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Summary

Reaction to selection in modern breeding programs has been expanded because of
constant changes in the techniques for hereditary assessment. Without genomic data,
hereditary assessment should center on amplifying the accuracy of evaluated breeding values
(EBVs) and expanding the mean EBV of selected parents so there is no conspicuous chance to
increase long-term response. The availability of single nucleotide polymorphism (SNP)-chips
introduces new opportunities to optimize short versus long-term response under restricted
inbreeding. Whenever frequencies and impacts of alleles underlying trait values can be
assessed, an exchange between short and long-term optimum selection policies strategies
will appear. Therefore, a technique to discover the optimum index to maximize long-term
response is resulting from the weight given to a marker according to its frequency. It is
probable that long-term genetic gain of genomic selection will be be improved by Jannink’s
weighting (JW) method, in which rare favorable marker alleles are weighted in the selection
criterion. The JW technique was spread by including an additional factor to decrease the
stress on rare favorable alleles over the time horizon and has been called dynamic weighting
(DW). In comparison to unweighted genomic estimate, both DW and JW can improve long-
term genetic gain and decrease inbreeding rate.
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Introduction

Selection patterns are usually designed to maximize genetic
gain with no or a hidden limitation of rates of inbreeding. Some
researchers have developed selection approaches that decrease
inbreeding rates. For example, Grundy and Hill (1993) and
Verrier et al. (1993) reduced family mean weight in their selection
index relative to that in the best linear unbiased prediction—
estimated breeding value (BLUP EBV), which decreased the
probability of co-selection of relatives and therefore decreased
inbreeding. Brisbane and Gibson (1994) and Wray and Goddard
(1994) have selected animals while putting a charge on the average
relationship of the selected animals. There is no assurance that
these approaches yield the maximum genetic gains at some level
of inbreeding. Furthermore, the actual rate of inbreeding is not
recognized before the breeding pattern begins.

In a study, Goddard and Howarth (1994) have approved the
application of dynamic selection rules in contrast to static designs
of optimum breeding patterns. Dynamic rules optimize the
selection of the actually available candidates and in this manner
exploit openings that were not predicted when the reproducing
program was arranged. For example, Meuwissen (1997) presented
a dynamic selection rule that maximizes the genetic level of the
selected parents while limiting their average association. This
technique was developed for several generations and stable rates of
genetic gain were achieved, which shows that the technique could
control short and long-term impacts of selection on inbreeding.
The technique can also be applied to oblige the variance of
response by limiting the average prediction error variance of the
selected animals (Meuwissen, 1997).

Inbreeding can be controlled at two levels. Firstly, the rate of
inbreeding in a population as a whole can be limited to a preferred
level while maximizing the rate of genetic gain, through optimizing
the long-term contributions of a selected number of breeding
animals (Wray and Goddard, 1994; Meuwissen, 1997). Secondly,
at an individual level, avoiding large inbreeding coefficients in
progeny through controlling mating it is very important to avoid
reductions in fitness traits (Smith et al. 1998) and homozygous
lethal recessive alleles. The control of inbreeding levels in progeny
can be applied using mate allocation (Kinghorn, 1998).

Mate allocation can also be measured independently of mate
selection. Although mating plans are normally used to control
progeny inbreeding in farm animals, they can also be used to
make culling decisions in young individuals and in situations
where constraints, such as animal groups, exist (Kinghorn, 2011).
Simulation investigations and some empirical evaluations of
“genomic selection” (GS) (Meuwissen et al., 2001) or “genome-
wide selection” (Bernardo, 2007) have indicated that prediction
accuracies from GS are high enough to allow rapid gains from the
selection (VanRaden et al., 2009; Lorenzana and Bernardo, 2009;
Jannink, 2010; Hayes et al., 2009). Therefore, although scientists
may have confidence that GS can accelerate short-term gain,
no such confidence is acceptable for long-term gain (Jannink,
2010). Ideally, experimental investigations of long-term gain
should be implemented empirically in model systems no matter
how expensive necessary replicated investigations may be, and
even in rapid cycling organisms, would not be accomplished in
a near future. Stochastic simulation remains perhaps the only
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feasible choice to test hypotheses regarding the effect of selection
approaches on a long-term gain (Hill and Caballero, 1992).
Approaches for maximizing long-term genetic gain are different
from those which have been used for maximizing short-term
genetic gain. Although a quantitative trait locus (QTL) with a
minor effect and/or with a low frequency of the favorable allele
may not be essential for short-term gain, it possibly contributes
more to long-term genetic gain through maintaining genetic
variance over time. Therefore, over a longer time horizon, these
alleles should be preserved in the population, for instance by
unweighting them in the selection criterion. Goddard (2009)
suggested an optimal index that is likely to maximize the long-
term genetic gain with a two-QTL model example. It has been
suggested that, in the genomic selection model, the optimum
weight for each marker depends on its allele frequencies, such
that a marker with a high (low)-frequency of the favorable allele
obtains a low (high) weight in the index. Marker effects were not
involved in this index (Goddard, 2009). Goddard’s optimization
was further applied by Jannink (2010), but, marker effects, as
well as allele frequencies, were involved in the selection criterion,
so it is unclear how accurately the marker effects are projected
and whether the alleles are favorable or not. Furthermore, when
there are many genes (compared to Goddard’s two-loci example),
it makes sense to arrange the loci based on their expected effect
in order to offset random drift where it causes most problems.
Jannink (2010), indicated that, as anticipated from Goddard
(2009), selection on this index originally caused a lower accuracy
of selection and genetic gain than selection on unweighted
genomic prediction (GP). However, markers close to QTL stayed
polymorphic much longer when the selection was on the index,
leading to greater genetic variance and a further improvement in
genetic gain in future generations (Jannink, 2010).

