
1218 Technical Gazette 26, 5(2019), 1218-1227

ISSN 1330-3651 (Print), ISSN 1848-6339 (Online) https://doi.org/10.17559/TV-20180123005000
Original scientific paper

High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

Ferhat BOZKURT, Önder ÇOBAN, Faruk Baturalp GÜNAY, Şeyma YÜCEL ALTAY

Abstract: Sentiment analysis techniques are widely used for extracting feelings of users in different domains such as social media content, surveys, and user reviews. This
is mostly performed by using classical text classification techniques. One of the major challenges in this field is having a large and sparse feature space that stems from
sparse representation of texts. The high dimensionality of the feature space creates a serious problem in terms of time and performance for sentiment analysis. This is
particularly important when selected classifier requires intense calculations as in k-NN. To cope with this problem, we used sentiment analysis techniques for Turkish Twitter
feeds using the NVIDIA’s CUDA technology. We employed our CUDA-based distance kernel implementation for k-NN which is a widely used lazy classifier in this field. We
conducted our experiments on four machines with different computing capacities in terms of GPU and CPU configuration to analyze the impact on speed-up.

Keywords: CUDA; k-NN; LDA; parallel computing; sentiment analysis; twitter

1 INTRODUCTION

Social media is a strong communication way that
impacts the events and many fields directly. Today, users
can state their feelings, thoughts, ideas, and experiences
about any matter in various social media environments
such as Facebook, Google+, and Twitter [1]. On the other
hand, these platforms are used by a growing number of
users for news sharing and organizing events [2]. In this
respect, social media offers a rich data source that could be
leveraged in research areas such as economy, trade,
politics, and opinion mining. Sentiment analysis is a
monitoring method used to detect sentiment on social
media content and it is considered as a classical text
classification problem. Identifying ideas related to political
matters of communities, moods of users, and negative and
positive comments about any product are some of the
widely used functionalities of this field [3]. Despite the
popularity of sentiment analysis, high dimensionality of
feature space makes it harder in terms of time and
performance. In this study, we are particularly interested in
applying sentiment analysis in Turkish which is known as
an agglutinative language. Specific characteristics of
Turkish make it difficult to perform Natural Language
Processing (NLP) tasks (e.g., Named Entity Recognition,
Sentiment Analysis, Word Sense Disambiguation etc.) as
it requires effective pre-processing and increases the
feature space further [4], [5]. Structural processing in
Turkish is more difficult than in English and performing
sentiment analysis for Turkish is a challenging task due to
its rich morphology and abundance of dialectal use in
Twitter [6]. For instance, morphological suffixes may
change the polarity of words and it is possible to produce
many surface forms of a word from its root in Turkish [7].

Therefore, sentiment analysis on Turkish texts is not
an easy task with the help of single threaded executions of
learning algorithm. On the other hand, most of the existing
classification methods (e.g., neural network based
classifier with a high number of neurons, decision tree
classifier with highly irregular shape of tree and variable
number of nodes at run time) are not suited for efficient
parallel processing and this also makes harder to handle
large datasets [8], [9]. Single threaded executions often
lead to underutilized computational power causing high
executing times. Applying some of the algorithms such as

sample-based classifiers (e.g., k-Nearest Neighbors) to a
complex language (e.g., Turkish) exacerbate these
performance problems and makes it even harder to tackle.

The execution time of k-Nearest Neighbors (k-NN)
method increases dramatically when size of the input
dataset and value of k is large. Nevertheless, k-NN
algorithm can be easily executed in parallel mode [10]-
[12], since the computation of similarity or distance
between test and training samples is independent in this
algorithm. Scalable solutions can also be achieved by
leveraging the use of effective parallel computer
architectures like GPUs (Graphics Processing Units).
Nowadays, GPUs are broadly available and relatively
cheap. Due to high parallel computation power, GPU
technology is highly preferred for handling machine
learning problems that require intensive computational
tasks. There are many studies in the literature making use
of GPUs for speeding up machine learning algorithms [13]-
[16]. Currently, CUDA (Compute Unified Device
Architecture) is a commonly used programming language
for developing applications for GPUs.

In this study, we focus on speeding up the sentiment
analysis task. In order to do so, we selected the k-NN as our
classifier and parallelized its nearest neighbor search
process which takes the longest time in it. Note that an
approximate speed-up can also be achieved by using
dimension reduction or feature selection techniques.
However, these aspects of speed-up are out of the scope of
this article. Calculation of the distances between vector
pairs belonging to training and test samples can be
performed independently which makes it possible to
execute k-NN algorithm in parallel with CUDA GPUs
[10]-[12]. Therefore, in this study, we implemented a
CUDA-based distance kernel for k-NN classifier. Our main
goal is to speed-up classification process in Turkish Twitter
sentiment analysis which requires high computational
power. For this purpose, we employed the k-NN method on
four machines with different processors and graphics cards
in serial and parallel fashion and monitored the impact of
the parallel execution both in terms of time and speed-up
on classification task. We also carried out serial and
parallel tests on three different sub-sets of the dataset and
observed the scalability of parallel kernel. Based on these
observations, we determined the required optimum thread
grid and block size to obtain maximum speed-up in parallel

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

Tehnički vjesnik 26, 5(2019), 1218-1227 1219

architecture. The contributions of this paper are
summarized as follows: (1) we performed sentiment
classification using LDA (Latent Dirichlet Allocation) for
Twitter feeds; (2) CUDA based distance kernel for k-NN
algorithm was implemented to overcome performance
problems which caused by the high dimensionality of
feature space; (3) according to studies in literature, there is
no previous work which is similar to ours in the context of
Turkish Twitter sentiment analysis using CUDA.

The rest of the paper is organized as follows. In Section
2, we discuss previous works which employ parallel
implementations of machine learning algorithms on large
datasets using CUDA architecture and Hadoop
MapReduce paradigm. In Section 3, we describe our
methodology which has sub-headings such as Twitter Text
Processing and CUDA Parallel Computing Architecture.
We present our experimental results in Section 4 and
finally, we conclude our study in Section 5.

