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ABSTRACT 

A smart grid can be considered as a complex network where each node represents a generation unit or a 

consumer, whereas links can be used to represent transmission lines. One way to study complex systems is by 

using the agent-based modeling paradigm. The agent-based modeling is a way of representing a complex 

system of autonomous agents interacting with each other. Previously, a number of studies have been 

presented in the smart grid domain making use of the agent-based modeling paradigm. However, to the best 

of our knowledge, none of these studies have focused on the specification aspect of the model. The model 

specification is important not only for understanding but also for replication of the model. To fill this gap, this 

study focuses on specification methods for smart grid modeling. We adopt two specification methods named 

as Overview, design concept, and details and Descriptive agent-based modeling. By using specification 

methods, we provide tutorials and guidelines for model developing of smart grid starting from conceptual 

modeling to validated agent-based model through simulation. The specification study is exemplified through 

a case study from the smart grid domain. In the case study, we consider a large set of network, in which 

different consumers and power generation units are connected with each other through different 

configuration. In such a network, communication takes place between consumers and generating units for 

energy transmission and data routing. We demonstrate how to effectively model a complex system such as a 

smart grid using specification methods. We analyze these two specification approaches qualitatively as well 

as quantitatively. Extensive experiments demonstrate that Descriptive agent-based modeling is a more useful 

approach as compared with Overview, design concept, and details method for modeling as well as for 

replication of models for the smart grid. 
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INTRODUCTION 

A smart grid focuses on the complex interactions between utility service providers and 

consumers. It involves the non-linear dialogue of power and information data between utility 

service providers and consumers [1]. The complex interaction in the form of repeated 

auction, fluctuating supply and demand add complexity to the nature of a smart grid. Because 

of this complex nature, an smart grid can be considered a complex system. 

The study and understanding of any complex system are associated with the modeling of the 

system. Modeling complex system allows better understanding and analyzing the emergent 

behavior of each entity involved in the system [2]. Being a complex system, a smart can also 

essentially be modeled in the form of either agent-based or complex network-based models [3, 4]. 

These models can well represent the smart grid in term of its various components, their 

behavior, and communication among them for energy distribution and management.  

A particular way of modeling a smart grid as a complex network is by including its various 

components such as generating units, consumers, distributors, and other components as nodes 

and communication lines as edges. Chassin et al. in [5] developed the complex network 

model for the US power grid by considering nodes as power sources and consumers, while 

edges as communication lines. After developing different complex networks, we are able to 

use the mathematical tool for computing centrality measures and some metrics on such 

networks. These measurements allow studying the global behavior of each component in a 

large-scale power system network. 

In scientific literature, agent-based modeling (ABM) and the multi-agent systems (MAS) are 

successfully used in the smart grid domain. Some of these works have been discussed in the 

later section of the article (see discussion section). However, these works lack in any ABM 

specification approach for documenting ABM. An ABM specification is most important for 

understanding as well as replication ABM. The lack of specification methods causes issues 

such as low understandability of the model, impossibility to replicate and extend the model, 

and impossibility to integrate with the existing system. So there is a need for an easily 

understandable methodology to describe and document an ABM, specifically in the smart 

grid domain. 

This study is motivated by the lack of specification studies in the domain of smart grid. To 

this end, this article presents a first step towards the use of specification methodology for the 

ABM development, in particular for the smart grid system. We adopt two approaches. The 

first method is ODD (short for Overview, Design concept, and Details) [6] and the second is 

DREAM (short for Descriptive Agent-based modeling) [3]. The proposed study supports 

ABM developing by using specification methods starting from conceptual modeling to 

validated ABM through simulation. It also supports modeling complex system, more 

effective knowledge transfer, and communication between multidisciplinary researchers. To 

validate our work, we consider a case study from the smart grid domain. In the case study, we 

consider a large set of the network in which different consumers and power generation units 

are connected with each other through different configuration. In such a network, 

communication takes place between consumers and generating units for energy transmission 

and data routing. We demonstrate how to effectively model a complex system such as a smart 

grid using specification methods. Finally, we present a comparative analysis of both 

specification techniques.  

Our main contributions can be listed as follows: 

1) A proposed approach for modeling and simulation of the smart grid using the complex 

network and agent-based modeling approaches. 
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2) The ODD specification approach used for ABM model of smart grid. 

3) The DREAM specification approach used for ABM model of smart grid. 

4) A comparative analysis of ODD and DREAM specification techniques.  

The rest of the article is structured as follows: Section 2 presents basic background and 

concepts, in Section 3 a model development is presented, Section 4 is dedicated for results 

and discussions, the article ends with conclusions formulated in Section 5.  

BACKGROUND 

In this section, we present the basic concept and understanding of cognitive agent-based 

computing approach, DREAM, and ODD specification approaches. 

COGNITIVE AGENT-BASED COMPUTING APPROACH 

Niazi and Hussain in [7] have presented a unified framework called cognitive agent-based 

computing framework. The framework is designed for facilitating the development, 

comparison, communication, and validation of models across different scientific domains. 

Here, the word Cognitive is used because the goal of the framework is to develop cognition 

or understanding of the different aspects of the model or system under study. The framework 

offers tutorials and guidelines in the form of four different modeling levels. This approach 

involves the process of taking any complex system from the real world and converting it into 

a suitable simple model by using specific modeling level such as exploratory or descriptive 

agent-based approach. The exploratory approach involves the use of agents to explore the 

complex systems, identify which agent-based model is feasible for the specific problem then 

develops the proof-of-concept and also explains what kind of data is required for validation 

and verification of the model. The descriptive agent-based modeling level is the process of 

presenting ABM in the form pseudocode, a complex network of the model, social network 

analysis. The framework combines other modeling levels named complex network modeling 

and validation/verification modeling. 

DESCRIPTIVE AGENT-BASED MODELING 

Descriptive agent-based modeling (DREAM) is a cognitive agent-based computing approach 

developed in [3]. DREAM offers an ABM specification technique which comprises of 

developing a complex network of the ABM, pseudocode specification models and social 

network analysis of the network model. It offers a detailed description of ABM as well as 

visual based analysis. It provides an easy translation of the network model into pseudocode 

followed by ABM development. In Figure 1, DREAM methodology is shown. 

OVERVIEW, DESIGN CONCEPT AND DETAILS 

Overview, Design concept and Details (ODD) is originally developed by [6] and an updated 

version is presented in [8]. It is a textually based specification technique for documenting 

ABM. It provides a checklist which covers key features of the model. It comprises of three 

main sections which are Overview, Design concept, and Details. These sections are further 

divided into subsections. Figure 2 presents the ODD specification methodology. A detailed 

description can be found in [8]. 