In this study, we first review challenges to obtain more long-
term genetic response in traditional selection, then we discuss how
the optimal contribution selection (OSC) has been improved and
finally we survey the dynamic of long-term response in genomic
selection and find the optimum weights in a selection index to
apply to each marker to maximize long-term response.

Challenges of Long-Term Genetic Gain with Traditional
Selection

Traditional genetic gain has relied on using the recorded
phenotype of each individual together with the data of its pedigree
to predict its breeding value (BV), most often using statistical
methods, known as the best linear unbiased selection (BLUP)
(Henderson, 1984). This approach has been successful, leading to
genetic gains in most livestock (Van Vleck et al., 1986; Havenstein
et al., 1994). Despite this success, there has been an interest in
using simply inherited genetic markers to rise the rate of genetic
gain (Dekkers and Hospital, 2002) and although some genes with
known polymorphisms affecting quantitative traits have been
discovered (Grisart et al., 2002; Jeon et al., 1999; Wilson et al.,
2001), in general they have not added greatly to the efficiency
of selection based on EBVs calculated from phenotypes and
pedigrees (Boichard et al., 2006; Dekkers, 2004).

There are at least three causes. Firstly, there are generally many
genes affecting a trait, so the proportion of the variance clarified
by one gene is very small. Meuwissen and Goddard (1996)
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indicated that the gain in selection response from using individual
genes was proportional to the variance they explained, so if only
a few of the genes explaining a small proportion of the variance
are known, the gain will be too small. Secondly, as there are many
genes influencing a trait, their effects are typically small and thus
hard to estimate precisely. For example, polymorphisms in casein
genes have been recognized for years to affect milk yield in dairy
cattle. However, the projected effects of these polymorphisms are
small and differ from one experiment to another (Bouvenhuis and
Weller, 1994; Goddard and Wiggans, 1999). Thirdly, we identify
a few genes that are responsible for variation in vital traits.
Although a gene might be recognized to have a role in physiology,
it does not mean that there is a genetic variation in this gene that
has a significant effect on physiological function. In addition,
genes are usually revealed to affect a trait that was not previously
suspected from their identified function (Goddard, 2009). For
example, Moffatt et al. (2007) have found that ORMDL3 affects
asthma, but this gene had not been involved in asthma. Modern
molecular biology promises to overcome this shortage in the
current knowledge.

Fernando and Grossman (1989) developed a general method
for estimating BVs using markers in linkage equilibrium with
QTL. However, in practice, the gains were small and this method
of marker-assisted selection was rarely used. By saturating a
QTL region with additional markers, the causal mutation has
infrequently been discovered (Grisart et al., 2002). Only when it
explained an unusually large proportion of genetic variance did
Meuwissen and Goddard (1996) indicate that the gain in selection
response from marker-assisted selection was nearly proportional
to the proportion of genetic variance explained by the markers.
Thus, a new kind of marker-assisted selection was required
to utilize all QTL and that did not require linkage phase to be
determined for each family.

Meuwissen et al. (2001) revealed that a dense panel of markers
covered the whole genome and in linkage disequilibrium (LD)
with QTL could lead to large increases in response to selection.
This type of marker-assisted selection has been known as genomic
selection. It became achievable with the availability of thousands
of SNPs that could be genotyped at a reasonable cost. It has been
widely used in dairy cattle breeding (Dalton, 2009) and is expected
to revolutionize all livestock genetic improvement programs and
can also be extended to plants (Bernardo and Yu, 2007; Heftner
et al. 2009; Zhong et al. 2009), aquaculture (Sonesson and
Meuwissen, 2009) and prediction of genetic risk in humans (Wray
et al., 2007).

Aran Ardebili et al. (2016) assessed that the genetic gain from
a progeny testing program corresponding to the characteristics
of Holstein population and an equivalent genomic selection
program in terms of number of needed male and female parents
was compared and the effect of number of young bulls on genetic
gain in these two programs was evaluated. Selection objective
included the milk production. Genetic gain for milk production
from four path selection was estimated using gene flow method
over 150 years. The results indicated that the progeny testing and
genomic selection varied in terms of selection accuracy, through
selection intensity and generation interval. The annual genetic
gain from progeny testing was 114.7 and from genomic selection
was 173.7 kg suggesting that the genetic gain obtained from

genomic selection could be higher than that of progeny testing by
more than 50% due to a shorter generation interval.