2 RELATED WORKS

Although there are studies on speeding up Twitter

sentiment analysis in the literature, our study is the first of
its kind targeting this problem for Turkish language. Some
of the existing studies teach how to use parallel machine
learning implementations for this problem by employing
NVIDIA’s CUDA technology and Hadoop MapReduce
paradigm. In [17], authors implemented and compared
parallel algorithms for pre-processing of Twitter feeds
based on GPU and Hadoop MapReduce architectures. This
paper presents the effectiveness and obstacles of using
parallel algorithm methods for effective pre-processing
(i.e., some tasks like string to vector conversion,
elimination of trivial words and symbols, and frequency
mapping etc.) of data. In another study [18], authors
evaluated the scalability of Naive Bayes classifier on large-
scale datasets. They performed sentiment mining on large
datasets by using a Naive Bayes classifier with the Hadoop
framework.

A novel parallel implementation of Naive Bayesian
classifier is proposed by [19] to decrease the test time
complexity while handling large datasets. In [20], authors
introduced parallel implementations of several
classification algorithms including k-NN, Naive Bayesian
model, and decision tree based on MapReduce, which
make these classifiers to be applicable to mine large
datasets. A CUDA-based parallel implementation of k-NN
algorithm for spam classification has been carried out by
[21]. The performance of the k-NN search degrades
dramatically for large datasets as the task is
computationally intensive. In their study, the distances
between the newly-processed email and each email in the
training set are quickly calculated by using the GPU. In
[10]-[12] authors worked on CUDA-based parallel
implementation of k-NN algorithm to maximize the
utilization of the GPU for scalable and fast k-NN
computation. In [22], authors proposed a method for
processing all k-NN queries in Hadoop. They decompose
the given space into cells and execute a query using the
MapReduce framework in a distributed and parallel
manner.

3 MATERIALS AND METHODOLOGY

In this section, the dataset and methodology used in

this paper are described under three sub-headings. First, we
clarify text processing steps which we applied on Turkish
Twitter Feeds (TTF) dataset. Then, we define the CUDA
parallel computing architecture and our parallel distance
calculation kernel respectively.

3.1 Selected Dataset as Evaluation Material

In this study, we used the TTF dataset created in [23].
This dataset contains randomly collected public Twitter
feeds by sending emoticons as a query key [23], [24]. The
TTF dataset has totally 20000 Twitter feeds (after pre-
processing) which are equally distributed between negative
and positive categories [25]. Each tweet in this dataset is
labeled by using distant supervision approach that
considers whether related tweet contains an emoticon from
the following positive and negative groups:
• Positive group: “:-)”, “:)”, “=)”, “:D”
• Negative group: “:-(”, “:(”, “=(”, “;(”

To assign category, it is enough to include one of the
emoticons in the positive or negative group for a tweet.
Note that tweets that include emoticons from both positive
and negative groups are eliminated in crawling process and
not included in the dataset.

3.2 Methodology
3.2.1 Twitter Text Processing

In the first stage of the methodology, the following
steps are employed respectively for Twitter text
processing.

Pre-processing: In pre-processing phase, each of
Twitter messages is cleaned by removing
incomprehensible contents such as words, characters,
decimal values, and punctuation marks after the lowercase
conversion. We did not apply term frequency and term
length filter in order to avoid low feature space. Then, to
get significant short term expressions, we applied the
following steps:
• We removed the retweet, retweeted, and repetitive

messages from the dataset,
• We coded the Twitter specific terms (i.e., usernames,

URL, and hashtag) with specific terms and preserved
thought to be effective in sentiment classification
phase.

Note that we remove these terms after sentiment

classification.
Sentiment Classification: In sentiment analysis, the

major challenge is to decide which category is most
accurate for a tweet. Therefore, different techniques such
as using emoticons or lexicon-based linear classifiers are
employed in the literature for this purpose [23], [24], [26].
In this study, we use topic based sentiment classification
method which is proposed in [27]. Using this method, a
topic model is created that comprises 2 topics by using the
LDA algorithm. The most observed 50 words in these 2
topics were extracted and renamed each of them by hand
as positive or negative according to the number of observed

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

1220 Technical Gazette 26, 5(2019), 1218-1227

positive or negative words. Then, for each tweet in dataset
we obtained a likelihood value that indicates which topic is
closer for related tweet. Finally, we assigned category for
each tweet by depending on its closeness to positive or
negative topic [27] as shown in Algorithm 1. We used
MALLET package to implement the LDA [28] algorithm
that its notation is depicted in Fig. 1. LDA is a topic
modelling approach which assumes the dataset includes 𝑇𝑇
hidden topics. Each document 𝑚𝑚 consisting of 𝑁𝑁𝑚𝑚 words
has a multinomial 𝜑𝜑𝑚𝑚 distribution on these 𝑇𝑇 topics. A 𝑧𝑧𝑚𝑚,𝑛𝑛
topic can be determined for each 𝑤𝑤𝑚𝑚,𝑛𝑛 word which is
observed in document 𝑚𝑚 by this 𝜑𝜑𝑚𝑚 distribution. In this
way, a 𝑤𝑤𝑚𝑚,𝑛𝑛 word for 𝑧𝑧𝑚𝑚,𝑛𝑛 topic can be sampled from
obtained 𝜑𝜑𝑧𝑧𝑚𝑚,𝑛𝑛 document-topic distribution [29]. Here, the
word-topic 𝜑𝜑𝑚𝑚 and document-topic 𝜑𝜑𝑧𝑧𝑚𝑚,𝑛𝑛 distributions
have 𝛼𝛼 and 𝛽𝛽 dirichlet priority parameters. In this paper,
Gibbs sampling algorithm is used for the purpose of
determining these parameters [30].

Figure 1 Latent Dirichlet Allocation

After the sentiment classification, we eliminated all of

the Twitter specific terms to avoid biased results as these
terms are most frequently observed terms in each category.

Algorithm 1 Sentiment classification using LDA [27]

procedure LABELTWEETS(Tweets)
p = positive, n = negative
topic = 2, iteration = 2000
topicModel ← LDA(topic, iteration)
for each topic t in topicModel do

W = most observed terms in t
nT = # of n terms in W
pT = # of p terms in W
if pT > nT then

t.label = p
else

t.label = n
end if

end for
for each tweet twt in Tweets do

cTopic = topicModel.getCloserTopic(twt)
if cTopic = p then

twt.category = p
else

twt.category = n
end if

end for
return Tweets

end procedure

Feature Extraction: In this step, we used Bag of

Words (BOW) model to extract features from Twitter
feeds. In this model, each document sample is usually
represented by associating the word and its observed
frequency [31]. The order of words in text content is also
considered as to be not important [32]. After obtaining the
BOW features, we applied removal of stopwords,

stemming, and text normalization steps by using Zemberek
and Lucene APIs as in [33].

