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Development of the Rabbit
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Summary

Selection programs of hybrid rabbits and meat specific breeds are based on growing the 
amount of valuable meat parts of the carcass, making more profit to the breeder and extra 
amount of protein for customers. In this point of view, it is essential to know the process 
of muscle development from embryonic to the postnatal phase, and the regulatory genes 
which are able to determine muscle growth. This review briefly summarizes the prenatal 
development of the muscle tissue, regarding myogenic regulating factors and the upstream 
regulation of myogenesis. In addition, there are some significant components of the postnatal 
phase which are not negligible in terms of muscle development. It is crucial to see the whole 
process and the latest steps of molecular genetics helping to increase the selection progress.
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Introduction
Animal breeding concentrates on evolving the quality of 

certain products such as lean meat in case of the rabbit. While 
breeding programmes mainly focus on developing traits in the 
breeding goal, there are numerous levels of selection pressure 
applied for the tissues (bone, fat or muscle), resulting in different 
body types or meat-bone ratio. There is also a great variation 
of body size from dwarf rabbits to giant lines However, in meat 
production, medium-sized lines are the most preferred ones due 
to their growth rate and prolificacy. 

The diversity of breeds also has different outcomes in meat 
quality and carcass yield. There are studies focusing on the 
slaughter weight of the rabbit, measured in different breeds and 
age groups (Perrier and Ouhayoun, 1990, Lukefahr et al., 1982, 
Lukefahr et al., 1983) determining the optimal slaughter age for 
concrete markets. Primarily the muscle tissue gives most part 
of the carcass weight regulated by ubiquitous factors (b/HLH 
proteins) and tissue-specific genes (MyoD gene family). These 
different genes can affect the cellular and biochemical composition 
of the muscle, expand fat and muscle tissue, thereby influencing 
muscle mass and meat quality. 

In this study, we focused on the regulatory factors and genetic 
background of the muscle development because the selection 
process has to concentrate on the skeletal muscle tissue for lean 
meat production.

Prenatal development

During prenatal development, the genetic information codes 
tissue-specific proteins, which mean myotubes express a large set 
of genes (skeletal actin, myosin, troponin, tropomyosin etc.) of the 
neuromuscular junction and the sarcomere. Polypeptide-involved 
gene-expression induces muscle metabolism and myotubes 
express a common gene set with somatotrophs encoding the 
required proteins for metabolic transport, DNA replication 
and repair, creating the structure of the Golgi-apparate and the 
endoplasmic reticulum (Holtzer et al., 1969). 

In the first stages of the embryo, myogenic precursor cells 
create the basis of myoblasts. The precursor cells originate 
from the epithelial spheres along the cranial-caudal axis of 
the embryo which derive from the paraxial mesoderm giving 
rise to the notochord (Christ and Ordal, 1995, Palacios et al., 
2006, Buckingham and Rigby, 2014). Signalling molecules from 
different domains are able to determine the somitogenesis and 
form the sclerotome (SC) and dermomyotome (DM) (Hernández 
et al., 2017). Somitogenesis contains gene expression involving 
the Notch and Wnt pathways (Wnt1, Wnt3a from the neural 
tube and Wnt6 and Wnt7a from the ectoderm surface) towards 
the caudal part of the paraxial mesoderm restricting cells to the 
mesenchymal state with the high concentration of Fgf and Wnt 
restricting cells to an undifferentiated state (Aulehla and Pourique, 
2010). This signalling mechanism also regulates the periodic 
activity of the Notch pathway which controls the generation of 
the somites by cyclic genes (Hofmann et al., 2004). Later, dorsal 
somites differentiate to dermomyotomes as the final source of the 
precursor cells (Cossu et al., 1996). These mesodermal originated 
cells determine the proliferation and divide the myoblast pool 
(Rehfeldt et al., 2000). 

Myogenic regulatory factors

The genetic regulation of the muscle was triggered by 
discovering the MyoD family of basic-helix-loop-helix (bHLH) 
in the 1980s. This contains MyoD (Davis et al., 1987), myogenin 
(Edmonson and Olson, 1989, Wright et al., 1989), MRF4/Myf-
6, (Rhodes and Konieczny 1989, Braun et al., 1990, Miner and 
Wold., 1990) and Myf-5, (Braun et al., 1990) conserving a protein 
domain and trans-activate the muscle-specific gene expression 
by interacting the E-box (consensus nucleotide motif) (Lassar et 
al., 1989, Murre et al., 1989). Most of the skeletal muscles contain 
E-boxes, although, in some cases, the bHLH proteins act as an 
intermediary regulator of muscle-specific gene transcription. One 
of these is myocyte enhancer factor (MEF), having two protein 
variants MEF2Cα1 and MEF2Cα2 which positively control the 
myogenic differentiation and enhance the proliferation of primary 
myoblasts and regeneration in a muscle-injury model in an 
overexpressed state (Baruffaldi et al., 2017). 