MODEL DEVELOPMENT 

In this section, we present a case scenario of the smart grid, followed by ODD and DREAM 

specification of the model. Figure 3 shows our research methodology. First, we start by 

describing the case model from the smart grid domain. Then, we present a model specification 
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Figure 1. DREAM methodology for ABM specification adopted from [3]. It can be noticed 

that it starts from a basic understanding of the model, then followed by developing a complex 

network of the model. There are two steps after network formation, one is to present 

pseudocode specification, this step allows for the actual code translation, the other is applying 

social network analysis tool to compute centrality measures of the network. The final step 

involves the analysis of the results. 

 

Figure 2. An ODD methodology for ABM specification adopted from [8]. It can be noticed 

that ODD is divided into three main sections: overview, design concept, and details. Then 

each section is further divided into subsections. These sections cover key features of the model. 
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Figure 3. Our research method. It can be noticed that the first step comprises of ABM 

development followed by the specification of the ABM. Two specification methods are 

adopted (ODD and DREAM). After specification, the next step is to compare and analyze 

both specifications approaches qualitatively as well as quantitatively. The final step shows 

the results of the comparative analysis. 

using ODD and DREAM approaches. Through specification methods, we provide guidelines 

for ABM development of the case scenario. The specification study is complemented by an 

ABM for the scenario. Finally, the comparative analysis of specification methods as well as 

simulation results is provided.  

SCENARIO OF SMART GRID 

To model a smart grid, let us consider a large set of networks, in which different consumers 

and power generation units are connected with each other through different configuration. To 

model possibilities of a different configuration of the large-scale power system, we use 

standard complex networks such as small-world [9], scale-free [10], and random network [11]. 

For validation, we apply routing technique such as random walk and centrality-based routing.  

The routing process involves the selection of a path from the source toward the destination. 

Routing strategy in complex networks can be categorized into two types, i.e. Local and 

Global Routing. The local routing strategy needs local information about neighbor nodes. 

These include local static routing, local dynamic routing, and local pheromone routing [12]. 

On the other side, the global routing strategy needs global information like topological 

structure, characteristics of each node and real-time information. These include shortest path 

routing, efficient routing, and global dynamic routing [13]. 

For large-scale complex networks, global routing remains problematic. It is difficult to have 

the characteristics of each node and to have real-time information. Another difficulty consists 

in the increases in computational time. While on the other hand, local routing remains 

promising for large-scale real-world complex networks. It offers less computational time as 

well as easy implementation. 

In a smart grid environment, two types of routing occur. The one is energy demand from the 

consumer’s side to the generation unit, while the generation unit responses by providing 
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energy to consumers. The second is data and information routing about demand profile from 

consumers and energy cost from grid unit [14]. 

MODEL SPECIFICATION ACCORDING TO ODD 

In this section, we present the model specification by following the ODD model. In table 5, 

we summarize the ODD specification of the understudy model. 

The overview section of ODD 

1) The purpose of the model: To understand how a combination of agent-based and complex 

network-based modeling approaches can be used to simulate large-scale power system. 

Further, how routing techniques can be used to validate the model.  

2) The involved entities: The model consists of three types of agents named; consumers, 

producers, and walkers that are represented by nodes in a complex network. The model 

allows producers and consumers to are generated randomly in a network. Producers 

generate power and can transmit to the consumers through communication lines that we 

called links. Consumers demand and finally use energy power. The environment is set as a 

complex network where nodes represent producers and consumers and links represent 

transmission lines. State variables visited? and the consumer? are used to mark once a 

node being visited and to check is any available consumer? – a node in the neighbor list. It 

is a convention (coding standard for NetLogo) to define a variable name ending with a 

question mark. 

3) Routing purpose: For routing purpose, the concept of walkers is deployed. Initially, the 

walkers are located at the producer’s nodes. They search for the neighbor nodes and move 

to one of the neighbor’s node. Once a node is visited, it is marked as visited? The walkers 

also check for the consumer’s node. The simulation time is kept as continues. By 

continues method, the NetLogo continuously updates the plots. At each time step, plots are 

generated in order to measure visited nodes and visiting consumers. 

Design concept section of ODD 

1) Basic principles: The basic hypothesis of our model is that a cognitive agent-based 

computing approach is better for modeling and simulation of the large-scale power system. 

In our approach, we used a combination of agent-based and complex network-based 

modeling approaches. We developed complex network models such as small-world, scale-

free, and random network to simulate a smart grid based environment. 

2) Emergence: The “emergence” feature shows information about “what kinds of outputs of 

the model are modeled?” In other words, we can say what the expected results from the 

model are? In the case of our approach, the routing techniques (random walk and 

centrality routing) are used for transmission from producers towards consumers. The key 

results are the computation of end to end delivery from producers towards consumers. 

3) Adaptation: Adaptive feature of the model shows decision-making capability for the 

agents against the changing environment. Decisions are taken by using well-defined 

constraints to adapt the variation in the environment accordingly. There are two rules 

applied to make a decision. When using a random walk, the walkers search for neighbor’s 

node and select one of them, while by using centrality routing, the walkers search for a 

neighbor node with maximum value and select that one.  

4) Objectives: In a changing environment, individual agents also receive effects or rewards 

from the environment for their adaptive behavior to achieve one’s objective. In our model, 

the main objective is to measure how much time is taken while moving from one node to 

another. 
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5) Sensing: In the decision-making process among agents, there are some specific features 
related to each agent which allow communicating neighbor to make their decision 
according to the value of those features. In our case scenario, the walkers use the sensing 
property, if a neighbor node is already been visited then they avoid rerouting. They also 
sense for consumers if any visited node is a consumer, then they deliver packets or energy.  

6) Interaction: Producers and consumers can communicate with each other for power 
transmission. 

7) Stochasticity: The routing process is modeled as random.  
8) Observation: When the simulation is running, at each time step the following data are 

collected. 

 A number of nodes. 

 A number of producers. 

 A number of consumers. 

 A number of walkers. 

 A number of nodes visited. 

 A number of consumers visited. 

The details section of ODD 

The details section of the ODD specification covers features of the model about what is the 
initial state of the model, what kind of data is used, and what types of parameters and 
parameters values are set in the model. 