Representation and Term Weighting: We represented
each tweet, contained in TTF dataset, as a feature vector by
using VSM (Vector Space Model) [34]. In VSM, each
feature is represented as its term frequency or weight value
using numbers. Therefore, term weighting is an important
step which assigns a weight to indicate importance of each
related feature in sample vector. In this step, we used
TF∗IDF (Term Frequency-Inverse Document Frequency)
method which is most commonly used weighting scheme
in text classification [35], [36]. The TF∗IDF applies
weighting to a feature based on its inverse document
frequency and term frequency factors. This means that if in
more tweets a term appears, the less important that term
will be, and the weighting will be less. The TF∗IDF can be
formulated as Eq. (1):

𝑊𝑊𝑇𝑇𝑇𝑇∗𝐼𝐼𝐼𝐼𝑇𝑇 = 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 × log �𝑁𝑁

𝑛𝑛𝑗𝑗
� (1)

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖,𝑁𝑁, and 𝑛𝑛𝑖𝑖 represent the raw term frequency of
term 𝑗𝑗 in a tweet 𝑖𝑖, total number of tweets in the dataset,
and the number of tweets that term 𝑖𝑖 appears respectively.

 Figure 2 GPU allocates more transistors for data processing [41]

3.2.2 GPU Parallel Computing Architecture and CUDA

Programming Model

CUDA is a parallel computing architecture which
allows significant increases in computing performance by
using GPU power of NVIDIA. As a result of the
development of TESLA GPU architecture [37], NVIDIA
has shown that GPUs can be programmed by considering
like a processor. Previously, GPUs were mainly used for
graphics applications. Research conducted on CUDA
architecture revealed that the performance is higher when
compared to CPU [38], [39]. The reason of this difference
is that the GPU architecture has been developed for the
operations requiring parallel calculations at high degrees
and operation intensity such as graphics processing.
Contrary to the operations requiring a flow control as in
CPU, the GPU target parallel calculation applications such
as data processing, image processing, 3D rendering, and
signal processing consist of the repeating and
arithmetically intense operations [40]. As shown in Fig. 2,
GPU parallel calculation enables an architecture that has
intense transistors devoted to data processing instead of
cache memory and flow control mechanisms in CPU [41].
The excessive performance difference between multi-core
GPUs and general-purpose multi-core CPUs arises from
basic design difference between two processors. Compared

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

Tehnički vjesnik 26, 5(2019), 1218-1227 1221

to CPU, GPU has more ALU (see Fig. 2) and includes less
components (e.g., cache memory and flow control). This is
an important factor in terms of obtaining high arithmetic
operation power and capacity that are required for
performing parallel arithmetical operations.

GPU also allows to carry out same operations on
different data elements in compliance with SIMD (Single
Instruction Multiple Data) programming [39] and the small
cache memory on GPU enables to control the bandwidth
required by the application. Therefore, there is no need to
turn back to DRAM (Dynamic Random Access Memory)
for threads which are trying to have an access to data in the

same memory area. Thus, results are obtained much faster
for any application that has parallelizable functions by
running on GPU [42], [43]. CUDA is quite useful and
practical thanks to its easy thread management structure
and being a software with shared memory that can be used
on GPU. In addition, it enables the applications written in
C programming language for CPU to be run by using multi-
thread on graphics processor as it is a C based parallel
programming language [44]. In this aspect, CUDA
programming with NVIDIA GPUs also provides adequate
API for non-graphical applications.

Figure 3 Flowchart of our CUDA-based parallel k-NN

Table 1 GPU and CPU configurations of four machines used in experiments

Device configuration Machine I (MI) Machine II (MII) Machine III (MIII) Machine IV (MIV)

G
PU

NVIDIA graphics card GeForceGTX850M GeForceGT650M GeForce9600MGT

D
oe

s n
ot

 h
av

e
N

V
ID

IA

gr
ap

hi
cs

 c
ar

d

Total amount of global memory 4096 MBytes 4096 MBytes 512 Mbytes
of CUDA cores 640 384 32
Warp size 32 32 32
Max. # of threads per multiprocessor 2048 2048 768
Max. # of threads per block 1024 1024 512
Max. size of each dimension of a
thread block 1024×1024×64 1024×1024×64 512×512×64

Max. size of each dimension of a grid 2147483647×65535×65535 2147483647×65535×65535 65535×65535×1

CP
U

 Processor (Intel) i7-4700HQ i7-3630QM Core2Duo CPUP8400 i5-4260U
Processor base frequency 2,40 GHz 2,40 GHz 2,26 GHz 1,40 GHz
Cache 6 MB Smart Cache 6 MB Smart Cache 3 MB L2 3 MB Smart Cache
RAM 16 GB 16 GB 2 GB 8 GB

CUDA-Enabled GPU consists of SIMD SMs (Stream

Multiprocessors) clusters and each of these clusters
includes 8 stream processors (SPs). Accordingly, CPU acts
as a multi-core co-processor CUDA device and SMs form
the graphics card hardware [10], [39], [45]. Each of the SM
has a fast-shared memory and shares it with all other
processors. And each SP includes a 32 byte local register
cluster. SMs make contact by global/device memory and
shared memory is explicitly managed by programmers
[10]. When we consider the CUDA technology as a
software, it actually comprises parallel running thread
collection. In this way, software can run much faster by
creating parallelism for arithmetical operations requiring
heavy calculations. Any program written in CUDA is
actually a serial program named as a kernel. This kernel

identifies the operations to be carried out for a specific
dataset [10], [39]. GPU runs thousands of copies of this
kernel and makes it as parallel.

A system with shared memory on GPU is carried out
by installing driver software that provides parallel
programming support of the producing company. When
the program is executed, CPU runs serial part of the code
and GPU runs parallel CUDA code which requires intense
calculations. GPU creates a separate kernel copy for each
sample in dataset and these kernel copies are called as
thread [41]. As shown in Fig. 3, thread groups are consisted
by combination of thread structures. Thread groups create
the blocks and the block groups are called as grid. Grids
are comprised of thread blocks in computing organization
and make the operations parallel by running copies of GPU

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

1222 Technical Gazette 26, 5(2019), 1218-1227

kernel. SM performs one or more thread blocks at the same
time. The threads in common block communicate by
common shared memory and each thread includes a
program counter, register, and state bar belonging to itself.
In this context, the basis of CUDA technology is based on
running GPU by many thread series. All of the threads can
run same code and each thread has an ID. As CUDA is an
extension of C language, it is generally not necessary to
change its architecture to direct the programs to CUDA or
transform them to multi-thread form. CUDA includes both
C language extensions and runtime time library that
provides API for GPU control [39], [42]. Therefore,
millions of threads can be created simultaneously making
parallel processing possible in various areas such as image
and data processing [42].