Maximizing Genetic Gain at the Desired Rate of Inbreed-
ing (OCS)

Wray and Goddard (1994) and Brisbane and Gibson (1994)
described methods that decrease inbreeding by maximizing the
objective:

¢/ EBV, -kcAc,

where EBV, = vector of BLUP estimated breeding values
of the candidates for selection in generation t, ct = vector of
genetic contributions of the selection candidates to generation
t+1, A = the matrix of additive genetic relationships between
selection candidates in generation t and k = a cost factor. They
applied optimization algorithms that did not guarantee to find the
optimum c. However, the optimum solution for the cost factor
method was found by replacing A with k in equation (Meuwissen,
1997).

c=A " (EBV,-Q\)/2),
or
Q A 'QA=QA 'EBV -1\,

where A\ and A are LaGrangian multipliers (A = a vector of two
LaGrangian multipliers). Q = known incidence matrix for sex (the
first column yields ones for males and zeros for females, and the
second column yields ones for females and zeros for males); and
1/2 = a vector of halves of order 2.

Wray and Goddard (1994) find optimum c,, within a group of
animals which have been selected by their optimization algorithm.
The cost factor k is commonly unknown, although Wray and
Goddard (1994) computed a cost factor based on inbreeding
depression, variance reductions because of inbreeding, and a time
horizon. The presumption made here was that practical breeders
do approximately know which rates of inbreeding are acceptable,
although they do not have a feel for cost factors and therefore are
willing to accept only cost factors that result in acceptable rates
of inbreeding. Hence, the cost factor X is calculated from the
acceptable rate of inbreeding by the following equation:

, EBm!( A — A1Q(QATQ) 1Q'Ai")EBVt
2.0 = I -1 -1
8C —1((Q47Q) 1

Meuwissen (1997) anticipated that acceptable rates of
inbreeding are approximately known. Breeding schemes were
simulated to test whether the intended rate of inbreeding was
achieved and to compare rates of gain with BLUP selection. For
all the breeding schemes mating was considered as random.
Meuwissen (1997) was going to maximize the genetic level of the
next generation of animals within every round of selection using
optimal genetic contributions to the next generation. In optimal
contributions, the average coefficient of co-ancestry of the parents
of the generation (t) is limited to (t-1) AF for t=2, ..., 10, where
AF=0.025 per generation. The average co-ancestry constraint was
obtained in all generations without reduction of rates of genetic
gain in later generations. The initial reduction in genetic gain
was due to reduced genetic variances on account of the selection
(Bulmer, 1981). In the next generations, rates of genetic gain

acs

Agric. conspec. sci. Vol. 84 (2019) No. 3



slightly increased. However, this increase was small in relation to
standard error and was not statistically significant. An explanation
is that the inbreeding constraint becomes less stringent. The rates
of gain and inbreeding of the optimal selection methods to rates
obtained from the selection on BLUP-EBV (BLUP selection)
were compared. With BLUP selection, it was found that the
rate of inbreeding strongly depends on the number of sires and
dams selected, whereas the results of schemes that optimize
the selection of sires and dams with equal contributions of the
selected sires and the selected dams, were close to the numbers
based on Wright’s (1931) inbreeding formula for random mating:
AF = 1/8n_+ 1/8n,, where ns (n,) = the number of sires (dams)
selected. The results obviously showed the superiority of the
optimal contribution methods in comparison to BLUP selection
(Meuwissen, 1997).

The optimal contribution method of selection attains, on
average, a predefined rate of inbreeding. The realized rates of
inbreeding fluctuate around this desired rate. This might be due
to the fact that the realized contributions of the parents fluctuate
around the optimal contributions due to the variance of family
sizes. However, because the average relationship between the
selected parents did not vary around their predefined levels, the
standard deviation of the inbreeding level in the last generation
was much lower than BLUP selection. The present method
limited the average co-ancestry of the selected parents instead of
the average inbreeding coefficient of their offspring. When co-
ancestry was limited, it was not difficult to achieve the predefined
rate of inbreeding during the course of selection; the rates of gain
did not decline and numbers of animals selected did not enhance,
which suggests that previous selections affect future inbreeding
only through affecting the present co-ancestry (Meuwissen, 1997).

This implies that nonrandom mating cannot control
inbreeding because the relationships between the selected parents
will be converted into inbreeding in later generations. Nonrandom
mating can postpone the time until the close relationships are
transformed into inbreeding, but, cannot prevent it. Conversely,
nonrandom mating, in which the selected animals with many
co-selected relatives are mated to those with few co-selected
relatives, decreases the cumulative effect of multiple generations
of selection on inbreeding by decreasing the variance of long-term
genetic contributions (Santiago and Caballero, 1994). The effect
of decreasing the co-selection of relatives (Meuwissen, 1997) and
compensatory mating on inbreeding is additive (Grundy et al.,
1994), hence, both BLUP selection and the present method can
equally benefit from it. Findings revealed that the constrained
selection achieves the genetic gain by changing the contributions
of young ancestors rather than those of old ancestors. The
contributions of old ancestors are hardly changed and do not
contribute to rates of inbreeding (Meuwissen, 1997).