1) Initialization: the model is implemented in NetLogo agent-based modeling tool. The 
model environment is initialized by calling “draw-network” method. This method is used 
to draw any selected network. Then consumers and producers are generated randomly by 
specifying their number. After this, the walkers are placed at the producer’s location. 

2) Input data: the standard complex network are generated and kept as external source files. 
These network files are used as input for the model. 

3) Submodels: the model parameters and parameters values are given in Table 1. 

Table 1. Evaluation metrics: These parameters and parameter values are used for model 
simulation. The region shows the simulation environment which is kept as 100 by 100. The 
number of nodes in the network is considered as 500. The numbers of power sources and 
consumers used are 10, 50, 100, 150, 200, 250, 300. Three different standard complex 
networks are used. For routing purpose, random walk and centrality-based routing algorithm 
are applied. The Performance of the model is measured in term of average delivery rate 
(computation time from sources to the consumers). A series of experiments were carried out 
with the simulation model. 

Parameter Value 

Region  100X100 

No. of Nodes  500 

Power sources  10, 50, 100, 150 

Power consumer  50, 100, 150, 200, 250, 300, 350 

Network  small-world, scale-free, random network 

Routing  random-walk, centrality-based routing 

Performance measure  Average delivery rate 

No. of runs  4(1; 10; 20; 30) runs 

MODEL SPECIFICATION ACCORDING TO DREAM 

In this section, we present our ABM documentation according to DREAM specification 
approach. We describe our model using pseudocode specification part of the DREAM as follows. 
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Agent design 

There are two types of agents which are used in the simulation model. Agents by node types: 

in our simulation model, we sued complex networks. These complex networks consist of 

nodes which are connected through communication lines called links. These nodes agents 

represent producers and consumers in the network. Agent by walker type: for routing purpose 

the walker concept is deployed. These walkers were initially placed on producers nodes. 

They have the ability to move around the network.  

 

In the Node specification model, first, we described the Breed Node agent. The “Breed” is a 

global keyword in NetLogo (Agent-based modeling toolkit) describing a set of similar-

behavior agents. As we already noted, nodes are used in the network to represent producers 

and consumers. After this, we specified the internal variables for the Node agent. There are 

three internal variables used for the Node agent. The source? variable is used to represent 

producers or generating unit in the power system. The target? variable is used to represent 

consumers in the power system environment. The last one visited? is used to check the status 

of the node agent whether it is visited or not. Next, we define a specification for the Walker 

agents.  

 

The breed Walker represents Walker agents. These walkers are deployed for routing purpose 

and can move around the network. Next, we specified three internal variables for the walker 

agents. The first one is the location. The location variable is used to keep the information 

about the current location of a walker. The is-finish? is a Boolean variable that returns true if 

the finish condition is met? The location-list is a list variable that is used as a memory with a 

walker. This variable keeps the information about all visited locations. After describing the 

agent specification model, next, we are going to present global variables specification model   

Global 

For the simulation setup, the key variables are five input global variables. 
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Here, five input global variables are used. The get-network-type is input provided by 

“Chooser” (GUI element of NetLogo toolkit). This is used for selecting the network type 

from the available list. The network list comprises of the small-world, scale-free, and random 

network. The other four input variables are provided by “Slider” (GUI element of NetLogo 

toolkit). The num-node is used to specify the number of nodes in the network. The num-

walker is used to specify the number of walkers in the network. The num-source and num-

target are used for the specification of the number of producers and consumers respectively.  

Setup procedure 

Here, we present the main setup procedure for model initialization. 

 

The setup procedure is the global simulation setup specification model. This is used to create 

the simulation model. The input parameters are provided by the user interface. The procedure 

starts with calling the clear-all function. It clears all the previous work. Next, all four 

individual procedures are called. The first one is “draw-selected-network”. Next, we describe 

these individual procedures.  
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“draw-selected-network” is a procedure which is used to set up the selected network from the 

given options (a list of networks). The procedure checks the input type and calls the 

appropriate function. Here, three individual procedures are used. Next, we present the 

specification models of these individual procedures which are called by draw-selected-

network procedure.  

Small-world network 

In this network topology, any individual is linked to any other individual by a maximum of 

six edges. In social network terminology, this is called “six degrees of separation”. It has 

fewer nodes with more links. It is specified by: ( ); ., ( )G V E L log N   

 

Scale-free network 

In this network, the number of links between individuals is uneven. There are some nodes 

which have dense connections, while some others have fewer connections. The dense 

connections are called hubs. These hubs have the tendency to join with other new nodes. This 
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network follows the power law of the degree distribution. The probability of joining new 

nodes with the existing hub can be defined by: 

 (ki)

j

ki

kj



. (1) 

In (1), ki represents the degree of hub i. 

 

Random network 

In this network, each individual node is formed randomly; there is no specific structure to be 

followed. This network can be formed by joining a vertex with other arbitrary vertices. 

Formally, a random network GR(N, P) is framed with edges associated with likelihood P, 

given that 0 < P < 1. The connectivity of nodes does not depend on the degree of nodes. 

 

Next, we present all other procedures that describe different processes which are called by the 

main setup procedure. 

Setup source and target nodes procedures 

Procedure “add-source” is used to setup source nodes (producers) on the network. It takes 

network type, nodes, links, and the number of sources from the user interface. Next, it creates 

the user-specified number of source nodes randomly on the network.  
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Procedure “add-target” is used to setup target nodes (consumers) on the network. It takes 

network type, nodes, links, and the number of targets from the user interface. Next, it creates 

the user-specified number of target nodes randomly on the network.  

 

After setting source and target nodes on the network, the main setup procedure calls 

“calculate-centrality” procedure. Next, we present the calculate-centrality procedure. 

Centrality measure 

The centrality measure is widely used for measuring the relative importance of nodes within a 

network. It is a numerical number assigned to each node necessary for pair-wise comparisons 

with the whole network. There are four types of centrality measures in our model. 

1) Degree centrality of nodes: it measures the total number of connections that a particular 

node has in a network. A node with a higher degree has more importance as compared 

with those which have a lower degree. If a node with a higher degree is removed, then it 

can disrupt the structure as well as the flow of the network. 

 

2) Closeness centrality of nodes: it is used to find out how much data from a particular node I 

move to every other node t in a network. Mathematically, it can be written as: 

 ( )

1

( , t)
closeness iC

dist i
 . (2) 
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3) Between centrality of nodes: between centrality is the process of counting the number of 

times a specific vertex comes in the shortest path between any two vertexes in a network. 