3.2.3 Parallel Implementation

We selected the k-NN algorithm to implement in

parallel fashion. Main reasons behind our selection are as
follows:
• k-NN is generally the slowest algorithm among

machine learning algorithms, since it often
outperforms other well-known classifiers (e.g.,
Decision Tree, Naïve Bayes etc.) in terms of
computation complexity or accuracy especially in text
categorization,

• Compared to the other classification algorithms, this
method is more suitable to run in parallel mode, as
searching for nearest neighbors can be calculated
independently and this task is the most time consuming
part of the k-NN.

Note that implementing other classifiers is also

possible, but each algorithm has its own calculation
strategy and not all of the algorithms have the same
parallelizable potential. For instance, compared to the k-
NN, running Naïve Bayes algorithm in parallel fashion
may not provide a huge performance difference when
compared to its serial execution. Therefore, in this study,
we selected the k-NN algorithm which is also known as
lazy learner and requires intense calculation especially in
text categorization. As distance calculation is the most
time-consuming part in k-NN classification, we performed
this calculation in parallel using our distance calculation
kernel.

k-Nearest Neighbor Classifier: k-NN is a supervised
learning algorithm based on the distance (or similarity)
between the samples [46]. In this method, the classification
process is time consuming and it is hard to estimate the
most suitable k value [47]. k-NN classifier finds the k
closest neighbors in accordance with distance function and
uses category weights of these neighbors to assign a
category to test sample [48], [49]. The distance (e.g.,
Euclidean, Manhattan, and Minkowski etc.) or similarity
function may be different [11], [46]. However, Euclidean
distance is generally used to determine the closest
neighbors in k-NN classifier [50]. Let 𝑑𝑑0, 𝑑𝑑𝑖𝑖 ∈ 𝑘𝑘 −
𝑁𝑁𝑁𝑁(𝑑𝑑0) and 𝐶𝐶 represent test sample, k closest neighbors
and category set respectively. Then, assigning a category
to a test sample using the category weights of its k closest
neighbors is performed as in Eq. (2) and (3):

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑0,𝐶𝐶𝑖𝑖� = ∑ 𝑆𝑆𝑖𝑖𝑚𝑚(𝑑𝑑0,𝑑𝑑𝑖𝑖)(𝑑𝑑𝑖𝑖 ,𝐶𝐶𝑖𝑖)𝑑𝑑𝑗𝑗∈𝑘𝑘−𝑁𝑁𝑁𝑁(𝑑𝑑0) (2)
𝐶𝐶 = 𝑎𝑎𝑠𝑠𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑0,𝐶𝐶𝑖𝑖)) (3)

In above equations, the (𝑑𝑑𝑖𝑖 ,𝐶𝐶𝑖𝑖) statement takes value of 1
if the category of document 𝑑𝑑𝑖𝑖 is 𝐶𝐶𝑖𝑖, 0 otherwise. Finally,
the classifier assigns the category which has higher weight
to the test sample [51].

Table 2 The effect of pre-processing on TTF dataset
Feature reduction # of features Percent of original (%)

None 155603 100
(-)Hashtag{#} 1512 0,97
(-)URL{http://} 3463 2,22
(-)Username{@} 12436 7,99
(-)Emoticon{:),-),:(} 21944 14,1
(-)FilteredTerm 39130 25,1
(-)NormalizedTerm 2530 1,62
(-)All 81015 52,0

Distance Calculation Kernel: The most time-

consuming components of k-NN algorithm are distance
calculation and sorting process [52]. Even though this
expense may be decreased with some indexing methods
(e.g., K-D tree), it is observed that this operation can be
performed faster with less expense by making it parallel
[38]. Therefore, we focused on speed-up the distance
calculation component in this study. In this way, the
consistency between different threads is raised to top level
in distance calculation. Also, the access to global memory
is minimized as it has a delay. As the distance calculation
between training and test vector pairs is independent, it can
be calculated in parallel. Therefore, the k-NN algorithm is
perfectly suitable to be implemented in parallel with GPUs
[12]. In this study, firstly, we detected the optimum k value
for k-NN classifier. Secondly, we applied the following
steps:
• For each test sample, we calculated the distance

between test and training samples in parallel mode by
using GPUs (i.e., Distance Calculation Kernel),

• We sorted all training samples based on their distance
and selected the k nearest neighbours by minimum
distance,

• We assigned the category which has highest weight
among the k nearest neighbours to the test sample.

In our CUDA-based k-NN implementation (see Fig. 3)

which includes a parallel distance calculation kernel, the
training and test data are read at first. Then, optimum k
value to be used in classification process is detected in the
serial part. However, the Euclidean distance between test
and training samples is calculated by different threads by
transferring data from CPU to GPU in parallel distance
calculation kernel [10], [11], [52]. These distances are
obtained quickly and independently from each other in
parallel part. In this process, a vector pair is obtained from
both test and training samples which are contained in
global memory and placed on shared memory in each
block. Then, the entire SPs in each block fetch data from
common shared memory. Using this approach, the threads
in the common blocks share reference data (i.e., a unique
sub-set of training data) in the shared memory. There are
many blocks and threads that perform this process as the
training reference data is huge.

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

Tehnički vjesnik 26, 5(2019), 1218-1227 1223

Table 3 Evaluation of the optimum k value for highest accuracy on MII
Evaluation metric # of nearest neighbours (k)

1 3 5 7 9 11 13 15
Precision 0,66 0,65 0,65 0,66 0,65 0,63 0,63 0,64
Accuracy 0,77 0,81 0,81 0,82 0,83 0,83 0,84 0,85
Recall 0,53 0,61 0,61 0,63 0,66 0,66 0,69 0,70
Specifity 0,88 0,88 0,88 0,89 0,89 0,88 0,88 0,89
F-measure 0,59 0,63 0,63 0,64 0,65 0,64 0,66 0,67

Table 4 Obtained speed-up by MII on TTF dataset for the different k values and thread block sizes

