〉.

3. Minding isometries of ruled surfaces in R3
1

A ruled surface S in R3
1 is a surface traced out by a straight line moving

along curve c and therefore it admits a local parametrization x : I × R → R3
1

of the form

(3.1) x(u, v) = c(u) + vr(u).

The curve c is the base curve (the generating curve) and the straight lines
with directions r(u) are the rulings of a surface.

In this paper we consider all three classes of ruled surfaces in R3
1. Accord-

ing to [1], [3], there are three main classes of ruled surfaces in R3
1: surfaces

having rulings r and their derivative r′ nowhere null (the class M1
1 ), surfaces

having r nowhere null but r′ null everywhere (the class M0
1 ) and surfaces with
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r null everywhere (the class M0). While the surfaces of the class M1
1 are ana-

logues of Euclidean ruled surfaces, surfaces of the class M0
1 , respectively M0

have no Euclidean counterparts. Here we study Minding isometries for every
class separately with particular interest to analyze local isometries for surfaces
of class M0

1 and special type of surfaces of class M0, so-called B−scrolls [10].
We show that surfaces of class M0

1 admit only trivial isometry and describe
Minding isometries for other two classes of surfaces.

The surfaces with r and r′ nowhere null will be referred as non-null ruled
surface, while those with r null everywhere will be called null-ruled surfaces.
Among non-null ruled surfaces we distinguish three types of surfaces with
respect to the causal character of the base curve, respectively of the rulings
of a ruled surface. A non-null ruled surface is called of type S1, (resp. S2,
S3) if its base curve is spacelike (resp. spacelike, timelike) curve and rulings
are spacelike (resp. timelike, spacelike) vectors. A null-ruled surface can be
parametrized as a B-scroll, i.e. timelike ruled surface with a base curve which
is a null Frenet curve with a null frame (A,B,C) and null rulings determined
by the field B, [10].

Now, let S, S ∈ R3
1 be two surfaces given by their parameterizations

f : I × R → R3
1, f : I × R → R3

1, respectively. Let F : S → S be a map-
ping of the surfaces, F∗p : TpS → TF (p)S, its differential (the push-forward).
Then F is called a local isometry if F∗p preserves the pseudo-scalar product,
i.e. 〈F∗p(v), F∗p(w)〉 = 〈v, w〉, p ∈ S, v, w ∈ TpS.

We will call a mapping F : S → S the Minding isometry if F is a local
isometry which maps the rulings of S into the rulings of S.

Note that a local isometry preserves the causal character of a vector (re-
spectively curve, surface), therefore we can define Minding isometry only be-
tween surfaces whose rulings have the same causal character. Furthermore,
it will be shown that we can consider Minding isometries only between ruled
surfaces with base curves of the same causal character.

4. Minding isometries of non-null ruled surfaces

Let S be a surface of a class M1
1 with parametrization (3.1). If consecutive

rulings of a ruled surface in R3
1 intersect or are parallel, then the surface is

said to be developable. These surfaces can be mapped isometrically into the
plane. All other ruled surfaces are called skew surfaces. The striction point
on a ruled surface is the foot of the common perpendicular in the sense of the
metric of R3

1 to two consecutive rulings. The set of the striction points defines
a curve on a ruled surface S called the striction curve, whose parametrization
is given by

(4.1) s(u) = c(u) − 〈c′(u), r′(u)〉
〈r′(u), r′(u)〉r(u).
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In particular, a skew non-null ruled surface S ∈ R3
1 with parametrization (3.1)

always admits the reparameterization

(4.2) x̃(u, v) = s(u) + ve(u),

where e(u) =
r(u)

‖r(u)‖ , e
2 = ±1, and s(u) is the striction curve of such a surface,

that is 〈s′(u), e′(u)〉 = 0 holds.
The distribution parameter of the ruled surface with parametrization (4.2)

is defined as

(4.3) D =
det(s′, e, e′)

〈e′, e′〉 .

If D = 0, then normal vectors are collinear along the same ruling at nonsingu-
lar points of the surface, i.e. the tangent planes are identical. These surfaces
are developable. Skew ruled surfaces are characterized by the distribution
parameter D 6= 0.