It has the capability to observe the network transmission. Mathematically, it can be written 

as: 

 ( )

( )
betweenness i

st i
C

st




 , (3) 

where σst(i) denotes the number of shortest paths between nodes s and t passing through the 

node I, while σst is the total number of shortest paths that exist between nodes s and t. 

 

4) Eigen-vector centrality of nodes: it measures the impact of a particular node in a network. 

It defines which node is connected to the most important node in a network. It depends on 

neighbors in term of connection that neighbors have with other nodes in a network.  

 

Procedure go 

To validate our model, we apply routing techniques on our developed models. There are two 

routing techniques that we used in our work. The first one is a random walk and the second 

one is centrality-based routing. Next, we present the details and specification models of these 

two routing techniques described as procedures. 

1) Procedure random-walk: in case of a random walk, the walkers are set initially on the 

source nodes. They search their neighbors and select one of them randomly. This process 

goes repeatedly until all the target nodes have been visited. Let us consider an undirected 

graph G(V, E), a random walk is a stochastic process that starts from a given vertex, then 

select one of its neighbors randomly to visit next. It has no memory that keeps information 

on previous moves. It stops when the termination condition meets.  



Towards agent-based model specification of smart grid 

559 

 

2) Procedure centrality-rw: the procedure “centrality-rw” is another approach which is used 

in our work for the routing purpose. The technique works as follows. The walkers search 

for that neighbor node which has maximum centrality value, then move to the selected 

node. If they find no node with maximum centrality value, then they select randomly a 

node from the neighbors. The process of centrality-based routing is shown in Figure 4. 
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Figure 4. Flowchart for the centrality-based routing algorithm. We can see that the algorithm 

starts with making a list of neighbor nodes of the current location. In the next step, it checks 

the content of the list. If the list is empty, then the simulation stops, otherwise, the algorithm 

searches for the node having maximum centrality value. If such a node exists, it selects that 

node, otherwise, it selects any node from the neighbor’s list. The next step is to move to the 

selected node. After this, it checks the terminating condition. If it is satisfied, the simulation 

stops, otherwise the control goes to the first step. 

3) Generate plot: “dot-plot” procedure is used to plot the execution of the simulation of the 

model. Here, this procedure plots two types of information. First, at each time step, it 

counts the number of nodes that have been visited. Second, it counts the number of 

consumers that are visited. Next, we present model specification and details the 

experiments with our model  

 

Performed experiment 

Two types of experiments are performed in our model simulation. The first one is used for 

the random walk algorithm, the second is used for the centrality-based routing algorithm.  
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CENTRALITY-BASED ROUTING ALGORITHM: TIME COMPLEXITY ANALYSIS 

In this section, we present the centrality-based routing algorithm time complexity analysis. 

The time complexity of our proposed centrality-based routing is a linear function of n that is 

0(n). In the algorithm analysis, we analyze the cost and number of times that each step takes 

for execution. All steps take constant time, except steps 2 and 8 which take n times for 

execution. In step 2, the while loop executes n times. In step 8, the algorithm searches the list 

of nodes and then selects the node with the largest value. So it takes n times. The total 

running time is the sum of the running times and costs of each step in the algorithm.  
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T(n) = C1(1) + C2(n) + C3(1) + C4(1) + C6(1) + C7(n) + C8(1) + C9(1) + C10(1) + C11(1) (4) 

 1 3 4 5 6 8 9 10 11( )c C C C C C C C C C          (5) 

 2 7 2 7( ) ( ) ( )C n C n C C n    (6) 

 2 7a C C   (7) 

By putting the Eq. 5 and 7 values in Eq. 4, we get: 

 ( )T n an c   (8) 

 ( ) ( )T n O n  (9) 

RESULTS AND DISCUSSION 

In this section, we present results obtained from the DREAM methodology, then we compare 
ODD vs DREAM, followed by an empirical analysis and study of some significant 
representative related researches. 

COMPLEX NETWORK OF THE MODEL 

Figure 5 shows the complex network of our proposed ABM. This network presents the developed 
ABM in a visualized form. We develop the network model using Gephi (a network toolkit). 

First, we start from the root node “ABM”. This node is expanded into leaf nodes “global 
variables, agent, procedure, and expts”. The global variables are further expanded into global 
output and input. These are inputs provided by the user interface to the model. The “agent” 
node represents the involved entities in the model and it is further expanded into two types of 
agents that are named as node and walker. After defining global inputs, agent, our next focus 
is on the “procedure” node. The “procedure” node is the root of all procedures used in the 
model. This node has the highest node degree in the network model. The node “expts” is the 
parent for all sub-nodes that represent different experiments carried out during simulation. 

 

Figure 5. The network model of our proposed ABM for the smart grid. It can be noticed that 
the root node in the network is“ABM“ which is connected to four nodes named “globals, 
agents, procedure, and expts”. The “globals” node is connected to the globals output and 
input parameters. The “agent” node is connected with the involved entities in the model. The 
“procedure” node is connected with all other processes and functions in the model. The 
“expts” node is connected with all experiments carried out in the model simulation. 
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SOCIAL NETWORK ANALYSIS 

In this section, we present the results obtained by applying social network analysis (SNA) on 
the network model. The SNA provides quantitative measures to give network topological 
details. Using these quantitative measures we can perform a comparison of different models. 

In Figure 8 degree centrality of the network is plotted. It shows that the procedure node has 
the highest centrality. Next is the ABM node and third the global input.  

In Figure 9 betweenness centrality is presented. It demonstrates that the ABM node has the 
highest betweenness centrality and the procedure node exhibits the second highest 
betweenness centrality.  

Figure 10 shows the closeness centrality of the network model. It demonstrates that the ABM 
node has the highest closeness centrality and the procedure node is the second.  

Figure 11 shows the eigenvector centrality of the network. It shows that the procedure node 
has the highest eigenvector centrality followed by the ABM node. 

COMPARISON OF ODD AND DREAM 

In this section, we provide a qualitative as well as a quantitative comparison between ODD 
and DREAM specification techniques. 

The ODD specification allows a textual-based description of ABM with the purpose to make 
model readable and it promotes the rigorous formulation of models. It comprises a checklist 
that covers key features through which one can describe an ABM. The ODD specification 
also has some limitations that are described in the following. 

The ODD specification only provides a textual-based description of ABM. Sometimes for 
large ABMs, such textual-based description is insufficient to cover all the features of the 
ABM. It has no quantitative assessment of the ABM on the basis of which one could perform 
a comparison between different ABMs. Reviewing and comparison of different ABMs are 
difficult. For comparison and classification purposes, the only possible way is to make a table and 
put together ODD checklists of different ABMs and then search for similarities and differences. 