This agrees with Woolliams and Thompson (1994), who
computed that the changes in genetic contributions of old
ancestors added much more to the rate of inbreeding than to
the genetic gain and should be avoided when rates of inbreeding
are supposed to be reduced. Thus, at equal rates of inbreeding,
selection differentials are higher when the contributions of the
selection differentials are optimized in comparison to applied
BLUP selection.
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A dynamic selection rule was offered and yielded 21-60%
greater selection response than best linear unbiased prediction
selection at the same rate of inbreeding, which may be due to
increased selection differentials (Meuwissen, 1997). In optimal
contribution selection (OCS), the contribution of a parent is the
result of a trade-off among its genetic merit and its relationship to
other individuals (Fernandez et al., 2011; Woolliams et al., 2015).

Sonesson et al. (2010) have shown that with finite locus
models (FLM), simulations in which OCS is not able to maintain
genetic diversity across the whole genome in selected populations,
relationship coefficients can be estimated from pedigree
information. In fact, it leads to a strong reduction in diversity
around QTL regions by favoring alleles with the largest effects.
To circumvent this flaw, the authors proposed using marker-based
relationships as they reflect genome sharing between individuals
more accurately than pedigree-based expectations.

Sanchez-Molano et al. (2016) demonstrate that the use of
optimum contribution strategies in a genomic context effectively
decreases the rate of increase in inbreeding while ensuring
genetic gain for traits of interest in a wide range of scenarios. The
inbreeding impact on fitness was clearly included, thus allowing
the maintenance of fitness levels and, therefore, genomic-based
optimum contribution strategies can be recommended both from
conservation and animal genetic improvement perspectives.

Attaining the optimal genetic contributions of females would
require high female reproductive rates, which may be possible in
poultry, pigs, or in cattle by the use of Ova Pick Up (Kruip et al,,
1994). For example, when the number of selected sires exceeds
the number of dams, the optimal solution requires mating of one
dam to several sires. Such flexible female reproductive methods
may not be existing and often a predefined number of dams is
selected, say n, with equal genetic contributions per dam. In
this situation, we may simply select the n , dams with the highest
optimal contributions.

Ghavi Hossein-Zadeh (2010) evaluated the genetic trend of
milk yield in multiple ovulation and embryo transfer (MOET)
populations of dairy cows using stochastic simulation and
concluded that all four MOET breeding schemes could result in
larger genetic responses than the realized and theoretical genetic
gains from the current artificial insemination (AI) progeny testing
populations. This progress was achieved in spite of having a
small size, closed scheme and restrictions on inbreeding in some
cases. The small population without restrictions on inbreeding
accumulated a high level of inbreeding. Such restrictions are not
usually worthwhile in terms of genetic gain for the time horizon
studies. Moreover, selection would become ineffective due to
reductions in genetic variation caused by inbreeding. Regardless
of population size, higher selection intensity led to a higher degree
of linkage disequilibrium. The reduction in genetic variation due
to linkage disequilibrium was as important as that due to the
accumulation of inbreeding. Large population size led to lower
random genetic drift.

Wang et al. (2017) noticed that maintaining genetic originality
is essential for conserving native breeds. It was shown that
using an OCS approach can effectively maintain the diversity
of native alleles and genetic originality, while ensuring genetic
gain. Although traditional OCS provided the greatest breeding
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values under classical kinship restriction, the extent of migrant
contribution in the progeny generation was not controlled. When
migrant contribution was limited or minimized, the kinship
at native alleles increased compared to the reference scenario.
Therefore, in addition to limiting migrant contribution, limiting
kinship at native alleles is needed to ensure that native genetic
diversity is kept. When kinship at native alleles was constrained,
the classical kinship was automatically lowered in most cases and
more sires were selected (Hartwig et al., 2014; Wang et al., 2017).

Genomic Information and Selection Decisions

Applying molecular information to make selection decisions
in breeding programs was envisaged decades ago (Smith, 1967;
Soller, 1978). Marker-assisted selection is the most useful method
for traits which cannot be recorded on an individual prior to the
(minimum) age of breeding (Meuwissen and Goddard, 1996).
For example, traits which are only displayed in females or only
observable late in life or after slaughter would benefit. Traits such
as milk yield, which is not displayed by bulls, have been improved
by progeny testing bulls based on their daughters’ milk yield. This
leads to an accurate estimate of the bulls’ BV but at the expense
of a long generation interval. The advantage of genomic selection
is that bulls and heifers can be selected early in life and the
generation interval leads to approximately double genetic gain per
year (Schaeffer, 2006; Konig et al., 2009; Pryce et al., 2010).

Application of genetic markers and genomic selection helps
us in selecting the best bulls when they are born and breed from
them at 1-year of age instead of waiting until they have completed
a progeny test at 5-years of age. However, the implementation of
genetic markers into breeding programs has been limited due to
technological reasons (Goddard et al., 2010).

The recent advances in SNP markers have offered new
opportunities to do so. SNP markers can cover the genome with
high density. SNP genotyping technology has enabled us to profile
many animals for thousands of marker loci in a single analysis
with the minimum cost per marker (Williams, 2005).

The principle of genomic evaluation models is to take benefit
of both genotypic and phenotypic data available in a training (also
called ‘reference’) population to build prediction equations of
the genetic quality of individuals (Meuwissen et al., 2001). These
equations can be used to select candidates having genotypes but
not phenotypes. Diverse approaches have also been proposed
to estimate genetically enhanced breeding values (GEBV), as
reviewed by Hayes et al. (2009).

