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ABSTRACT 

There are several solutions to increase the reliability of safety-critical embedded systems (e.g. 

redundant systems). Where appropriate, achieving the highest possible reliability is always an 

important goal. The present article also aims to describe a solution for this purpose. 

One of these reliability enhancement options – besides redundancy – is the development of a self-

testing system that can detect any malfunctions in downtime (during inactivity) or during normal 

operation. If there is no error, then this self-testing system reports that the system is error-free. The 

self-testing and event logging system described in this article provides an additional advantage over 

other solutions. In addition to increased reliability, the root causes of the stored events and 

information can be discovered and eliminated in case of an error, even, if necessary, by hardware or 

software changes. 

The system outlined in this article – of course – requires further considerations and additions, and the 

details of circuit and software implementation should be elaborated, but its use in safety-critical 

systems is clearly beneficial. 
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SAFETY-CRITICAL SYSTEMS 

Embedded systems are systems which include a computer but are not generally used for 

computing. Safety critical systems are systems whose failure can result in loss of life, 

significant property damage or damage to the environment [1]. Such systems generally have 

failure rate requirements ranging from 10
−5

 to 10
−9

 failures per hour or other suitable time 

period [2], with reliability encompassing the notion that the system is continuously 

operational and that it is operating with no functional defects during that time. Traditional 

safety critical domains are the aerospace, medical, chemical processing and nuclear 

industries. These domains have been conservative, slowly moving to rely upon software 

systems due to the difficulty of being able to prove that software-based systems will meet 

their desired operational reliability requirements. Newer non-traditionally safety critical 

domains including automotive, home automation and civil infrastructure do not always have 

the experience or the safety culture to help them accurately evaluate the benefits and risks of 

computer-based controls. Better technologies, processes and standards that improve or ease 

the use of software in safety critical domains are imperative to protect these domains where 

cost and functionality concerns may put pressure on safety principles. Regardless of the 

domain, acceptable mission critical systems are unlikely to be built without good system 

engineering processes [3]. 

One of the newest solutions, using a multitude of security-critical embedded systems, is the 

smart city. There are various elements of smart cities, but the following key areas are 

typically identifiable: 

 smart mobility, 

 smart energy, 

 smart urban environment, 

 smart lifestyle, 

 smart governance, city administration, 

 smart infocommunication infrastructure common to previous areas, which provides an 

integrated IT and communication background [4]. 

Each of the above areas requires numerous embedded system applications that need the use 

of a safety-critical embedded system. As described above, the presented solution increases 

reliability and highlights its importance. 

ENHANCING RELIABILITY 

To achieve the expected reliability of the elements of critical embedded systems (hereinafter 

referred to as the target units), and to facilitate the post-mortem detection of the events, 

additional elements are required. So, if the target units contain additional elements outside the 

security-critical (decision-making) units that implement the following additional activities: 

 event and operation logging, 

 self-testing (regularly or initiated by external command). 

then these elements increase the transparency of the system operation and the resulted safety. 

The design must be such that, with their normal operation or in case of their failure, these 

additional elements could not affect the safe operation of the decision-making elements. 

Event and Operation Logging 

The additional elements collect, store, and make the following information, items, and events 

available in a suitable form for external request: 
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 commands, status signals and messages arriving at the target units’ information boundary 
surface in their original (in unencrypted, or possibly in corrupted/damaged) form, 

 signals, commands, status signals and messages sent from the target unit as a result of 
decisions made by the target units, in their realized form and with their parameters (signal 
level, duration), 

 data inputs, configuration activities and other interventions through the controls of the user 
interface, 

 significant changes occurring in power supply and temperature (and other environmental 
conditions, such as humidity, vibration, etc), 

 the activities and decisions of the self-monitoring (self-testing) system, 

 events related to event memory units (reading, deleting). 