According to [8], a survey was conducted from 2006 to 2009 of those publications in which 
ODD was used. According to this survey, only 75% of publications used ODD correctly, 
while 25% of publications used ODD incorrectly and some parts of the method were 
compromised. The author formulates the conclusion that it is difficult to write an ABM 
specification by following ODD method. 

Another issue which is identified in the ODD specification is redundancy. Some parts of the 
specification like the purpose section are also included in the introduction section of the 
document. The design concept section is also repeated in the sub-model section of the model. 
The sub-model section is repeated in the process of scheduling sections. 

Sometimes there may be different publications with a different version of the same ABM. 
Then these publications have the same ODD with little modification in the entities and 
process sections. Another limitation of ODD is that the textual-based description is too 
specific which is not useful for replication of ABMs; there exist some ambiguities and 
misunderstanding about ABMs. 

On the other side, DREAM allows a detailed specification of ABMs. It comprises of making 
a complex network of the model, pseudocode specification, and network analysis steps. 

This method allows for inter-disciplinary comparative study and communication among 
different scientific domains. So, if a model is developed in social science, it can be compared 
visually and quantitatively with a model in biological science and vice versa. For instance, 
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the social model for aid spreading presented in [15] and biological model developed for the 
emergence of snake-like structure in [15], by developing complex networks of both ABM 
models, we can easily compare and analyze both networks in the same manner. DREAM 
specification approach can be applied to any ABM of any research domain. 

DREAM allows presenting ABM in the form of a complex network model. This allows 
reading and understanding ABM visually without going to the code specification.  
Performing network analysis on this network of ABM, it also gives a quantitative 
measurement of the ABM. These quantitative measures are the digital footprint of ABM and 
can be used to compare different ABMs. 

DREAM further allows pseudocode specification and details of the ABM. This specification 
helps to understand ABM completely and independently of a particular scientific discipline. 
This specification then offers a translation to the code and facilitates further developing of 
ABM. It follows that by using DREAM, any ABM can be replicated easily. 

Next, we carry out an empirical assessment of ODD and DREAM specification methods, 
using an evaluation method presented in [17]. In the study, the author presented an empirical 
analysis of the Ontology-engineering methodologies using different key features as presented 
in Table 2. That is the first reason we also used the same feature in our study. We selected 10 
key features that are desirable and being good for the specification methods. 

The purpose of methodologies assessment is to identify which features in the methodology to 
what extent. In other word, we only consider the level of the feature offered by the 
specification methodology. We used H = 2, M = 1, and L = 0 for evaluation purpose that 
demonstrates which methodology offers which features to what extent. For example, if a 
methodology fully support a specific feature, we assign it H, if a methodology partially 
support a specific feature, we assign it M, and if a methodology does not support a specific 
feature, then we assign it L. In last, we compute the rank of each methodology by averaging 
the results as shown in table 3. The description of the weight assignment is given as follows. 

Social and technical process 

Both ODD and DRAM provide a description of social and technical processes in the 
specification, so we assign weight H to both methods. 

Adaptability 

The DREAM approach is so flexible that can be adopted in the different scientific domain. 
The pseudocode specification of DREAM allows researchers to implement the model in any 
programming language. On the other side, the ODD method is a textual-based approach does 
not target multiple scientific domains. In previous studies, the ODD method is only reported 
mostly in social sciences. In the evaluation process, we assign L and H to ODD and DREAM 
respectively against the adaptability feature. 

Reusability 

In the case of reusability, it can be noted that the ODD specification cannot be used for 
further development of the models, while the DREAMs pseudocode specification can easily 
be used for the development purpose. In this case, we assign L and H weight to ODD and 
DREAM, respectively. 

Stepwise approach 

Both ODD and DREAM provide sequential steps for documenting a model. That’s why we 
assign equal weight to both ODD and DREAM against the stepwise feature. 
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Documentation 

The ODD offers insufficient documentation of the model while DREAM covers the complete 
specification in the documentation process. In this case, we assign weights M and H to ODD 
and DREAM respectively against documentation feature. 

Network model 

The ODD does not support developing the network model of understudy system, while the 
DREAM facilitates researchers for developing a network model of understudy system. In this 

case, we assign weights L and H to ODD and DREAM respectively against the network 
model feature. 

Pseudocode specification 

The ODD method does not support the pseudocode specification feature in the documentation 
process. The DREAM method offers pseudocode specification in the documentation process. 
In this case, we assign weights L and H to ODD and DREAM respectively against the 
pseudocode specification feature. 

Network analysis 

The ODD method does not include the social network analysis approach during the 
documentation process, while the DREAM offers social network analysis feature. In this case, 
we assign weights L and H to ODD and DREAM respectively against network analysis feature. 

Communication 

The ODD does not provide communication across different scientific domains, while the 
DREAM does. In this case, we assign weights L and H to ODD and DREAM respectively 

against communication feature. 

User satisfaction 

The ODD method ignores the user satisfaction feature in the specification process, while 
DREAM includes user satisfaction in the specification process. In this case, we assign 
weights L and H to ODD and DREAM respectively against user satisfaction feature. 

Table  2. Selected features for empirical analysis of ODD and DREAM. 

Feature  Description 

Social and technical 
process 

Considers the level of social and technical aspects in 
the methodology 

Adaptability  
Referring to how much the methodology is flexible to adoption in 
different domains 

Reusability  
It refers to the extent of the methodology to be used 
for model replication 

Stepwise  Measures how much methodology is based on sequential steps 

Documentation  It involves the process of documenting the model 

Network model  It is the developing of the network for the model 

Pseudo-code  
Concerns with the presenting pseudo-code specification for the 
model 

Network analysis  
Concerns with applying social network analysis tool 
on network 

Communication  Refers to the level of communication among multiple disciplines 

User satisfaction  Refers to the level of convenience 



W. Akram, M.A. Niazi, L.B. Iantovics and A. Vassilakos 

566 

Table 3. Empirical analysis of ODD and DREAM. 

Feature  ODD  DREAM 

F(1) H H 

F(2) L H 

F(3) L H 

F(4) H H 

F(5) M H 

F(6) L H 

F(7) L H 

F(8) L H 

F(9) L H 

F(10) L H 

Rank 0,5 2,0 

EXPERIMENTAL EVALUATION 

Simulation setup 

To simulate a smart grid-based complex scenario, we developed small-world, scale-free, and 

random complex networks using agent-based modeling approach. In order to validate our 

work, we applied routing techniques such as random walk and centrality-based routing on 

large-scale complex networks, specifically in the smart grid domain. For comparison, we 

applied random and centrality-based routing on these networks and analyzed their behavior 

on these networks. 