In the myogenic lineage, Myf-5 is the first regulatory gene 
activating in the epaxial and hypaxial domain. This process is 
followed by the Myf-4 gene expression contributing significantly 
to muscle cell differentiation. Braun et al. (1992) and Rudnicki 
et al. (1992) reported a Myf-5 knockout mouse which showed 
delayed myogenesis; later on, the knockout of Myf-5: MyoD was 
followed by a total lack of skeletal muscle (Rudnicki et al., 1993). 
MyoD as a transcription factor is the first determination gene to 
initiate the fibroblast-myoblast conversion (Davis et al., 1987).

Upstream regulation of myogenesis

In the skeletal muscle, Pax3 and Pax7 are the main, non-
tissue specific upstream regulators (Bucingham and Relaix, 2007). 
The Pax family contains domain transcription factors which 
support tissue specification and the development of the organs in 
an embryonic stage. These genes are present in each vertebrate 
and according to Noll (1993), Pax3 and Pax7 originate from a 
common ancestral gene. During the maturation of the somite, 
both Pax genes activate Myf-5 and MyoD and move from the 
central region of dermomyotome to the myotome (Gros et al. 
2005, Kassar-Duchossoy et al., 2005). Pax3 encodes a transcription 
factor that affects the early segmented somites and the presomitic 
mesoderm (Goulding et al., 1991) and gives rise to the hypaxial 
body (Tremblay et al., 1998) and limb muscles (Buckingham et 
al., 1999). 

During this process, the number of Pax3 cells starts to increase 
and the central dermomyotome loses its epithelial structure. On 
the other hand, Pax7 takes part in the muscle development by 
establishing the satellite cell pool and forming the secondary 
myofibres (Maqbool and Jagla, 2007). These first waves are able 
to determine the shape of the muscles (Baumeister et al., 1997). 
However, mutations in Pax3/Pax7 can also occur where cells 
fail to enter the myogenic program, leading to a serious skeletal 
muscle loss (Relaix et al., 2005). In addition, the total absence of 
Pax3 lineage is embryonically lethal, as proved by Hutchenson et 
al. (2009) while the ablation of Pax7 expressing cells only causes 
fewer myofibres and smaller muscles (Seale et al., 2000, Hutcheson 
et al., 2009.) 

The apex of the regulatory cascade is the Sine Oculis–Related 
Homeobox family with Six1 and Six4 homeoproteins. These are 
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co-expressed in the muscle-cell lineage and directly control Pax3 
along with the hypaxial myogenic progenitors during embryonic 
development (Grifone et al., 2005). Six1 and Six4 are distinguished 
by the presence of the two conservation domains; the six-type 
homeodomain binding to DNA and the amino-terminal Six-
domain. This one is able to interact with the co-activators and 
the corepressors of the transcription (Kawakami et al., 2000, 
Tessmar et al., 2002, Zhu et al., 2002). Six proteins are also capable 
to translocate eyes-absent homologues (Eya1; Eya2) and act as 
cofactors to activate the Six-target genes; Pax3, MyoD, MRF4, and 
myogenin (Grifone et al., 2005). Among the Six-genes Six1, Six2, 
Six4 and Six5 are expressed in the embryonic stage. Besides, there 
is a synergism between these Six-proteins and MRFs, sharing 
the same MEF3 binding site and participating in muscle-gene 
activation with MyoD.

Micro-RNA regulation

At the post-transcriptional level, a class of non-coding RNAs 
(~22 nucleotides) are responsible for the regulation of muscle 
gene expression (Filipowitz et al., 2005). These microRNAs 
(miRNAs) are able to take control of multiple mRNAs at the same 
time by inhibiting or improving the translation of the mRNA 
bonding with the 3’-UTR of their regulatory target (Lee et al., 
2007) and participating in cell proliferation, differentiation and 
myogenesis (Mendell et al., 2005). The numerous miRNAs in 
mammals are tissue-specific, so that in muscle tissues myomiR 
family is liable for gene expression. Among these miRNAs, MiR-
206 is expressed specifically in skeletal muscles (Sempere et al., 
2004). Overexpressing of MiR-206 blocks cell cycle progression 
in the C2C12 lineage and incorporates in myotube formation and 
in conclusion, inhibition on the MiR-206 expression produces the 
opposite of this process (Kim et al., 2006). 