Without loss of generality, we can assume that considered ruled surfaces
have parametrization (4.2) where u is arc length parameter of its striction
curve. Analogously as in the Euclidean case, non-null ruled surfaces are de-
scribed, up to Lorentzian motion, by the analogue of the moving Sannia frame,
which provides a complete system of invariants of ruled surface, the curva-
ture κ, the torsion τ and the striction σ, [6, 19]. For a ruled surface S1 with
parametrization (4.2) by choosing n = e′

‖e′‖ and z = e×n, we obtain orthonor-
mal frame {e, n, z}, where n is timelike and e and z are spacelike vectors. The
Frenet formulas of this frame along e become

e′ = κn, n′ = κe+ τz, z′ = τn,

where κ and τ are referred as curvature and torsion, respectively, at the
ruling e(u). The tangent vector of a striction curve of S1 is a spacelike vector
s′ = cosσe+ sin σz, where the angle σ, an angle enclosed by s′ and e, is its
striction. Hence, the spacelike ruled surface S1 can be parameterized by

x(u, v) =
∫

(cos σe(u) + sin σz(u))du+ ve(u).

Similarly, for a ruled surface S2, with orthonormal frame {e, n, z}, where e is
timelike and n and z are spacelike vectors the Frenet formulas are expressed
by

e′ = κn, n′ = κe− τz, z′ = τn.

For a ruled surface S3, with orthonormal frame {e, n, z}, where z is timelike
and e and n are spacelike vectors the Frenet formulas are expressed by

e′ = κn, n′ = −κe+ τz, z′ = τn.

Since for both of these surfaces, a tangent vector stays in the timelike plane
determined by e and z, it is given by s′ = sinh σe+ coshσz, where the real
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number σ, a Lorentzian timelike angle enclosed by s′ and e, is its striction.
Hence, both of these surfaces can be parameterized by

x(u, v) =
∫

(sinh σe(u) + coshσz(u))du+ ve(u).

The first fundamental forms I = Edu2 + 2Fdudv + Gdv2 of considered
ruled surfaces S1, S2, S3, are given by:

• for a spacelike ruled surface S1

I = (1 − v2κ2)du2 + 2 cosσdudv + dv2,

• for a timelike ruled surface S2

I = (1 + v2κ2)du2 − 2 sinhσdudv − dv2,

• for a timelike ruled surface S3

I = (−1 + v2κ2)du2 + 2 sinhσdudv + dv2.

Also, the second fundamental forms II = Ldu2 + 2Mdudv +Ndv2 are given
by:

• for a spacelike ruled surface S1

II =
κ cosσ sinσ + τ sin2 σ + vκ′ sin σ − σ′ cosσvκ+ v2κ2τ√

| − sin2 σ + v2κ2|
du2

+
κ sinσ√

| − sin2 σ + v2κ2|
dudv,

• for a timelike ruled surface S2

II =
κ sinh σ coshσ + τ cosh2 σ + vκ′ coshσ + σ′ sinh σvκ− v2κ2τ√

| cosh2 σ + v2κ2|
du2

+
κ coshσ√

| cosh2 σ + v2κ2|
dudv,

• for a timelike ruled surface S3

II =
κ sinh σ coshσ + τ cosh2 σ + vκ′ coshσ − σ′ sinh σvκ− v2κ2τ√

| cosh2 σ − v2κ2|
du2

+
κ coshσ√

| cosh2 σ − v2κ2|
dudv.

We can notice that for all three types of considered ruled surfaces, I does
not depend on the torsion and does not react to the change of sign of curvature
κ and for surfaces S1 also does not react to the change of sign of striction σ.

Furthermore, the rulings of the surfaces are preserved by the isometry
F : S → S if the coordinate mapping (u, v) 7→ (u, v) is of the form u = f(u),
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v = v + g(u). After applying the condition that the first fundamental forms
are preserved, by a simple calculation we obtain u = u, v = v.

Proposition 4.1. A striction curve of a surface S is mapped by the Mind-
ing isometry into a striction curve of a surface S.

Proof. The statement follows from v = v.

Hence, for all three types of considered ruled surfaces the Minding isome-
tries are described by the change of the sign of the function κ and replacement
of C1−function τ : I → R by an arbitrary C1−function τ : I → R, and for
the surfaces S1 also by the change of the sign of the function σ. Furthermore,
the following proposition holds

Proposition 4.2. The absolute value |D| of parameter of distribution of
a ruled surface S1(κ, τ, σ) (resp. S2, S3) is invariant under Minding isometries.

Proof. From (4.3) it follows that D = sin σ
κ , respectively, D = cosh σ

κ , de-
pending on the type of the surface. This is obviously invariant under Minding
isometries.