The use of genomic data to make selection decisions, or
genomic selection, has greatly increased the technical and
economic efficiency of dairy cattle breeding programs (Schaeffer,
2006; Konig et al., 2009). The selection index theory was suggested
to model the overall gain in accuracy expected from using
genomic data at some selection stages (Lande and Thompson,
1990; Dekkers, 2007; Dagnachew et al., 2016).

Atefi et al. (2016) have found that models with additive gene
action Reproducing Kernel Hilbert Spaces (RKHS) method such
as BayesA and BayesL did not perform better than parametric
methods, and besides that RKHS is more complicated and time-
consuming. Comparison of these methods for non-additive

models should be done under different simulation and real
data. Marker density is one of the most important factors that
affect the genomic prediction accuracy and fortunately by new
progress in genotyping technologies, the high-density SNP panels
with low cost are available and could apply easily in getting an
accurate genomic prediction. Preventing decay of accuracy due to
recombination across time is one of the most important benefits
of dense marker panels, so when the highest number of markers
(1000) was used, the lowest accuracy decay was found. In this
study, the decreasing trend of accuracy across generations was not
affected by marker effect estimation methods. In high heritability
traits, increase in the number of markers had a slight effect on
accuracy but for low heritability trait, increase in the number of
markers increased accuracy; therefore, using the dense marker
panels is imperative for low heritability traits. There was the
same association between heritability and the interval between
validating and testing sets so that getting away from validating
sets somehow declined the accuracy of high heritability trait but
the decline was severe for low heritability trait.

Impact of Genomic Selection on Inbreeding Rates

Exploiting genomic data helps to estimate the Mendelian
sampling term of young individuals without having any phenotypic
data. Therefore, genomic selection is expected to reduce the weight
of family data in selection decisions by placing the emphasis on
Mendelian sampling information of young candidates (Daetwyler
et al., 2007). The largest decreases in inbreeding rates due to the
use of genomic selection were sighted for traits of low heritability
(Lillehammer et al., 2011) and when a large part of variance
was explained by markers (de Roos et al., 2011). By screening a
large population of candidates, genomic selection facilitates the
identification of the least related animals having high genetic
merit with a higher accuracy than before.

In particular, McHugh et al. (2011) indicated that genotyping
of a large number of females had a very beneficial impact on AF
reduction. However, even though the rate of inbreeding should
be lower per generation from genomic selection compared with
progeny testing, and the Mendelian sampling can be estimated
at the time of selection more accurately (Daetwyler et al., 2007),
shorter generation intervals can lead to an enhancement in the
rate of annual rate of inbreeding (e.g., Lillehammer et al., 2011).
In addition, there is a risk that genomic selection could result in
large homozygous segments of chromosome surrounding QTL in
the selected population (Sonesson et al., 2010). For these reasons,
approaches to control the rate of inbreeding using genomic
selection schemes are essential. Differentiating the number of
mating per young bulls on the basis of GEBVs is not a sustainable
option; it leads to a slight increase in genetic gain at the expense of
a drastic increase in AF (Sgrensen and Serensen, 2009).

Pryce et al. (2012) compared three strategies for controlling
progeny inbreeding in mating plans. The strategies used data from
pedigree inbreeding coefficients, genomic relationships, or shared
runs of homozygosity. The results presented here show that using
a genomic relationship matrix (GRM) instead of pedigree in a
mating plan is an effective way to decrease the expected inbreeding
in progeny. The reduction in inbreeding using a GRM calculated
using 43,115 SNP (G), a GRM calculated using 3,123 SNP (G3k),
and pedigree relationships (A) was dependent on the way in
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which inbreeding was assessed. For instance, the performance of
G was superior when progeny inbreeding was measured using G
and A was superior to G when progeny inbreeding was measured
using A. This shows that the method of measuring inbreeding
is important when assessing different strategies to control
inbreeding. However, in none of these examples the measurement
scale independent of the method was used to control inbreeding
(Pryce et al,, 2012; Gdmez-Romano et al., 2016).

Sonesson et al. (2012) have found when the data used to
estimate breeding values and to constrain rates of inbreeding
were either both pedigree-based or both genome-based, rates
of genomic inbreeding were close to the desired values and the
identical-by-descent profiles were reasonably uniform across
the genome. But, with a pedigree-based inbreeding constraint
and genome-based estimated breeding values, genomic rates
of inbreeding were much higher than expected rates. With
pedigree-instead of genome-based estimated breeding values,
the impact of the largest QTL on the breeding values was much
smaller, resulting in a more uniform genome-wide identical-by-
descent index but genomic rates of inbreeding were still higher
than expected, based on pedigree relationships because they
measure the inbreeding at a neutral locus not linked to any
QTL. Neutral loci did not exist where there were 100 QTLs on
each chromosome. With a pedigree-based inbreeding limitation
and genome-based estimated breeding values, genomic rates of
inbreeding substantially exceeded the value of its limitation. By
contrast, with a genome-based inbreeding constraint and genome-
based estimated breeding values, marker frequencies changed.
However, this change was limited by the inbreeding constraint at
the marker position.