The previously listed events and information must be stored in non-volatile memory units for 
each event type. Each event has a stored time stamp that indicates the beginning/end of the 
event with an appropriate (e.g. 1 ms) resolution, with a considered time value for each event. 
For example, information from a control (on the user interface) or a temperature sensor is 
unnecessary to sample, to assign time stamps, and to store in every e.g. 10 ms, because the 
changes at these points are slow. Probably it is sufficient to have intervals of 50 to 100 ms, or 
even larger, but the event-driven data collection could be used, too. 

However, a controlling signal at a microprocessor output, may require storage in the 
resolution of µs or even denser. It is worthwhile to use a real-time clock (RTC) to create the 
timestamp, so the absolute and relative time of the events can be determined later, and their 
timeliness can be examined. If the size of the event-storing memory unit is large enough, it is 
possible to store the events with the highest density required. When the stored events become 
obsolete, they can be overwritten, so a circular memory management can be used. The time 
of data obsolescence should be determined carefully, as an event may affect operation even 
after a long period of time, therefore, it must be made retrievable much later. 

The auxiliary elements allow the reading of the information stored in the event memory units 
for a unit above the operating hierarchy, and the external (scanner/reader) device connected 
to it by a special interface. The event of the deletion by command of the event memory unit 
contents must also be logged, but these events cannot be deleted. Such events should be 
stored in a separate, protected memory area or memory device. 

Self-Test of the Target Unit 

The auxiliary elements must be capable of the followings: 

 must be able to replace the expected signals, messages, commands, operator interventions 
at normal operation mode, on the standard boundary surfaces, with predefined test 
events/signals, 

 must be able to register that the decision-making unit responds to test events at what type 
of events/signals and by how much delay. 

The response events/signals for the test events/signals do not get out of the target unit. After 
checking the functions of the target unit, the results are stored in the memory, and the system 
returns from the test mode to the normal operation mode. If necessary, an error message is 
sent to the unit above in the hierarchy. 

Self-test can be initiated: 

 when powering up the system, 

 at regular intervals, provided there is no need for normal operation during the self-test 
period. The length of the self-test interval (e.g. 1 hour, 1 day) and the suspension of the 
normal operation mode requires further considerations, 
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 by the command of the unit above in the operation hierarchy, 

 by the operator’s intervention. 

The identity of the initiator of the self-test, the start and end time, the result of the evaluation 

and the fact of the possible error result must be stored in a non-volatile memory. 

Figure 1 shows the schematic connections between the critical embedded system (also named 

the target device), and the auxiliary elements for event logging and self-testing. The items 

presented in Figure 1 include: 

 Target device blocks (black blocks), 

 Signal transmission and signal switching required for normal operation and test mode is 

performed by analog and/or digital switches (rounded gray blocks), 

 Test signal generators (generate analog and digital signals for self-test) (rounded blocks, 

some of them are signal converters), 

 To the event logging and self-testing unit, the inputs and outputs of the target device are 

transmitted by signal converters (rounded blocks, some of them are test signal 

generators). Their primary function is level fitting e.g. between different voltage levels, 

input protection, and, in some cases, galvanic isolation, 

 The event logging and self-monitoring unit controller, as well as the associated 

elements (memory unit, RTC, environmental sensors) provide the intelligence of the 

auxiliary elements (gray blocks), 
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Figure 1. The connections between the target device and the logging and self-testing units. 
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 Single line connections represent analog/digital signals, 

 Arrows represent information flow. 

CONCLUSION 

For those systems where the stated principle is planned to be applied, the principles of 

“Design for Testability” (DFT) should be followed. These principles should be considered 

from system design through the selection of circuit elements and circuit design to the design 

of the software, as the testability should be planned at system, sub-system and component 

level [5]. In order to implement the principle described in this article, the boundary scan test 

method (“digital” boundary scan – IEEE 1149.1 and mixed-signal boundary scan – IEEE 

1149.4) can be applied at several points. One of my previous articles described the concept of 

an integrated circuit to support the self-testing of analogue circuits. [6] Such an integrated 

circuit is also applicable and can solve many problems during further developments in this 

field. The solution outlined in the present article can improve the reliability of many 

safety-critical systems, and it can help to detect the causes of failures [7]. 
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