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Abstract: Sentiment analysis techniques are widely used for extracting feelings of users in different domains such as social media content, surveys, and user reviews. This 
is mostly performed by using classical text classification techniques. One of the major challenges in this field is having a large and sparse feature space that stems from 
sparse representation of texts. The high dimensionality of the feature space creates a serious problem in terms of time and performance for sentiment analysis. This is 
particularly important when selected classifier requires intense calculations as in k-NN. To cope with this problem, we used sentiment analysis techniques for Turkish Twitter 
feeds using the NVIDIA’s CUDA technology. We employed our CUDA-based distance kernel implementation for k-NN which is a widely used lazy classifier in this field. We 
conducted our experiments on four machines with different computing capacities in terms of GPU and CPU configuration to analyze the impact on speed-up. 
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1 INTRODUCTION 

Social media is a strong communication way that 
impacts the events and many fields directly. Today, users 
can state their feelings, thoughts, ideas, and experiences 
about any matter in various social media environments 
such as Facebook, Google+, and Twitter [1]. On the other 
hand, these platforms are used by a growing number of 
users for news sharing and organizing events [2]. In this 
respect, social media offers a rich data source that could be 
leveraged in research areas such as economy, trade, 
politics, and opinion mining. Sentiment analysis is a 
monitoring method used to detect sentiment on social 
media content and it is considered as a classical text 
classification problem. Identifying ideas related to political 
matters of communities, moods of users, and negative and 
positive comments about any product are some of the 
widely used functionalities of this field [3]. Despite the 
popularity of sentiment analysis, high dimensionality of 
feature space makes it harder in terms of time and 
performance. In this study, we are particularly interested in 
applying sentiment analysis in Turkish which is known as 
an agglutinative language. Specific  characteristics of 
Turkish make it difficult to perform Natural Language 
Processing (NLP) tasks (e.g., Named Entity Recognition, 
Sentiment Analysis, Word Sense Disambiguation etc.) as 
it requires effective pre-processing and increases the 
feature space further [4], [5]. Structural processing in 
Turkish is more difficult than in English and performing 
sentiment analysis for Turkish is a challenging task due to 
its rich morphology and abundance of dialectal use in 
Twitter [6]. For instance, morphological suffixes may 
change the polarity of words and it is possible to produce 
many surface forms of a word from its root in Turkish [7].  

Therefore, sentiment analysis on Turkish texts is not 
an easy task with the help of single threaded executions of 
learning algorithm. On the other hand, most of the existing 
classification methods (e.g., neural network based 
classifier with a high number of neurons, decision tree 
classifier with highly irregular shape of tree and variable 
number of nodes at run time) are not suited for efficient 
parallel processing and this also makes harder to handle 
large datasets [8], [9]. Single threaded executions often 
lead to underutilized computational power causing high 
executing times. Applying some of the algorithms such as 

sample-based classifiers (e.g., k-Nearest Neighbors) to a 
complex language (e.g., Turkish) exacerbate these 
performance problems and makes it even harder to tackle. 

The execution time of k-Nearest Neighbors (k-NN) 
method increases dramatically when size of the input 
dataset and value of k is large. Nevertheless, k-NN 
algorithm can be easily executed in parallel mode [10]- 
[12], since the computation of similarity or distance 
between test and training samples is independent in this 
algorithm. Scalable solutions can also be achieved by 
leveraging the use of effective parallel computer 
architectures like GPUs (Graphics Processing Units). 
Nowadays, GPUs are broadly available and relatively 
cheap. Due to high parallel computation power, GPU 
technology is highly preferred for handling machine 
learning problems that require intensive computational 
tasks. There are many studies in the literature making use 
of GPUs for speeding up machine learning algorithms [13]-
[16]. Currently, CUDA (Compute Unified Device 
Architecture) is a commonly used programming language 
for developing applications for GPUs. 

In this study, we focus on speeding up the sentiment 
analysis task. In order to do so, we selected the k-NN as our 
classifier and parallelized its nearest neighbor search 
process which takes the longest time in it. Note that an 
approximate speed-up can also be achieved by using 
dimension reduction or feature selection techniques. 
However, these aspects of speed-up are out of the scope of 
this article. Calculation of the distances between vector 
pairs belonging to training and test samples can be 
performed independently which makes it possible to 
execute k-NN algorithm in parallel with CUDA GPUs 
[10]-[12]. Therefore, in this study, we implemented a 
CUDA-based distance kernel for k-NN classifier. Our main 
goal is to speed-up classification process in Turkish Twitter 
sentiment analysis which requires high computational 
power. For this purpose, we employed the k-NN method on 
four machines with different processors and graphics cards 
in serial and parallel fashion and monitored the impact of 
the parallel execution both in terms of time and speed-up 
on classification task. We also carried out serial and 
parallel tests on three different sub-sets of the dataset and 
observed the scalability of parallel kernel. Based on these 
observations, we determined the required optimum thread 
grid and block size to obtain maximum speed-up in parallel 
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architecture. The contributions of this paper are 
summarized as follows: (1) we performed sentiment 
classification using LDA (Latent Dirichlet Allocation) for 
Twitter feeds; (2) CUDA based distance kernel for k-NN 
algorithm was implemented to overcome performance 
problems which caused by the high dimensionality of 
feature space; (3) according to studies in literature, there is 
no previous work which is similar to ours in the context of 
Turkish Twitter sentiment analysis using CUDA.  

The rest of the paper is organized as follows. In Section 
2, we discuss previous works which employ parallel 
implementations of machine learning algorithms on large 
datasets using CUDA architecture and Hadoop 
MapReduce paradigm. In Section 3, we describe our 
methodology which has sub-headings such as Twitter Text 
Processing and CUDA Parallel Computing Architecture.  
We present our experimental results in Section 4 and 
finally, we conclude our study in Section 5. 