Thread
block size

of nearest neighbours (k)
1 3 5 7 9 11 13 15

CT GP SU CT GP SU CT GP SU CT GP SU CT GT SU CT GT SU CT GT SU CT GT SU
1024×1024×1

30
06

89

3765 79,86

30
08

32

3788 79,41

30
09

66

3745 80,36

30
21

81

3729 81,03

30
29

64

3742 80,96

30
45

77

3790 80,36

30
98

60

3870 80,06

31
45

24

3860 81,48
512×512×1 3816 78,79 3800 79,16 3756 80,12 3778 79,98 3753 80,72 3785 80,46 3891 79,63 3870 81,27
256×256×1 3837 78,36 3809 78,97 3878 77,60 3787 79,79 3772 80,31 3787 80,42 3952 78,40 3882 81,02
128×128×1 3918 76,74 3830 78,54 4086 73,65 3810 79,31 3910 77,48 3801 80,13 4007 77,32 3912 80,39
64×64×1 3967 75,79 3872 77,69 4266 70,54 3903 77,42 4001 75,72 3811 79,92 4050 76,50 3949 79,64
32×32×1 4135 72,71 4023 74,77 4450 67,63 4295 70,35 4237 71,50 3915 77,79 4105 75,48 4055 77,66

Consequently, the distance calculation kernel is being
parallel in compliance with parallel logic. The distances of
each test sample to training samples are calculated
respectively in conclusion with running of distance
calculation kernel in threads. After that, the results of each
distance calculations are stored in a vector in order to sort
by k value. After the distances are calculated in parallel
kernel, the vector including distance calculations is sent to
CPU. Then, the samples are sorted by minimum distance
and category weights of the k closest neighbours are
obtained in CPU. Since the number of samples used in the
voting phase is k, which is generally set to a small value in
order to maintain accuracy and avoid over-fitting, the
computation for this step is negligible. For this reason, we
execute this step on the CPU.

4 EXPERIMENTAL RESULTS

In this section, the results for our CUDA- based

parallel k-NN implementation are analyzed on TTF
dataset. First, we describe the configuration and evaluation
metrics that is employed and then, our results are
presented.

4.1 Configuration and Evaluation Metrics

We conducted the experiments on four machines

which have different CPU and GPU configurations. We
present the detailed information about every single
machine in Tab.1. For instance, MII has Intel Core i7-
360QM processor (2.40 GHz), 6 MB cache, 16 GB main
memory, GeForce GT 650M graphics card, and 384 CUDA
cores. This machine also has CUDA 7.5 software and
NVDIA 353.90 graphics card driver.We obtained the
speed-up value that is equal to the execution time of CPU,
divided by the execution time of GPU [53], [54]. In all
experiments, we employed the Holdout [55] validation
method by taking 90% and 10% of the dataset as training
and test set respectively. Evaluation metrics are the key to
understanding how classification model performs when
applied to a test dataset. In other words, a metric evaluates
the quality of an engine by comparing the engine’s output
(i.e., predicted result) with the original (i.e., actual result)
label. Therefore, we report weighted average values of
well-known evaluation metrics such as F1-score, precision,
recall, and accuracy [56], [57].

4.2 Results

In this section, experimental results are presented. Our
main goal is to investigate the speed-up of our CUDA-
based k-NN implementation. For this purpose, we pre-
processed the TTF dataset and transformed it into
classification-ready structure. After the sentiment
classification, we eliminated the emoticons and Twitter
specific terms from the dataset. For this reason, we also
removed some messages from the dataset as they do not
have enough content. Thus, we obtained 4578 unique
features from the remaining 18760 messages in TTF
dataset. As seen from Tab. 2, this has enabled us to reduce
the feature space at the rate of 52%. After the pre-
processing, we investigated the speed-up in two different
phases. Firstly, we conducted experiments on CPU for
determining the optimum k value in terms of accuracy. As
shown in Tab. 3, we detected that the optimum k value is
15 which gives the best accuracy at the rate of 85%. Then,
we also used different threads per block sizes including
32×32×1, 64×64×1, 128×128×1, 256×256×1, 512×512×1,
and 1024×1024×1 to detect optimum thread value in each
block.

In this step, we conducted experiments by taking the
serial and parallel running times to calculate the speed-up
for each k value ranging from 1 to 15 again.We changed
the number blocks on the grid and the number of threads in
each block manually from within the program for the
parallel distance kernel function. One point to mention here
is that we set the number of blocks on the grid as equal to
the number of samples and features in the dataset. When
the number of samples exceeds the maximum number of
blocks supported by graphics card, we accepted the
maximum number of blocks size on the grid as maximum.

We show our results in Tab. 4 which indicates the
effect our parallel distance calculation kernel on speed-up
for the cases where number of threads and the number of
nearest neighbors (i.e., 𝑘𝑘 value) are different. The CT, GP,
and SU represent CPU time (in ms), GPU time (in ms), and
speed-up (CPU time/GPU time) respectively. According to
Tab. 4, the speed-up was changed in range from 67 to 81
times for the number of threads per block that was between
32×32×1 and 1024×1024×1. We achieved the best speed-
up till 81.48 times for the cases that the k and thread block
size as equal to 15 and 1024×1024×1 respectively.
Therefore, in our all subsequent experiments, we have
taken the optimum values of both k and thread block size

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

1224 Technical Gazette 26, 5(2019), 1218-1227

as equal to 15 and 1024×1024×1 respectively. Tab. 4
shows that as the k increases, the CPU time also increases.
In addition, the difference between the total CPU time and
the GPU time also tends to increase depending on the
increase in k value. Therefore, the classification process is
faster in the small values of k, but the resulting speed-up is
higher for large values of k. The reason for this is that other
parts of the k- NN classification take more time as k
increases. In addition to these findings, we investigated the
GPU running time and the speed-up depending on the
number of threads for optimum k value. We obtained the
results for this experiment as shown in Fig. 4. When we
consider Fig. 4, we observe that as the number of threads

increases, the speed-up can reach up to 81 times. In
addition, we investigated the effect of the number of
samples in dataset on speed-up. We also detected that there
is a right proportion between the number of samples and
speed-up as shown in Tab. 5. This shows the scalability of
our parallel distance calculation kernel.

Table 5 Obtained speed-up by MII depending on the number of samples in

t hree different subsets of t h e TTF dataset
GPU vs. CPU # of samples (n)

6000 12000 18000
Speed-up 52,8 72,8 81,4

Figure 4 Effect of the number of threads for the TTF dataset on the GPU execution time and the speed-up of the k-NN on MII

Figure 5 Comparison of CPU and GPU execution time on TTF dataset for k-NN classfication using four different machines listed in Tab.1

In the first stage, we performed all of these

experiments on a single machine (MII) to prevent the
difference in terms of hardware and software source and
parameters. Secondly, we performed the k-NN
classification both in serial and parallel on different
machines which have different CPU and GPU
configurations. We also investigated the effect of both
processor and CUDA configuration on speed-up. Based on
our results, we observed that while the classification
process approximately takes 5-12 minutes with the CPU,
this process takes 3-15 seconds (see Fig. 5) by using
CUDA GPUs. In summary, we obtained the highest speed-
up as 81,48 times in all of our experiments in which the
classification results both in serial and parallel as identical.