Evaluation metrics 

For performance evaluation purpose, we used the average delivery rate parameter. The 

average delivery rate is defined as the number of packets sent by sources and successfully 

received by consumers. Mathematically, it can be written as follows: 

 
1

100
n Ds

Dc
 , (10) 

where Ds represents data packets sent by the sources and Dc represents data packets received 

by consumers. The experiments were performed for different case studies such as different 

numbers of consumers and generation units. Then the simulation results were averaged over 

30 executions. To see the behavior of routing techniques, when going from source locations 

towards the destinations through different paths at each time steps, we used different 

parameters and observed for which combination it took less convergence time. The 

simulation environment is set according to the parameters as shown in Table 1. 

Results of Random walk routing 

We applied the random walk routing technique on different complex networks. The 

simulation results demonstrate that the random walk routing technique showed less iteration 

in case of small-world topology as compared to other network topologies. 

For the small-world network, Figure 12a shows the simulation results for different numbers 

of sources and consumers. This shows the convergence rate in different case studies. The 

results show that the convergence rate lies between 180 and 280 iterations. 

For the scale-free network, Figure 12b shows simulation results for the different numbers of 

sources and consumers. Random walk shows a slow convergence rate as compared to the 

small-world network. 
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For the random network, Figure 12c shows simulation results for different numbers of 

sources and consumers. On this network topology, random walk demonstrates very slow 

convergence rate as compared to both the scale-free and the small-world networks. This is 

due to the network topology. 

Figure 12d shows the performance of random walk on different network topologies. The 

small-world topology demonstrates less iteration while the random network has a slow 

convergence rate. 

Issues with Random walk routing 

1) Agents can move randomly on the network, they select a random node from their 

neighbor’s list. 

2) Agents can move to previously visited nodes. 

3) Agents do not maintain records when traversing nodes of the network. 

4) Sometimes, agents get stuck on the network, which increases computational time. 

Results of Centrality-based routing: 

In this section, we discuss the simulation results that were carried out using centrality routing 

(CR) algorithms on different networks. 

Figure 13 shows the simulation results based on betweenness centrality routing on different 

networks. For the small-world network, figure 13a shows the simulation results for different 

numbers of sources and consumers. The results show that the convergence rate lies between 

30 to 50 iterations. For the scale-free network, figure 13b shows simulation results for 

different numbers of sources and consumers. Betweenness centrality routing shows slow 

convergence rate as compared to the small-world network. for the random network, figure 

13c shows simulation results for different numbers of sources and consumers. On this 

network, betweenness centrality routing demonstrates very slow convergence rate as 

compared to both the scale-free and the small-world networks. This is due to network 

topology. Figure 13d shows the performance of betweenness centrality routing on different 

network topologies. The small-world network demonstrates less iteration while the random 

network has very slow convergence rate. 

Figure 14 shows the simulation results based on closeness centrality routing. For the 

small-world network, Figure 14a shows the simulation results for different numbers of 

sources and consumers. The results show that the convergence rate lies between 30 to 50 

iterations. For the scale-free network, Figure 14b shows simulation results for different 

numbers of sources and consumers. Closeness centrality routing shows slow convergence rate 

(between 150 and 250) as compared to the small-world network. For the random network, 

Figure 14c shows simulation results for different numbers of sources and consumers. On this 

network, closeness centrality routing demonstrates very slow convergence rate as compared 

to both the scale-free and the small-world networks. Figure 14d shows the performance of 

closeness centrality routing on different network topologies. The small-world topology 

demonstrates less iteration while the random network has very slow convergence rate. 

The simulation results based on degree and eigenvector centrality routing on different 

networks have been shown in Figures 15 and 16, respectively. In case of degree and 

eigenvector centrality routings again the small-world network showed fast convergence rate 

as compared with other networks. 

Figure 17a shows centrality routing on the small-world network with different numbers of 

consumers and generating units. The simulation results show that on average, each centrality 

routing has an equal convergence rate. When it is compared with other complex networks, it 
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is found through simulation results based on centrality routing, the small-world network has 

lower convergence rate compared with the other networks, in this case,  centrality routing on 

small-world has convergence rate between 30 to 50 iterations. 

Figure 17b shows simulation results of the centrality routing on the scale-free network with 

different numbers of consumers and generation units. The simulation results demonstrate that 

on the scale-free network, degree centrality routing has a slow convergence rate as compared 

to other approaches. 

Figure 17c shows simulation results of degree, closeness betweenness, and eigenvector 

centrality routing applied on the random network using different numbers of consumers and 

generating units. The figure shows that degree centrality routing has lower convergence time 

as compared to other centrality routing techniques. 

Random-walk vs Centrality-based routing 

Figure 18a shows the simulation results of different routing techniques on the small-world 

network. It demonstrates that centrality routing techniques have a similar convergence rate 

while the random walk has a large convergence rate. 

Figure 18b shows simulation results of different routing techniques on the scale-free network. 

It demonstrates that degree centrality routing and random walk have large convergence time. 

Figure 18c shows simulation results of different routing techniques on the random network. It 

shows that a random walk has large iterations as compared to other routing techniques. 

COMPARISON WITH PREVIOUS WORKS 

In this section, we present an overview of the previous studies in the smart grid domain. The 

purpose of this section is to highlight the gaps in the current literature of the smart grid. We 

focus on the agent-based, complex systems and specification methods for the developing of 

the smart grid models. From our review, we noticed that the previous agent-based studies do 

not focus on the specification aspects of the models. A comparative analysis has been shown 

in Table 4. 

In [18], the authors developed a conceptual model for the energy system. This model is 

integrated with the ODD methodology for documenting ABM. In this model, some other 

concepts were added like layers, objects, actor and working point to bridge the social and 

technical systems in the energy model. However, this conceptual model was not validated 

through ABM. 

In [19], the authors proposed a check-in based routing approach for network traffic model. In 

this work, betweennness centrality was used to assign node as the check-in node between 

source and destination. The proposed routing strategy was implemented on the scale-free 

network. However, the optimization of routing remained an open problem in this work. 

In [20], the authors presented agent-based tools for modeling and simulation of self-

organization in a wireless sensor network. They demonstrated the usability of NetLogo agent-

based tool and developed different experiments that show how to model different scenarios in 

the sensor network domain. 