The following problems involve determination of torsion of a ruled surface
for all three types of non-null ruled surfaces, respecting that a ruled surface
can be mapped by Minding isometry only to a ruled surface of the same type
and are proved analogously as in the Euclidean case.

Theorem 4.3. A ruled surface S can be mapped by the Minding isometry
into a surface S in the way that:

1. the surface S is conoidal (τ = 0);
2. the surface S is a surface of constant slope ( τ

κ = const.);
3. a given curve v = v(u) on S is mapped into an asymptotic curve of S;
4. a given curve v = v(u) on S is mapped into a line of curvature of S;
5. a given geodesic on S is mapped into a straight line of S;
6. a given curve v = v(u) on S is mapped into a plane curve on S;
7. a given curve v = v(u) on S is mapped into a curve on S along which

the mean curvature H of S vanishes.

5. Local isometries of ruled surfaces of class M0
1

Ruled surfaces with rulings r nowhere null, but r′ null everywhere are spe-
cial class of ruled surfaces in R3

1, having no Euclidean counterparts. These sur-
faces were studied in [1]–[3]. Let S be such surface with parametrization (3.1).
Notice since r′ is a null vector, these surfaces do not admit reparametrization
of the form (4.2) and therefore can not be described with analogue of the
Sannia frame. According to [3], these surfaces are described, up to Lorentzian
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motion, with invariants Q and R defined by Q := det(c′, r, r′), R := 〈r′, r′〉,
respectively. Their first fundamental form is given by

I = (R+ 2Qv)du2 + dv2.

Since I depends on invariants Q and R which completely determine the ruled
surface, we can conclude following

Theorem 5.1. Two ruled surfaces of class M0
1 are locally isometric if

and only if they are congruent.

6. Minding isometries of B-scrolls

Every null scroll, i.e. null-rulled surface, satisfying 〈c′, r〉 6= 0 admits a
parametrization as a B-scroll, i.e. as a ruled surface with null rulings and
with a base curve c which is a null Frenet curve with a null frame (A,B,C),

c′ = A, A2 = B2 = 0, C2 = 1,

〈A,B〉 = 1, 〈A,C〉 = 0, 〈B,C〉 = 0.

Rulings are determined by the field r = B. Therefore, a B-scroll is
parametrized by

f(u, v) = c(u) + vB(u), u ∈ I ⊂ R, v ∈ R.

Vector fields (A,B,C) satisfy analogous formulas to Frenet formulas

(6.1) A′ = k2C, B
′ = k3C, C

′ = −k3A− k2B,

where functions k2, k3 are called the curvatures of c. B-scrolls are timelike
surfaces with the first fundamental form

(6.2) I = k2
3v

2du2 + 2dudv,

the second fundamental form

(6.3) II = (k2 + vk′
3 + v2k3

3)du2 + 2k3dudv

and the shape-operator in a point p Lp given by (see [10])

(6.4) Lp =

(
k3 0

k2 + vk′
3 k3

)
.

The Gaussian curvature K and the mean curvature H of B-scrolls are given
by

(6.5) K = k2
3 , H = k3.

We also consider B-scrolls of constant slope. These surfaces are characterized

by k2 = 0 or k2 6= 0 and
k3

k2
= const., [18]. Contrary to the case of Euclidean

space, there are no conoidal surfaces among non-cylindrical null-ruled sur-
faces. In fact, the only B-scroll that is conoidal surface is the B-scroll over
a generalized null cubic, i.e. a parabolic null cylinder. Examples of B-scrolls



ISOMETRIES OF RULED SURFACES 115

include flat B-scrolls, such as parabolic null cylinders, and non-flat totally
umbilical ones, such as pseudo-spheres S2

1(p, r).

Example 6.1. A pseudosphere S2
1(p, r) is a ruled surface whose both fam-

ilies of rulings are null. The following parametrization is the local parametriza-
tion of S2

1(0, r) as a B-scroll (Figure 1)

f(u, v) = (r, 0, 0) +
1√
2

(0, u, u) + v(−u

r
,− u2

2
√

2r2
+

1√
2
,− u2

2
√

2r2
− 1√

2
).

Figure 1. A pseudosphere S2
1(p, r) with a patch

parametrized as a B-scroll

Now we consider Minding isometries of B-scrolls. From the first funda-
mental form (6.2) we see that k3 is preserved (hence K and H as well), and
k2 can vary without affecting the first fundamental form.