5 CONCLUSIONS

The high dimensionality of feature space and the

number of samples especially on large data sets are major
problems in Twitter sentiment analysis as it is considered
as a text classification task in general. This situation causes
disadvantages in terms of time and performance.
Moreover, it needs high calculation power when it uses a
lazy classifier like k-NN. Therefore, in this study, it has
been intended to speed-up Twitter sentiment analysis with

CUDA based parallel k-NN classifier. For this purpose, the
sentiment analysis techniques were applied on TTF
dataset. Firstly, the sentiment classification of tweets was
performed by using the LDA method and preprocessed
tweets were transformed into the classification-ready
structure. To achieve our goal, we performed different
experiments for varying number of samples, thread block
sizes, and k values to investigate the effect on results. In
Tab. 6, we summarize all of our experiments which are
composed of two phases. Based on all of our observations,
in this paper, we have the following conclusions in
summary:
• A large number of obtained features from the TTF

dataset produce high feature space. This clearly shows
that the feature space to be processed on large datasets
would be much higher. Therefore, there is need to
parallelize the sentiment analysis task especially when
selected classifier (e.g., k-NN) requires intense
calculations.

• For the k-NN algorithm, determining the optimum k
value, sorting samples by minimum distance, and
determining the category weights of the nearest
neighbors do not provide any remarkable gain in terms
of performance when they are performed in parallel
fashion. This proves that the distance calculation

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

Tehnički vjesnik 26, 5(2019), 1218-1227 1225

process is the most time consuming part of the k-NN
classifier.

• It is possible to achieve 81,48% speed-up by
employing CUDA in sentiment analysis even though
the TTF is a small dataset. This shows that the speed-
up will increase even more over larger datasets.

• The speed-up increases too when we increase the
number of tweets and use higher values of k as these
parameters cause to increase in search space when
detecting nearest neighbors. Thread block size and the
number of threads have also positive effect on speed-
up through increasing these parameters also means
having more workers to perform distance calculation.

• Machines that have i7 processor run serial code faster
and the best performance is provided by GeForce GTX
850M driver among NVIDIA graphics cards.
Achieved speed-up could be increased even further
when running the parallel CUDA code on a more
powerful machine (e.g., MI).

As a future work, we are planning to make the TTF

dataset larger and compare NVIDIA's CUDA technology
with Hadoop MapReduce paradigm in terms of the speed-
up.

Table 6 The summary of our experiments

Experiments Conducted on
CPU GPU

First phase
on single machine (Machine II)

Optimum k for higher accuracy Tab. 3 -
Optimum thread block size for higher speed-up Tab. 4 (CPU and GPU)
The effect of the number of samples on speed-up in three different subsets of TTF dataset Tab. 5 (CPU and GPU)
The effect of the number of threads time and the speed-up of the k-NN Fig. 4 (CPU and GPU)

Second phase
on four machines (see Tab. 1) Optimum thread block size for higher speed-up Fig. 5 (CPU and GPU)

Abbreviations and symbols

API − Application Programming Interface
ALU − Arithmetic Logic Unit
BOW − Bag of Words
CPU − Central Processing Unit
CT − CPU Time
CUDA − Compute Unified Device Architecture
DRAM − Dynamic Random Access Memory
GPU − Graphics Processing Units
GT − GPU Time
IDF − Inverse Document Frequency
k-DT − k-Dimensional Tree
k-NN − k-Nearest Neighbors
LDA − Latent Dirichlet Allocation
NLP − Natural Language Processing
SIMD − Single Instruction Multiple Data
SM − Stream Multiprocessor
SP − Stream Processor
SU − Speed-up
TF − Term Frequency
TTF − Turkish Twitter Feeds
VSM − Vector Space Model

6 REFERENCES

[1] Sommer, S., Schieber, A., Hilbert, A., & Heinrich, K. (2011).

Analyzing customer sentiments in microblogs–A topic-
model-based approach for Twitter datasets. Proceedings of
the Americas conference on information systems (AMCIS).

[2] Michelson, M. & Macskassy, S. A. (2010). Discovering
users' topics of interest on twitter: a first look. Proceedings
of the fourth workshop on Analytics for noisy unstructured
text data, ACM, 73-80.
https://doi.org/10.1145/1871840.1871852

[3] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., &
Passonneau, R. (2011). Sentiment analysis of twitter data.
Proceedings of the workshop on languages in social media.

[4] Karayiğit, H., Acı, Ç., & Akdağlı, A. A Review of Turkish
Sentiment Analysis and Opinion Mining. Balkan Journal of
Electrical and Computer Engineering, 6(2), 26-30.

 https://doi.org/10.17694/bajece.419547

[5] Yıldırım, E., Çetin, F. S., Eryiğit, G., & Temel, T. (2015).
The impact of NLP on Turkish sentiment analysis. Türkiye
Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi,
7(1), 43-51.

[6] Rosenthal, S., Farra, N., & Nakov, P. (2017). SemEval-2017
task 4: Sentiment analysis in Twitter. Proceedings of the 11th
International Workshop on Semantic Evaluation (SemEval-
2017), 502-518. https://doi.org/10.18653/v1/S17-2088

[7] Dehkharghani, R., Saygin, Y., Yanikoglu, B., & Oflazer, K.
(2016). SentiTurkNet: a Turkish polarity lexicon for
sentiment analysis. Language Resources and Evaluation,
50(3), 667-685. https://doi.org/10.1007/s10579-015-9307-6

[8] Saldanha, L. B. & Bobda, C. (2015). An embedded system
for handwritten digit recognition. Journal of Systems
Architecture, 61(10), 693-699.

 https://doi.org/10.1016/j.sysarc.2015.07.015
[9] Srivastava, A., Han, E. H., Kumar, V., & Singh, V. (1999).