McHugh et al. (2011) indicated that genotyping of a large
number of females had a very beneficial impact on AF reduction.
The use of genomic selection to pre-select males for progeny
testing resulted in a clear diminution of per generation inbreeding
rates compared with progeny testing schemes, for only slight
modifications of the generation interval (Pryce et al., 2010; de
Roos et al., 2011; Lillehammer et al., 2011; Buch et al., 2012).

The use of genomic information will greatly develop the
understanding of the genetic architecture of inbreeding depression
in terms of the identification of lethal haplotypes and regions of
the genome that are sensitive to inbreeding. The management of
the associated haplotypes is likely to become increasingly complex
(MacArthur et al., 2012). As outlined by Van Eenennaam and
Kinghorn (2014), as the number of lethal loci increases, selection
or mating strategies will need to optimize the balance among
accordance in genetic gain and decreasing the effect of inbreeding
depression. A large number of either lethal or unfavorable
haplotypes across multiple economically important traits will
finally be identified. Therefore, methods need to be developed that
effectively take into account the probability of occurring within
an individual or progeny, along with their individual importance
to the overall breeding objective (Van Eenennaam and Kinghorn,
2014).

Dynamics of Long-Term Response Genomic Selection

In a simulation looking at several generations, Muir (2007)
has displayed that the accuracy of genomic prediction reduces

224 | Shiva MAFAKHERI, Navid GHAVI HOSSEIN-ZADEH, Abdol Ahad SHADPARVAR, Rostam ABDOLLAHI-ARPANAHI

much more quickly if used for selection than if followed by
random mating. This result and the putative mechanisms outlined
suggest that a careful look at long-term selection using GS is
required to detect mechanisms having an important effect on
its performance and to give research directions to improve GS.
There is also a practical need for both crop and animal breeding
programs. Therefore, insight into the long-term consequences of
GS deployment would be useful (Jannink, 2010).

In particular, Heffner et al. (2009) have suggested that GS
separates the breeding process into two cycles; the selection cycle
and model training cycle. The model training cycle is much more
constrained than the selection cycle because it needs adequate
phenotyping data. Therefore, regardless of species, it appears
likely that the frequency of model updating will be lower than
that of selection cycles. This limitation raises the questions of how
accurate GS can be in selection cycles if it has not been improved,
and to what extent long-term selection will be adversely affected.

Another limitation for GS is the necessity of assembling the
initial training population (TP) for the model. In simulations using
population-wide LD, rather large TP has been used (Meuwissen et
al., 2001; Habier et al., 2007; Zhong et al., 2009). In GS on bi-
parental cross populations, much smaller populations have been
effective, though these populations have never been suggested for
long-term selection (Lorenzana and Bernardo, 2009; Wong and
Bernardo, 2008).

Azizian et al. (2016) demonstrated that accomplishing
higher accuracies by increasing the size of training set would not
necessarily lead to the maximum economic efficiency. The optimal
value of genomic selections accuracy and the corresponding
number of animals in the training set should be estimated
according to the economic and breeding situation of the target
population. In Iran’s condition, the optimal accuracy of genomic
selection is about 0.63 which would be achieved by allocating
1,000 individuals in the training set. The cost of genotyping had
a little effect on the optimal accuracy and the size of the training
set. Variation of heritability did not affect the optimal accuracy
and the size of the training set, while this factor increased the
economic efficiency.

Eventually, different GS prediction models have proposed
the impacts which may differ on short and long terms periods.
In simulations of generations promptly after the TP, models that
assume all marker effects are distributed with equal variance (i.e.,
ridge regression), have been found to be as or more accurate than
models that assume some markers do not explain any variance
(e.g. BayesB) (Meuwissen et al., 2001). However, the accuracy of
the former decays more quickly over generations than that of the
latter (Habier, 2007).

To examine the questions of the long-term success of GS,
the impact of initial training population size, the timing of
additions of new phenotypes to the training population, and on
GS analysis method, long-term selection for a quantitative trait
using GS was simulated. This practice strongly increased primary
selection gains but also caused the loss of many favorable QTL
alleles, leading to loss of genetic variance, loss of GS accuracy,
and a low selection plateau. Placing an additional weight on
low-frequency favorable marker alleles, however, allowed GS to
increase their frequency earlier on, causing an initial increase in
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genetic variance. This dynamic led to higher long-term gain while
relieving losses in short-term gain. Weighted GS also enhanced
the maintenance of marker polymorphism, ensuring that QTL-
marker linkage disequilibrium was higher than in unweighted GS.
Losing favorable alleles that are in weak linkage disequilibrium
with markers is maybe unavoidable when using GS. Placing an
additional weight on low-frequency favorable alleles, however,
may reduce the rate of loss of such alleles to below that of
phenotypic selection. Applying such weights at the beginning of
GS implementation is critical (Jannink, 2010).

A useful feature of genomic selection is that the long-term
response is predictable because the marker allele frequencies are
well known. This conclusion ignores non-additive effects of the
QTL which may cause a change in the gene substitution effect
of the QTL, and thus in the apparent effect of the marker, as the
selection changes gene frequencies. Of course, it would be possible
to continually re-estimate marker effects and involve new markers
which had been divested in the primary index (Goddard, 2009).