The paper [21], proposed a routing technique for large-scale sensor network-based 

environments. In this work, local and global updating strategy is introduced for maintenance 

and efficient routing in the network. This approach monitors any changes in the network and 

updating the routing path according to the situation. Results demonstrate the effectiveness of 

the techniques and a reduced end to end delivery rate as compared to the previous techniques. 
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Wang et al. in [22], worked on frequency synchronization in the power grid system. In this 

study, the network theory concept was used to monitor, control and exploit the frequency 

variation of the power system. 

Jia et al. [23], worked on security analysis using complex network approach in the power 

system. In this work, the power adjacency matrix approach is proposed for the analysis and 

measurement of the power flow and activities of each node and links on the network. 

In [24], the author proposed a novel routing strategy based on betweennness centrality in a 

complex network. In this work, scale-free network is used and routing was performed based 

on expanding betweennness of each node. This method shifts the load from the node with 

higher betweennness to the lower. 

The study in [25] proposed Honey bee optimization-based routing using the random network-

based environment in the smart grid domain. However, this work was not validated on 

different standard network topologies such as small-world, scale-free and random network. 

Other limitations of this study are using limited numbers of geographic spaces as well as a 

limited number of communication ranges. 

In [26], the author proposed an efficient probability routing strategy using scale-free complex 

network topology. This method utilizes the probability concept for redistributing load from 

critical nodes to the non-critical nodes. Results showed that the routing path is reduced by 

30% as compared with a previous probability routing technique. 

In [27], the authors presented a novel routing strategy in the wireless sensor network and 

proposed sink betweennness distributed routing algorithm. In this approach, betweennness of 

each node is calculated in which the sink node exists as a terminal node. This work was 

implemented on the random network. 

The study in [28], proposed a multi-agent system for the reactive power control system in a 

smart grid. This proposal reduced power losses and provided the exploitation of available 

power resources. In [29], the author presented a voltage variation control strategy. This 

approach controls the voltage profile in the specified range of the studied system, which 

results in reducing system loss and improving system reliability.  

Authors in [30, 31] have worked on fault location and restoration in smart grid by using the 

complex network approach. These studies demonstrate the modeling of fault location and 

restoration process in a distributed power network. Likewise, the study [32] proposed the use 

of the neural network for an adaptive protective system in a large-scale power system. 

Authors in [33] worked on fault location and proposed the use of particle swarm optimization 

the technique for locating voltage disturbance sources in a distributed power grid. 

In [34], the authors proposed another novel approach for voltage diagnosis and fault detection 

in power distribution system. They proposed a negative selection and clonal algorithm 

inspired by the biological immune system. This method can learn unknown patterns in the 

system without going to the initial state. The results demonstrate 99% accuracy. Another 

study in [35] also focused on voltage stability and proposed the use of the genetic algorithm 

for determining optimal power sources. Likewise, another work [36] was done on 

contingency selection in a power system network. The proposed system was tested on an 

IEEE-30 test system and results showed 100% accuracy rate. 

Regarding communication management, different studies also have been presented in the 

smart grid. Wang et al. in [37], proposed an adaptive strategy for energy trading between the 

utility grid and consumers. In this proposal, each agent can communicate with each other for 

sharing information about energy usage and cost. In [38], authors have worked on distributed 
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large-scale consumers load with the conjunction of renewable energy resources. In this work, a 

neighbor communication strategy is applied. This results in low communication cost. Kremers 

et al. in [39] presented a bottom-up approach for smart grid modeling. It consists of two 

layers; physical layer for electrical power transmission and logical layer for communication. 

This model has the ability to integrate new devices in the smart grid environment. It provides 

dynamic load management, power, communication control and monitoring. 

CONCLUSIONS 

In this article, we proposed a novel ABM developing approach by using specification 

methods such as ODD and DREAM for the smart grid system. The proposed method guides 

the researcher for developing an ABM starting from conceptual models to validated ABM 

through simulation. The work is exemplified by considering a case scenario from the smart 

grid system. We showed how to effectively model the smart grid system by using 

specification methods. We demonstrate the usefulness of the proposed approach in terms of 

modeling a complex system, ease of use, and knowledge transfer. The proposed method also 

supports communication between multidisciplinary researchers. We presented qualitative as 

well as a quantitative comparison of both ODD and DREAM specification techniques. The 

comparative study of ODD and DREAM proved that DREAM methodology is the more 

useful approach for documenting an ABM not only in terms of modeling but also for 

replication of the models, specifically in the smart grid domain. 

 

Figure 6. Screenshot of the developed ABM of the smart grid. The image shows the user 

interface of the NetLogo simulation tool. It consists of sliders, chooser, monitors, buttons, 

and the world ( a simulation environment). 
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Here we would like to mention that the presented work only focuses on communication 

among power sources and consumers using routing approaches in the complex networks of 

the smart grid. However, other than communication, there are several key problems like 

demand response management, power scheduling, fault control, and storage management. 

Study on these aspects is also needed from a complex network perspective. These studies will 

lead to the better utility of complex networks in the smart grid domain. 

 
(a) Small-world network 

 

(b) Scale-free network 

 
(c) Random network 

Figure 7. Developed smart grid scenarios based on standard complex networks in our study. 

These networks were developed using NetLogo tool: Part (a) shows the small-world 

consisting of 500 nodes, the number of consumers and sources are selected randomly. Part 

(b) shows the scale-free network with 500 nodes, the number of consumers and sources are 

selected randomly. Part (c) demonstrates the random network consisting of 500 nodes, the 

number of consumers and sources are selected randomly. 
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Figure 8. Degree centrality of the network. It shows that the Procedure node has the highest 

degree in the network. 

 

Figure 9. Betweenness centrality of the network. ABM node has the highest betweenness 

centrality value in the network. 
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Figure 10. Closeness centrality of the network. ABM and Procedure node has the highest 

closeness centrality value. 

 

Figure 11. Eigenvector centrality of the network. It shows Procedure node is on the top of the 

list in the network model. 
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(a) Random walk on Small-world  

 

(b) Random walk Scale-free  

 

(c) Random walk on Random network 

 

 

(d) Random walk on all networks 

Figure 12. The simulation results of Random walk on different networks: Part (a) shows the 

results of a random walk on the small-world network. The x-axis shows a number of 

consumers and the y-axis shows average end to end delivery rate against a different number 

of sources. Part (b) shows the results of a random walk for different numbers of consumers 

and sources on the scale-free network of five hundred nodes. Part (c) shows the results of a 

random walk on the random network. Part (d) shows random walk results on all networks. 