Theorem 6.2. A B-scroll S(k2, k3) can be mapped by a Minding isometry
into a B-scroll S(k2, k3) so that:

1. the B-scroll S is a B-scroll of constant slope;
2. a given curve v = v(u) on S is mapped into an asymptotic curve of S;
3. a given geodesic on S is mapped into a straight line of S;
4. a given curve v = v(u) on S is mapped into a plane curve on S;

Proof. 1. By varying k2 we obtain B-scroll of constant slope.
2. An asymptotic curve on S satisfies

(k2 + vk′
3 + v2k3

3)du2 + 2k3dudv = 0.

When v = v(u) is given, k2 can be calculated.
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3. A curve v = v(u) on S with parametrization α(u) = c(u) + v(u)B(u)
is a straight line when α′ i α′′ are linearly dependent, i.e. when matrix

[
1 v′ vk3

−vk2
3 −k2k3v + v′′ k2 + 2v′k3 + vk′

3

]

is of rank 1. From this we obtain equations

(6.6)

∣∣∣∣∣
1 v′

−vk2
3 −k2k3v + v′′

∣∣∣∣∣ = 0

and

(6.7)

∣∣∣∣∣
1 v′ + (vk3)2

−vk2
3 −k2k3v + v′′ + vk3(k2 + 2v′k3 + vk′

3)

∣∣∣∣∣ = 0.

Equation (6.7) is the differential equation of a geodesic on a B-scroll.
Since v = v(u) is geodesic, it fulfills equation (6.7) and from equation
of the form (6.6) we obtain k2.

4. A curve α is a plane curve if and only if det(α′, α′′, α′′′) = 0. From this
condition we obtain the equation for k2 of the following form

Gk′
2 + F1k2 + F2k

2
2 + F3k

3
2 = 0,

where G,F1, F2, F3 : I → R are known functions which depend on v, k3

and their derivatives.

Example 6.3. A null-ruled surface with k3 = const. 6= 0 is called a
isoparametric surface, [2]. These surfaces are surfaces of constant Gaussian
and mean curvatures. If such a surface is a surface of constant slope, then,
when parametrized as a B-scroll, we have k2 = const. as well. The special
case is S2

1(p, r). The general parametrization of such a surface is given by (see
[2])

f(u, v) = (g(u), 0,−au+
∫
g′(u) cosu du) + v(cos u, sinu, 1).

All these surfaces are locally isometric in Minding sense to S2
1(p, r) (Figure

2).

7. Example: Helicoidal ruled surfaces

A helicoidal ruled surface S in R3
1 is the orbit of a straight line under

a one-parameter group of helicoidal motions, i.e. a rotation followed by a
translation in the direction of the axis of rotation. Rotations include all three
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Figure 2. Examples of isoparametric surfaces

types of rotations, around a timelike, spacelike and null (lightlike) axis given
by their canonical forms respectively



cosu sinu 0
− sinu cosu 0

0 0 1


 ,




1 0 0
0 coshu sinhu
0 sinhu coshu


 ,




1 − u2

2 u u2

2
−u 1 u

− u2

2 u 1 + u2

2


 .

As we will show, these surface are ruled surfaces with constant curvature,
torsion and striction. By Theorem 4.3, we can conclude that they are Minding
images of ruled surfaces of same type, with the same curvature κ = const.
and striction σ = const. and arbitrary torsion τ .

Case 1. If we consider a rotation of a straight line around timelike axis,
without loss of generality, we may assume that the line lies in the yz−plane
(or plane parallel to the yz−plane). We consider a straight line with timelike,
spacelike and null direction e as e = (0, coshα, sinhα), e = (0, sinhα, coshα),
e = (0, 1, 1), respectively.

For a spacelike direction e (analogously in other cases), a helicoidal surface
S is parametrized as

f(u, v) =




cosu sin u 0
− sinu cosu 0

0 0 1






r
coshα · v
sinhα · v


+




0
0

h · u


 .

Therefore its parametrization as a ruled surface is given by

(7.1) f(u, v) = (r cosu,−r sinu, h · u) + v(coshα sinu, coshα cosu, sinhα).

This surface is a ruled surface of a type S1, (resp. S3) with the curvature,
torsion and striction equal to (for surfaces of type S1)

κ =
coshα√
r2 − h2

, τ =
− sinhα√
r2 − h2

, σ = arcsinh
(−r coshα− h sinhα√

r2 − h2

)
.
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Therefore, these surfaces are surfaces of constant slope, in particular, conoidal
surfaces. In particular, a classical helicoid of the first kind is obtained for
α = 0, h = 1, r = 0. A hyperboloid of one sheet is obtained as a rotational
surface (for h = 0) and its rulings can be either timelike, spacelike or null.