Dekkers and van Arendonk (1998) investigated selection
for one QTL in combination with phenotypic selection. They
explained that long-term response could be increased by
modifying the selection pressure applied to the QTL as its allele
frequency changes. To obtain the maximum long-term response,
it is necessary to change the index weights as selection earnings
(Dekkers and van Arendonk, 1998). Goddard (2009) indicated
that this should be done by making the index weights proportional
to 1/,/p(1 — p where p is the gene frequency. The use of this index,
and the transformation of allele frequencies (p) to z=arcsin,/p,
turns a problem with non-constant selection response but linear
objective into a problem with a steady selection response but a
non-linear objective. The optimum long-term index can then be
calculated using procedures developed to deal with non-linear
profit functions. This provides an index that puts increased weight
on rare favorable alleles. This increases their frequency more
quickly than the optimum short-term index and so increases the
genetic variance due to them and thus increases the future genetic
gain as well. This index is similar to the one obtained by Dekkers
and van Arendonk (1998) and Meuwissen and Sonesson (2004)
for selection on a single QTL plus a polygenic component. They
ignored LD between the QTL and when this is taken into account,
a slightly better index may result (Dekkers and van Arendonk,
1998; Sanchez et al., 2006).

Improving Long-Term Response by Focus on Favourable
Minor Alleles

Goddard (2009) and Jannink (2010) anticipated that selection
was performed for an adequate amount of time to fix all favorable
alleles. However, when making decisions for optimum selection,
the end of the time horizon might be previous to a selection limit
(Wray and Goddard, 1994). If the time horizon is short, increased
importance of rare favorable alleles are no longer essential to
enhance genetic gain, and therefore, the short-term genetic gain
should be maximized. Liu et al. (2014a) assumed that long-term
genetic gain can be maximized by slowly decreasing weights on the
rare favorable alleles as the population approaches the end of the
time horizon. Furthermore, Goddard’s optimization (Goddard,
2009) and Jannink’s implementation (Jannink, 2010) assume that
marker effects are known without error and that markers are in

perfect linkage disequilibrium (LD) with QTL.

However, Bijma (2012) reasoned that even if the true effects
of alleles are known and selection is for the optimal combination
of all true allele effects, drift should be computed for because of
Mendelian sampling, linkage, and recombination. Therefore, by
chance, certainly favorable alleles will inevitably be absent in
the selected individuals. Bijma (2012) argued that the optimum
weights of rare favorable alleles should be larger than the
optimum weights of Goddard (2009). By doing so, rare favorable
alleles would be promptly selected towards higher frequency, thus
decreasing the probability of losing them from the population.

Liu et al. (2014a) extend the Jannink’s weighting (JW) method
by including an additional parameter to reduce the emphasis on
rare favorable alleles over the time horizon, with the purpose of
further improving the long-term genetic gain. They called this
new method dynamic weighting (DW). Compared to unweighted
genomic prediction, both dynamic weighting and JanninKk’s
weighting can increase long-term genetic gain and decrease rate of
inbreeding with a time horizon of 40 generations. The long-term
genetic gain when using dynamic weighting was 30.8% greater
than that of unweighted genomic prediction, and also 8% greater
than Jannink’s weighting, although at the cost of a lower short-
term genetic gain. With a time horizon of 15 generations, the long-
term genetic gain of dynamic weighting can be supported to be at
least as high as that of unweighted genomic prediction, whereas
Jannink’s weighting cannot. Consequently, dynamic weighting is
a promising method that is expected to result in high long-term
genetic gain within a fixed time frame.

Results demonstrated that without weighting methods,
Bayesian lasso (BL) is superior to ridge regression (RR) in keeping
genetic variance and controlling inbreeding, and therefore can
result in higher long-term genetic gain, regardless of the length
of planning horizon and the number of QTL influencing the
trait. The number of QTL also varied in Liu’s simulations since
it might influence the accuracy of various prediction models. By
contrast to prior expectations, the relative superiority of BL over
RR was larger when the number of QTL was larger and long-term
response was the scale for comparison. The results indicated that
the number of QTL mainly affected the loss of favorable alleles
and the loss of genetic variance, which was greater with RR than
with BL. This may be due to the fact that with more QTL, the
selection pressure on each QTL is smaller, and the drift therefore
becomes relatively more important. The number of QTL did not
affect the rate of inbreeding since, here, the rate of inbreeding was
measured based on pedigree information only (Liu et al. 2014a).
Mating programs such as positive assortative mating can also
enhance variance by introducing positive co-variances among
breeding values of selected mates (Fernando and Gianola, 1986;
Breese, 1956; Wilson, 1965).