Results of all three networks are compared (numbers of consumers: 50, 100, 150, 200, 250, 

300, 350, number of sources: 10, 50, 100, 150. 
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(a) CR-betweenness on Small-world  

 

(b) CR-betweenness Scale-free  

 

(c) CR-betweenness on Random network 

 

(d) CR-betweenness on all networks 

Figure 13. The simulation results of betweenness centrality routing on different networks. 

Each network is composed of 500 nodes. The simulation was carried out on different 

numbers of sources and consumers (sources: 10, 50, 100, and 150, consumers: 50, 100, 150, 

200, 250, 300, and 350). Part (a) shows simulation results on the small-world network. Part 

(b) shows simulation results on the scale-free network. Part (c) shows simulation results on 

the random network. Part (d) shows betweenness centrality routing on different networks. 
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(a) CR-closeness on Small-world  

 

(b) CR- closeness Scale-free  

 

(c) CR- closeness on Random network 

 

(d) CR- closeness on all networks 

Figure 14. The simulation results of closeness centrality routing on different networks. Each 

network is composed of 500 nodes. The simulation was carried out on different numbers of 

sources and consumers (sources: 10, 50, 100, and 150, consumers: 50, 100, 150, 200, 250, 

300, and 350). Part (a) shows simulation results on the small-world network. Part (b) shows 

simulation results on the scale-free network. Part (c) shows simulation results on the random 

network. Part (d) shows closeness centrality routing on different networks. 
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(a) CR-degree on Small-world  

 

(b) CR- degree Scale-free  

 

(c) CR- degree on Random network 

 

(d) CR- degree on all networks 

Figure 15. The simulation results of degree centrality routing on different networks. Each 

network is composed of 500 nodes. The simulation was carried out on different numbers of 

sources and consumers (sources: 10, 50, 100, and 150, consumers: 50, 100, 150, 200, 250, 

300, and 350). Part (a) shows simulation results on the small-world network. Part (b) shows 

simulation results on the scale-free network. Part (c) shows simulation results on the random 

network. Part (d) shows degree centrality routing on different networks. 
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(a) CR-eigenvector on Small-world  

 

(b) CR- eigenvector Scale-free  

 

(c) CR- eigenvector on Random network 

 

(d) CR- eigenvector on all networks 

Figure 16. The simulation results of eigenvector centrality routing on different networks. 

Each network is composed of 500 nodes. The simulation was carried out on different 

numbers of sources and consumers (sources: 10, 50, 100, and 150, consumers: 50, 100, 150, 

200, 250, 300, and 350). Part (a) shows simulation results on the small-world network. Part 

(b) shows simulation results on the scale-free network. Part (c) shows simulation results on 

the random network. Part (d) shows eigenvector centrality routing on different networks. 
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(a) Centrality routing on Small-world 

network 

 

(b) Centrality routing on Scale-free 

network 

 

(c) Centrality routing on Random network 

Figure 17. The simulation results of centrality-based routing on complex networks. Results 

for different types of centrality routing based on Closeness, Betweenness, Eigenvector, and 

Degree are plotted. The experiments were performed for 50, 100, 150, 200, 250, 300, 350 

consumers and 10, 50, 100, 150 sources. Part (a) shows centrality-based routing on the 

small-world network. Part (b) shows centrality-based routing results on the scale-free 

network. Part (c) shows centrality-based routing on the random network. 
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(a) CR vs RW routing on Small-world 

network 

 

(b) CR vs RW routing on Scale-free 

network 

 

(c) CR vs RW routing on Random network 

Figure 18. Comparison of random-walk and centrality-based routing algorithms on different 

networks. Experiments were performed for 50,100,150,200, 250, 300, 350 consumers, and 10, 

50, 100, 150 sources. Part (a) shows comparative results of random-walk and centrality-based 

routing on the scale-free network. Part (b) shows comparative results of random-walk and 

centrality-based routing on the small-world network. Part (c) shows comparative results of 

random-walk and centrality-based routing on the random network. The simulation results of 

centrality routing based on closeness, betweenness, eigenvector, and degree are the same for 

the small-world network. 

 

 

 

 



Towards agent-based model specification of smart grid 

581 

Table 4. A comparative analysis of previous studies in the smart grid. We analyzed the 

previous study based on ABM, complex network, specification techniques ODD and 

DREAM. The comparative study confirms that there is no such specification study for ABM 

in the smart grid. 

Ref.  Objective  ABM CN ODD DREAM 

Our study  ABM specification of SG  Yes Yes Yes Yes 

[28] MAS for reactive power management No  No No No 

[37] An adaptive strategy for energy trading Yes No No No 

[30, 31] 
Fault location and restoration in the power 

system network 
No Yes  No No 

[40] Appliances scheduling in smart home No No No No 

[38] 
Communication among large-scale 

distributed consumers load 
No No No No 

[39] 
Simple power system modeling with 

consumers and power generators 
Yes No No No 

[41] Scheduling of flexible loads  Yes No No No 

[42] Modeling multiple micro grids Yes No No No 

[43] Battery storage scheduling Yes No No No 

[18] A conceptual model for smart grid No No Yes No 

[22] Frequency synchronization in power system No Yes No No 

[23] Security analysis in power system No Yes No No 

Table 5. Model specification follows ODD (continued on p.582). 

Category  Sub-category Our-model 

Overview 

Purpose 

 

Entities   

 

Entities  

Process  

Modeling a smart grid using agent-based and complex 

network-based approach. 

 

Producers, consumers, walkers 

 

A hybrid centrality-based routing algorithm for an end to 

end delivery from producers to consumers 

Design 

concept 

Basic principle  

 

Emergence  

 

Adaptation  

 

Objective  

 

Sensing  

 

Interaction  

 

Stochasticity  

 

Observation  

A cognitive agent-based computing approach is better for 

modeling and simulation of the large scale power system. 

 

The computation time of the end to end delivery from 

producers towards consumers 

 

Based on connected neighbors 

 

To measure how much time is taken while moving 

from one node to the other 

 

Check the state of the neighbor nodes 

 

Local communication 

 

Random process 

 

Collect data about the number of consumers, number of 

producers, the number of nodes visited 
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Table 5. Model specification follows ODD (continuation from p.581). 

Detail 

Initialization  

 

Input data  

 

Sub-model  

Complex network setup 

 

External network setup files 

 

Parameters: 

• number of nodes 

• number of sources 

• centrality-based routing 

• average delivery rate calculation 
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