The proliferation of the satellite cells is also controlled by a 
micro-RNA, called Mir-133, repressing the Serum Response 
Factor (Chen et al., 2006). On the other hand, miRNAs upregulate 
the satellite cell development by inhibiting Pax7 translation, so 
MyoD is no longer inhibited and myotube formation can begin 
(Chen et al., 2010). At this point, Pax3 is also targeted by Mir-27 
for the sake of the differentiation (Crist et al., 2009). In rabbits, 
secreted frizzled-related protein 2 (SFRP2) mRNA was studied by 
Levin et al. (2001) and proved that SFRP2 is widely expressed in 
the rabbit embryo and falls off after birth. However, it could be 
detected within one day of muscle damage. As a consequence, this 
protein works as a Wnt antagonist and has a role in satellite cell 
activation.

Postnatal muscle growth

The number of the muscle fibres is mainly determined by 
genetic factors and it differs between species (Hall et al., 2004) 
and sexes (Seidemen and Crouse, 1986) controlled by a special 
biochemical regulation system. Muscle differentiation yields the 
largest tissue mass in the organism committing approximately 
~1012 nuclei to the expression of muscle-specific genes. 

Skeletal muscle involves muscle fibres from two distinct 
populations. Primary myofibres provide the framework of 
secondary fibres and they are formed during the initial stages of 
myoblast (Wigmore and Evans, 2002). The other population was 

firstly described by Moss and LeBlond (1971), called satellite cells, 
which are able to divide the myonuclei during postnatal growth. 
After birth, the total number of muscle fibres reported remaining 
unchanged in mammalian species. On the other hand, it is 
possible to increase the fibre number later as a result of maturation 
(Ontell and Kozeka 1984). This process makes the proliferation 
of mononucleated myogenic cells turn multinucleated (Reznik, 
1976). However, it is assumed that a subpopulation of myoblasts 
is not assimilating in the development of the syncytia, in turn, 
it associates in the exterior of all developing fibres (Feldman 
and Stockdale, 1992). These stem cells also have the ability to 
cell renewal by the Pax7, thereby ensuring the muscle, growth 
and repair (Kuang et al., 2007). Examining the satellite cell 
differentiation in rabbits Barjot et al., (1995) discovered that they 
differ according to their muscle type origin and slow-twitch and 
the fast-twitch originated satellite cells show different phenotypic 
properties. As Table 1. shows, many genetic markers can affect 
satellite cells, proliferating and differentiating myoblasts from 
distant anatomical locations.

Table 1. Myogenic markers (Dumount and Rudnicki 2015)

Markers Sat Pro Diff

Pax7 + + -

Calcitonin receptor + - -

CD34 + +/- -

Caveolin-1 + +/- -

Cxcr4 + + -

Mcad + + -

c-Met + + -

Itga7 and Itgb1 + + +

Vcam1 + + +

Ncam1 + + +

Syndecan ¾ + + +

MyoD - + +/-

Desmin - + +

MyoG - - +

MyHC - - +

Sat: Quiescent satellite cells; Pro: Proliferating myoblasts; Diff: Differentiating 
myoblasts

Postnatal muscle composition

Muscle fibre type also can change during the maturation and 
the development of the skeletal muscle and affect meat quality. 
One of the major contracting proteins is the myosin heavy chain 
(MyHC) containing a total of 11 isoforms revealing the existence of 
’’pure” and ’’hybrid” muscle fibre types depending on the number 
of the enclosed isoforms, accompanied by several proteins which 
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are capable of determining the functional properties (Staron and 
Pette, 1986). The genome includes at least 19 classes for the MyHC 
gene superfamily comprising isogenes (Sellers et al., 1997). The 
phenotypic expression of these genes can be activated by thyroid 
hormone (Lompre et al. 1984, Izumo et al. 1986) passive stretch 
(Goldspink et al., 1992, Russell and Dix, 1992) and physical activity 
like electric stimulation (Pette and Vrbova, 1992). In addition, 
skeletal muscle fibres from different anatomical origin express a 
various set of genes adapting them to their required contractive 
activity. As an example, stretching and immobilising the fast 
contracting m. tibialis anterior of the rabbit results in a 30% muscle 
growth within 4 days (Goldspink et al., 1992). Later, Shiyu et al. 
(1997) reported that IGF gene expression also has a serious impact 
on muscle fibre length and the number of sarcomeres of the rabbit.