Fernando and Gianola (1986) simulated 20 generations and
found that selection with assortative mating can have a sizable (10
to 20%) long-term benefit over selection with the random mating
of parents when heritability is high, the allele frequency of base
population is low and proportion selected is large. Hallander et
al. (2007) revealed that the genetic variance could be sustained
or even increase in the presence of non-additive genetic effects.
Consequently, simulations that consider non-additive effects
with a large number of QTL need additional understanding of
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the influence of the quantity and distribution of these effects.
Furthermore, even when epistatic effects exist, this does not
reduce the importance of maintaining genetic variance and
rare favorable alleles by weighting methods. It should be noted
that the aim of the previous studies was to investigate the main
mechanisms that have consequences in long-term selection
programs. DW showed a lower accuracy and a lower short-term
genetic gain than JW, which may be relevant for practical breeding
programs. Besides, another common way of increasing selection
limits is to switch the selection rule from truncation selection to
optimum contribution selection (OCS). OCS works by optimizing
the genetic contribution (i.e. number of mating) of each selection
candidate, conditional on EBV and average co-ancestry. By doing
s0, the genetic gain is expected to be maximized and, meantime,
the rate of inbreeding is limited. This method has been well
studied in dairy cattle, pig, and fish breeding and has proven to
be promising in terms of long-term genetic gain (Gandini et al,,
2012; 2014; Nielsen et al., 2011; Liu et al., 2014b; Dagnachew et al.,
2016). Therefore, it will be worthwhile to compare DW with OCS
in subsequent studies. Combining DW with OCS may result in a
lower rate of inbreeding and higher genetic gain compared to each
procedure used alone.

Sun and VanRaden (2014) suggest simple, improved formulas
for weighting favorable minor alleles to enhance long-term
progress from the genomic selection with less reduction of short-
term progress. The prior formula used nonlinear weights based on
square root of the frequency of the favorable allele. Prior formulas
to implement FMA selection used arcsin (Goddard, 2009) or
square root (Jannink, 2010) to adjust weights for favorable alleles.

Goddard (2009) argued that the index weight for long-term
response alters as the gene frequencies alters due to selection, and
using a transformation of ¢=arcsin/f leads to a response on the
transformed scale { that is constant regardless of gene frequency.
The arcsin formula considered only selection direction and allele
frequency (f) but not effect size, and therefore was not applicable
for variable effect sizes (Jannink, 2010).

The square root formula is closely proportional to arcsin
over a range of allele frequencies and also includes allelic effect,
hence, it has no parameter to balance long-term gains with short-
term losses. Two new formulas to enforce FMA selection were
derived. The first used nonlinear weights and the quare root of the
frequency of the favorable allele as done by Jannink (2010), but
also included a parameter & that could vary from 0 to 1 to balance
long- and short-term progress. The new formula is identical to
Square root if §= 1. When 0< {j <1. The second formula involved a
parameter § that could vary from 0 to 2, but simple linear weights
were applied with more weight for favorable minor and less weight
for favorable major alleles proportional to frequency variation
from 0.5 (Jannink, 2010).

The formulas were examined by simulation of 20 generations
(population size of 3,000 for each generation) with direct selection
on 3,000 QTLs (100 per chromosome). The prior formula had a
slower response than unweighted selection in primary generations
and did not recover by generation 20. The long-term response
was slightly greater with the new formulas than with unweighted
selection; the linear formula may be best for routine use because
of more progress in primary generations compared with nonlinear
formula. Official and adjusted U.S. evaluations based on actual
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genotypes and projected marker effects were correlated by
0.994 for Holsteins and Jerseys and 0.989 for Brown Swiss using
a linear weighting of allele frequency, which was higher than
nonlinear weighting. The difference between adjusted and official
evaluations was highly correlated negatively with an animal’s
average genomic relationship to the population. Therefore,
strategies to reduce genomic inbreeding may obtain almost as
much long-term progress as a selection of favorable minor alleles
(Sun and VanRaden, 2014).

Studies have shown that, when performing selection for
many generations, GS increases the risk of losing favorable QTL
alleles compared with phenotypic selection (Toosi et al., 2009),
predomonantly in the first few generations. Some of these alleles
are rare and inevitably lost due to low linkage disequilibrium (LD)
with any marker (Lu et al., 2003). The remaining favorable QTL
alleles are essential to maintaining long-term genetic variance and
response to selection (Liu et al., 2014a).

Conclusion

Mating plans could be planned to control the rate of inbreeding
in a subset of individuals in the next generation. If maximizing
long-term genetic gain while controlling inbreeding in the entire
population is the desired outcome, then approaches that select
candidates including data on co-ancestry among the selection
candidates should be used. As there is no need for the use of a
pedigree when sequence data is available, it would seem reasonable
to apply the current population as a reference point. Difference
in identity between individuals could then simply be realized
in terms of covariance among breeding values. The strategy
combining wGEBV with OCS was very promising, as it provided
higher gain and/or lower true inbreeding than using each of them
alone in genomic breeding schemes. That’s why using wOCSG
has been recommended as not only did it boost the cumulative
genetic gain, but also it restricted the increase in true inbreeding
across the genome. The OCS with limitations imposed during
optimization realizes most of the long-term genetic gain realized
by OCS without restrictions. Realizing 67 to 99% of the additional
gain with many of limitations demonstrates that OCS is a strong
selection method. Its strength has been evident even with multiple
limitations, where several limitations that remove solutions
from the solution space are imposed at the same time. Dynamic
weighting was described as a novel genomic selection technique to
maintain genetic variance and raise long-term genetic gain. This
technique is made upon Jannink’s weighting technique, in which
low-frequency favorable alleles obtain a high weight. Jannink’s
weighting technique was proven to be successful in increasing the
long-term genetic gain compared with unweighted GP.
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