Figure 3. Helicoidal ruled surface with parametrization
(7.1) for r = 2, h = 1, α = 2

Case 2. We consider rotations around a spacelike axis (x−axis). A straight
line can be taken either in a plane parallel to a spacelike xy−plane or in a
plane parallel to a timelike xz−plane.

If a line lies in a plane parallel to the xy−plane and has a direction
e = (cosα, sinα, 0), then a surface S is parametrized by

f(u, v) =




1 0 0
0 coshu sinh u
0 sinh u coshu






cosα · v
sinα · v

r


+




h · u
0
0


 ,

that is,

(7.2) f(u, v) = (h · u, r sinhu, r coshu) + v(cosα, sinα coshu, sinα sinhu).

Under a helicoidal motion, a ruled surface of a type S1 is obtained with

κ =
| sinα|√
r2 + h2

, τ =
− cosα√
r2 + h2

, σ = arccosh
(h cosα+ r sinα√

r2 + h2

)
.

In particular, a helicoid of the second kind is obtained for α =
π

2
, h = 1, r = 0.

Now, if we assume that a straight line lies in a plane parallel to the
xz−plane, we can consider a straight line with spacelike, timelike and light-
like direction. For a timelike direction e = (sinhα, 0, coshα) a surface S is



ISOMETRIES OF RULED SURFACES 119

Figure 4. A helicoidal ruled surface with parametrization
(7.2) for r = 1, h = 1, α = 2.5

parametrized as

f(u, v) =




1 0 0
0 coshu sinh u
0 sinhu coshu








sinhα · v

r
coshα · v



+




h · u

0
0



 ,

that is,
(7.3)
f(u, v) = (h · u, r coshu, r sinh u) + v(sinhα, coshα sinh u, coshα coshu).

By this motion, a ruled surface of a type S2, (resp. S3) is obtained with

κ =
coshα√
h2 − r2

, τ =
sinhα√
h2 − r2

, σ = arccosh
(h sinhα− r coshα√

h2 − r2

)
.

A classical helicoid of the third kind is obtained for α = 0, h = 1, r = 0.

Case 3. Finally, we consider helicoidal motions around the null (x, 0, x)−axis.
We assume that a straight line lies in a plane parallel to x = z plane. The
obtained surface S is parametrized by

f(u, v) =




1 − u2

2 u u2

2
−u 1 u

− u2

2 u 1 + u2

2






a · v + b
c · v

a · v + b


+ h




u3

3 − u
u2

u3

3 + u


 ,

that is,

f(u, v) =
(
b+ h(

u3

3
− u, hu2, b+ h(

u3

3
+ u)

)
+ v(a+ u, c, a+ u).

By this motion, we obtain a ruled surface with a null base curve and
rulings that have either a spacelike, timelike or null direction. According
to [10], the surfaces with null rulings can be reparametrized as B−scrolls,
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Figure 5. A helicoidal ruled surface with parametrization
(7.3) for r = 1, h = 2, α = 2.5

while those with spacelike or timelike rulings can be reparametrized either as
surfaces of class M1

1 or of class M0
1 . Conjugate of Enneper’s surface of second

kind (Figure 6) with a parametrization

f(u, v) = ((
u3

3
− u) + uv, u2 + v, (

u3

3
+ u) + uv)

is an example of a ruled surface obtained under a helicoidal motion of a line
β(v) = (v, v, v) around a null axis. Theorem 5.1 implies that there are no
ruled surfaces that are locally isometric to this surface other than congruent
one.

Figure 6. Conjugate of Enneper’s surface of the second kind
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Mindingove izometrije pravčastih ploha u

Lorentz-Minkowskijevom prostoru

Ljiljana Primorac Gajčić i Željka Milin Šipuš

Sažetak. U ovom radu proučavamo izometrije pravčastih
ploha u Lorentz-Minkowskijevom prostoru koje čuvaju izvodnice.
Posebna pažnja je posvećena klasama pravčastih ploha koje ne-
maju svoj analogon u euklidskom prostoru. Takoder dajemo
primjere pravčastih ploha s odredenim svojstvima koje su lokalno
izometrične pri čemu su izvodnice očuvane.
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