Another regulator gene is Myostatin (MSTN), which is 
responsible for the regulation of muscle fibre types and sizes 
in the rabbit, acting as a negative regulator to muscle growth 
(McPherron et al. 1997, Lee, 2004). It is a part of TGF-β 
superfamily, phylogenetically classified as a growth and 
differentiation factor (GDF) in the GDF8 subgroup (Lee and 
McPherron, 1999). In pro-domain form, it can affect the mature 
C-terminal ligand (Massagué, 1990), antagonize its biological 
activity resulting in increased muscle mass (Thies et al., 2001, 
Young et al., 2001) and eventuate fat loss even if the animal has 
been exogenously treated with it (Lin et al., 2002). The double-
muscling (DM) was firstly described in cattle (McPherron, 1997) 
leading to a serious increase in muscle fibre number, while the size 
remained unchanged. Thus, the amount of muscle mass thrives 
almost with 20% (Shahin and Berg, 1985, Wegner et al., 2000). The 
MSTN gene of the rabbit is composed of two introns and three 
exons. Kuang et al., (2014) studied the effect of MSTN to the m. 
longissimus dorsi and m. biceps femoris in Californian White (CW) 
and German great line of ZIKA (GZ) rabbits, where GZ rabbits 
showed less growth inhibition from MSTN, which lead to 36% 
higher slaughter weight. 

Molecular genetics serving the selection process

Microsatellite analysis

Microsatellite markers are widely used in animal breeding. 
Fontanesi et al. (2008) applied DNA markers to identify the 
genetic variability of the growth hormone (GH) and MSTN to 
the production traits of rabbits. While GH showed no mutations 
on the sequenced regions, the polymorphism on MSTN (C>T on 
intron 2) can be used as a gene marker to the production traits 
according to its allele distribution. Linkage and quantitative trait 
loci (QTL) mapping of the rabbit genome to carcass traits was 
described by Sternstein et al. (2015) identifying the major QTL on 
chromosome 7 responsible for carcass weight.

SNP markers

Single nucleotide polymorphisms (SNPs) were also detected 
by several authors, affecting the skeletal muscle development of 
the rabbit. Qiao et al. (2014) found an SNP on the 476th locus of 
the 5’-regulatory region which had a significant effect on liver 
weight, carcass weight, and the weight of the forelegs. Fontanesi 
et al. (2011) found four SNPs in the MSTN gene of the rabbit 
representing differences between breeds in conformation and 

muscle mass. Sternstein et al. (2014) reported a strong association 
between one SNP (c. 373+234G>A), and 9 carcass composition 
traits. (hot carcass weight, reference carcass weight, dressing 
out percentage, fore-intermediate and hind carcass weight, meat 
weight for the fore and intermediate part and bone weight for the 
intermediate part). According to Abdel-Kafy et al. (2016) the „G” 
allele of MSTN at the *194A>G SNP had positive effects to the 
growth performance and the carcass traits. On the other hand, it 
did not produce any negative effects on reproductive traits, such 
as number of services per conception and the kindling interval. 

SNP markers are also widely used for the genotyping of the 
meat quality traits. In this case, Calpastatin gene (CAST) and 
Myopalladin gene (MYPN) can be used (Wang et al., 2016, Wang 
et al., 2017), due to their allele frequency to the selection process. 
An SNP on the CAST gene (11th chromosome, g.16441502 C  > T 
located at 67 bp in intron 3) determined the yellowness and the 
intramuscular fat content of the m. longissimus dorsi and m. biceps 
femoris while a (g.18497416 G > A) was found at 229 bp in exon 13 
of chromosome 18 showing strong correlations with intramuscular 
fat content of the examined muscles.

CRISPR/Cas9

Genetically modified animal models are widely used in recent 
years. CRISPR/Cas9 gene editing technology generated gene-
targeted animal models in sheep (Crispo et al., 2015), mice (Horii 
et al., 2014) and pigs (Wang et al., 2015). Rabbits were firstly used 
by Qingyan et al. (2016) creating successfully MSTN KO rabbits, 
where skeletal muscle hypertrophy and hyperplasia along with 
increased body weight was observed and inherited to the F1 
generation. 

Conclusions
The genetic basis of the carcass traits is determined by multiple 

loci. Laboratory studies can provide a range of insights into the 
genetic background of these phenotypic traits. However, many 
genes and SNPs are still unknown. The improving knowledge and 
technology may solve this problem and hopefully help in making 
selection decisions for lean meat production in the future.
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