Parallel formulations of decision-tree classification
algorithms. High Performance Data Mining, Springer,
Boston, MA, 237-261. https://doi.org/10.1007/0-306-47011-X_2

[10] Liang, S., Liu, Y., Wang, C., & Jian, L. (2010). Design and
evaluation of a parallel k-nearest neighbor algorithm on
CUDA-enabled GPU. Web Society (SWS), 2010 IEEE 2nd
Symposium on. https://doi.org/10.1109/SWS.2010.5607480

[11] Arefin, A. S., Riveros, C., Berretta, R., & Moscato, P.
(2012). Gpu-fs-knn: A software tool for fast and scalable knn
computation using gpus. PloS one, 7(8), e44000.

 https://doi.org/10.1371/journal.pone.0044000
[12] Garcia, V., Debreuve, E., & Barlaud, M. (2008). Fast k

nearest neighbor search using GPU. Computer Vision and
Pattern Recognition Workshops, 2008. CVPRW'08.

 https://doi.org/10.1109/CVPRW.2008.4563100
[13] Lopes, N. & Ribeiro, B. (2011). GPUMLib: An efficient

open-source GPU machine learning library. International
Journal of Computer Information Systems and Industrial
Management Applications, 3, 355-362.

[14] Bekkerman, R., Bilenko, M., & Langford, J. (Eds.). (2011).
Scaling up machine learning: Parallel and distributed
approaches. Cambridge University Press.

 https://doi.org/10.1145/2107736.2107740
[15] Upadhyaya, S. R. (2013). Parallel approaches to machine

learning—A comprehensive survey. Journal of Parallel and
Distributed Computing, 73(3), 284-292.

 https://doi.org/10.1016/j.jpdc.2012.11.001

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

1226 Technical Gazette 26, 5(2019), 1218-1227

[16] Steinkraus, D., Buck, I., & Simard, P. Y. (2005, August).
Using GPUs for machine learning algorithms. In Eighth
International Conference on Document Analysis and
Recognition (ICDAR'05), IEEE, 1115-1120.

 https://doi.org/10.1109/ICDAR.2005.251
[17] Nirmal, V. J. & Amalarethinam, D. G. (2015). Parallel

Implementation of Big Data Pre-Processing Algorithms for
Sentiment Analysis of Social Networking Data.
International journal of fuzzy mathematical archive, 6(2),
149-159.

[18] Liu, B., Blasch, E., Chen, Y., Shen, D., & Chen, G. (2013).
Scalable sentiment classification for big data analysis using
Naive Bayes Classifier. In Big Data, 2013 IEEE
International Conference on, IEEE, 99-104.

 https://doi.org/10.1109/BigData.2013.6691740
[19] Katkar, V. D. & Kulkarni, S. V. (2013). A novel parallel

implementation of Naive Bayesian classifier for Big Data.
Green Computing, Communication and Conservation of
Energy (ICGCE), 2013 International Conference on, IEEE,
847-852. https://doi.org/10.1109/ICGCE.2013.6823552

[20] He, Q., Zhuang, F., Li, J., & Shi, Z. (2010). Parallel
implementation of classification algorithms based on
MapReduce. Rough Set and Knowledge Technology, 655-
662. https://doi.org/10.1007/978-3-642-16248-0_89

[21] Smithrud, J. M., McElroy, P., & Andonie, R. (2015).
Massively Parallel kNN using CUDA on Spam-
Classification. MAICS.

[22] Yokoyama, T., Ishikawa, Y., & Suzuki, Y. (2012).
Processing all k-nearest neighbor queries in hadoop. Web-
Age Information Management, 346-351.

 https://doi.org/10.1007/978-3-642-32281-5_34
[23] Çoban, Ö., Özyer, B., & Özyer, G. T. (2015). Sentiment

analysis for Turkish Twitter feeds. Signal Processing and
Communications Applications Conference (SIU), 2015 23th.

 https://doi.org/10.1109/SIU.2015.7130362
[24] Pak, A. & Paroubek, P. (2010). Twitter as a corpus for

sentiment analysis and opinion mining. LREc, 10(2010),
1320-1326.

[25] Sevli, O. & Küçüksille, E. U. (2017). Advertising
Recommendation System Based On Dynamic Data Analysis
On Turkish Speaking Twitter Users. Tehnicki Vjesnik, 24(2),
571-578. https://doi.org/10.17559/TV-20151020205558

[26] Kaya, M., Fidan, G., & Toroslu, I. H. (2012). Sentiment
analysis of turkish political news. Proceedings of the The
2012 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technology, Volume
01 (pp. 174-180). IEEE Computer Society.

 https://doi.org/10.1109/WI-IAT.2012.115
[27] Çoban, Ö. & Özyer, G. T. (2016). Sentiment classification

for Turkish Twitter feeds using LDA. Signal Processing and
Communication Application Conference (SIU), 2016 24th.
(pp. 129-132). IEEE. https://doi.org/10.1109/SIU.2016.7495693

[28] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent
dirichlet allocation. Journal of machine Learning research,
3(Jan), 993-1022.

[29] Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., &
Van de Walle, R. (2013). Using topic models for twitter
hashtag recommendation. Proceedings of the 22nd

International Conference on World Wide Web.
 https://doi.org/10.1145/2487788.2488002
[30] Carlo, C. M. (2004). Markov chain monte carlo and gibbs

sampling. Lecture notes for EEB, 581.
[31] Joachims, T. (1996). A Probabilistic Analysis of the Rocchio

Algorithm with TFIDF for Text Categorization (No. CMU-
CS-96-118). Carnegie-mellon univ pittsburgh pa dept of
computer science.

[32] Lewis, D. D. (1992). An evaluation of phrasal and clustered
representations on a text categorization task. Proceedings of
the 15th annual international ACM SIGIR conference on

Research and development in information retrieval (pp. 37-
50). ACM. https://doi.org/10.1145/133160.133172

[33] Çoban, Ö., Özyer, B., & Özyer, G. T. (2015, December). A
comparison of similarity metrics for sentiment analysis on
Turkish twitter feeds. In Smart City/SocialCom/SustainCom
(SmartCity), 2015 IEEE International Conference on (pp.
333-338). IEEE. https://doi.org/10.1109/SmartCity.2015.93

[34] Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space
model for automatic indexing. Communications of the ACM,
18(11), 613-620. https://doi.org/10.1145/361219.361220

[35] Chen, K., Zhang, Z., Long, J., & Zhang H. (2016). Turning
from TF-IDF to TF-IGM for term weighting in text
classification, Expert Systems with Applications 66
(Supplement C), 245-260.

 https://doi.org/10.1016/j.eswa.2016.09.009
[36] Polettini, N. (2004). The vector space model in information

retrieval-term weighting problem. Entropy, 1-9.
[37] Lindholm, E., Nickolls, J., Oberman, S., & Montrym, J.

(2008). NVIDIA Tesla: A unified graphics and computing
architecture. IEEE micro, 28(2).

 https://doi.org/10.1109/MM.2008.31
[38] Garland, M., Le Grand, S., Nickolls, J., Anderson, J.,

Hardwick, J., Morton, S., …, & Volkov, V. (2008). Parallel
computing experiences with CUDA. IEEE micro, 28(4).

 https://doi.org/10.1109/MM.2008.57
[39] Kirk, D. B. & Wen-Mei, W. H. (2016). Programming

massively parallel processors: a hands-on approach.
Morgan kaufmann.

[40] Wei, W. & Huang, Y. (2011). Real-time flame rendering
with gpu and cuda. International Journal of Information
Technology and Computer Science (IJITCS), 3(1), 40.

 https://doi.org/10.5815/ijitcs.2011.01.06
[41] Nvidia, C. U. D. A. (2011). Nvidia cuda c programming

guide. Nvidia Corporation, 120(18), 8.
[42] Kankatala, S. (2015). Performance Analysis of kNN on large

datasets using CUDA & Pthreads: Comparing between CPU
& GPU.

[43] Zhang, H., Zhang, D.-f., & Bi, X.-a. (2012). Comparison and
Analysis of GPGPU and Parallel Computing on Multi-core
CPU. International Journal of Information and Education
Technology, 2(2), 185.

 https://doi.org/10.7763/IJIET.2012.V2.106
[44] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S.,

Kirk, D. B., & Hwu, W.-m. W. (2008). Optimization
principles and application performance evaluation of a
multithreaded GPU using CUDA. Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of
parallel programming.

 https://doi.org/10.1145/1345206.1345220
[45] Michailidis, P. D. & Margaritis, K. G. (2013). Accelerating

kernel density estimation on the GPU using the CUDA
framework. Applied Mathematical Sciences, 7(30), 1447-
1476. https://doi.org/10.12988/ams.2013.13133

[46] Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts
and techniques. Elsevier.

[47] Korde, V. & Mahender, C. N. (2012). Text classification and
classifiers: A survey. International Journal of Artificial
Intelligence & Applications, 3(2), 85.

 https://doi.org/10.5121/ijaia.2012.3208
[48] Yang, Y. & Liu, X. (1999). A re-examination of text

categorization methods. Proceedings of the 22nd annual
international ACM SIGIR conference on Research and
development in information retrieval (pp. 42-49). ACM.

 https://doi.org/10.1145/312624.312647
[49] Yağanoğlu, M., Bozkurt, F., & Günay, F. B. (2014). EEG

tabanlı beyin-bilgisayar arayüzü sistemlerinde öznitelik
çıkarma yöntemleri. Mühendislik Bilimleri ve Tasarım
Dergisi, 2(3), 313-318.

[50] Khan, A., Baharudin, B., Lee, L. H., & Khan, K. (2010). A
review of machine learning algorithms for text-documents

Ferhat BOZKURT et al.: High Performance Twitter Sentiment Analysis Using CUDA Based Distance Kernel on GPUs

Tehnički vjesnik 26, 5(2019), 1218-1227 1227

classification. Journal of advances in information
technology, 1(1), 4-20. https://doi.org/10.4304/jait.1.1.4-20

[51] Tan, S. (2006). An effective refinement strategy for KNN
text classifier. Expert Systems with Applications, 30(2), 290-
298. https://doi.org/10.1016/j.eswa.2005.07.019

[52] Liang, S., Liu, Y., Wang, C., & Jian, L. (2009). A CUDA-
based parallel implementation of K-nearest neighbor
algorithm. In Cyber-Enabled Distributed Computing and
Knowledge Discovery, 2009. CyberC'09. International
Conference on (pp. 291-296). IEEE.

 https://doi.org/10.1109/CYBERC.2009.5399145
[53] Agarwal, N., Goyal, A., Maheshwari, G., & Dugtal, A.

(2015). Parallel Implementation of Scheduling Algorithms
on GPU using CUDA. Architecture, 21, 22.

 https://doi.org/10.5120/ijca2015906339
[54] Bozkurt, F., Yaganoglu, M., & Günay, F. B. (2015).

Effective Gaussian Blurring Process on Graphics Processing
Unit with CUDA. International Journal of Machine
Learning and Computing, 5(1), 57.

 https://doi.org/10.7763/IJMLC.2015.V5.483
[55] Alpaydin, E. (2014). Introduction to machine learning. MIT

press.
[56] Bozkurt, F., Köse, C., & Sarı, A. (2018). An inverse

approach for automatic segmentation of carotid and vertebral
arteries in CTA. Expert Systems with Applications, 93, 358-
375. https://doi.org/10.1016/j.eswa.2017.10.041

[57] Sheela, L. J. (2016). A Review of Sentiment Analysis in
Twitter Data Using Hadoop. International Journal of
Database Theory and Application, 9(1), 77-86.

 https://doi.org/10.14257/ijdta.2016.9.1.07

Contact information:

Ferhat BOZKURT, PhD, Assistant Professor
(Corresponding author)
Department of Computer Engineering,
Faculty of Engineering, Ataturk University, Erzurum, 25240, Turkey
Phone: +904422316057
E-mail: fbozkurt@atauni.edu.tr

Önder ÇOBAN, PhD candidate
Department of Computer Engineering,
Faculty of Engineering, Adıyaman University, Adıyaman, 02040, Turkey
E-mail: ocoban@adiyaman.edu.tr

Faruk Baturalp GÜNAY, PhD candidate
Department of Computer Engineering,
Faculty of Engineering, Ataturk University, Erzurum, 25240, Turkey
E-mail: baturalp@atauni.edu.tr

Şeyma YÜCEL ALTAY, PhD candidate
Department of Computer Engineering,
Faculty of Engineering, Ataturk University Erzurum, 25240, Turkey
E-mail: seyma.yucel@atauni.edu.tr

mailto:fbozkurt@atauni.edu.tr
mailto:seyma.yucel@atauni.edu.tr

	1 INTRODUCTION
	2 RELATED WORKS
	3 MATERIALS AND METHODOLOGY
	3.1 Selected Dataset as Evaluation Material
	3.2 Methodology
	4 EXPERIMENTAL RESULTS
	5 CONCLUSIONS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