 
2 RELATED WORKS 

 
Although there are studies on speeding up Twitter 

sentiment analysis in the literature, our study is the first of 
its kind targeting this problem for Turkish language. Some 
of the existing studies teach how to use parallel machine 
learning implementations for this problem by employing 
NVIDIA’s CUDA technology and Hadoop MapReduce 
paradigm. In [17], authors implemented and compared 
parallel algorithms for pre-processing of Twitter feeds 
based on GPU and Hadoop MapReduce architectures. This 
paper presents the effectiveness and obstacles of using 
parallel algorithm methods for effective pre-processing 
(i.e., some tasks like string to vector conversion, 
elimination of trivial words and symbols, and frequency 
mapping etc.) of data. In another study [18], authors 
evaluated the scalability of Naive Bayes classifier on large-
scale datasets. They performed sentiment mining on large 
datasets by using a Naive Bayes classifier with the Hadoop 
framework. 

A novel parallel implementation of Naive Bayesian 
classifier is proposed by [19] to decrease the test time 
complexity while handling large datasets. In [20], authors 
introduced parallel implementations of several 
classification algorithms including k-NN, Naive Bayesian 
model, and decision tree based on MapReduce, which 
make these classifiers to be applicable to mine large 
datasets. A CUDA-based parallel implementation of k-NN 
algorithm for spam classification has been carried out by 
[21]. The performance of the k-NN search degrades 
dramatically for large datasets as the task is 
computationally intensive. In their study, the distances 
between the newly-processed email and each email in the 
training set are quickly calculated by using the GPU. In 
[10]-[12] authors worked on CUDA-based parallel 
implementation of k-NN algorithm to maximize the 
utilization of the GPU for scalable and fast k-NN 
computation. In [22], authors proposed a method for 
processing all k-NN queries in Hadoop. They decompose 
the given space into cells and execute a query using the 
MapReduce framework in a distributed and parallel 
manner.  

 

3 MATERIALS AND METHODOLOGY 
 
In this section, the dataset and methodology used in 

this paper are described under three sub-headings. First, we 
clarify text processing steps which we applied on Turkish 
Twitter Feeds (TTF) dataset. Then, we define the CUDA 
parallel computing architecture and our parallel distance 
calculation kernel respectively. 

 
3.1  Selected Dataset as Evaluation Material 
 

In this study, we used the TTF dataset created in [23]. 
This dataset contains randomly collected public Twitter 
feeds by sending emoticons as a query key [23], [24]. The 
TTF dataset has totally 20000 Twitter feeds (after pre-
processing) which are equally distributed between negative 
and positive categories [25]. Each tweet in this dataset is 
labeled by using distant supervision approach that 
considers whether related tweet contains an emoticon from 
the following positive and negative groups: 
• Positive group: “:-)”, “:)”, “=)”, “:D” 
• Negative group: “:-(”, “:(”, “=(”, “;(” 
 

To assign category, it is enough to include one of the 
emoticons in the positive or negative group for a tweet. 
Note that tweets that include emoticons from both positive 
and negative groups are eliminated in crawling process and 
not included in the dataset. 
 
3.2  Methodology 
3.2.1 Twitter Text Processing 
 

In the first stage of the methodology, the following 
steps are employed respectively for Twitter text 
processing. 

Pre-processing: In pre-processing phase, each of 
Twitter messages is cleaned by removing 
incomprehensible contents such as words, characters, 
decimal values, and punctuation marks after the lowercase 
conversion. We did not apply term frequency and term 
length filter in order to avoid low feature space. Then, to 
get significant short term expressions, we applied the 
following steps: 
• We removed the retweet, retweeted, and repetitive 

messages from the dataset, 
• We coded the Twitter specific terms (i.e., usernames, 

URL, and hashtag) with specific terms and preserved 
thought to be effective in sentiment classification 
phase. 

 
Note that we remove these terms after sentiment 

classification. 
Sentiment Classification: In sentiment analysis, the 

major challenge is to decide which category is most 
accurate for a tweet. Therefore, different techniques such 
as using emoticons or lexicon-based linear classifiers are 
employed in the literature for this purpose [23], [24], [26]. 
In this study, we use topic based sentiment classification 
method which is proposed in [27]. Using this method, a 
topic model is created that comprises 2 topics by using the 
LDA algorithm. The most observed 50 words in these 2 
topics were extracted and renamed each of them by hand 
as positive or negative according to the number of observed 
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positive or negative words. Then, for each tweet in dataset 
we obtained a likelihood value that indicates which topic is 
closer for related tweet. Finally, we assigned category for 
each tweet by depending on its closeness to positive or 
negative topic [27] as shown in Algorithm 1. We used 
MALLET package to implement the LDA [28] algorithm 
that its notation is depicted in Fig. 1. LDA is a topic 
modelling approach which assumes the dataset includes 𝑇𝑇 
hidden topics. Each document 𝑚𝑚 consisting of  𝑁𝑁𝑚𝑚 words 
has a multinomial 𝜑𝜑𝑚𝑚 distribution on these 𝑇𝑇 topics. A 𝑧𝑧𝑚𝑚,𝑛𝑛 
topic can be determined for each 𝑤𝑤𝑚𝑚,𝑛𝑛 word which is 
observed in document 𝑚𝑚 by this 𝜑𝜑𝑚𝑚  distribution. In this 
way, a 𝑤𝑤𝑚𝑚,𝑛𝑛 word for 𝑧𝑧𝑚𝑚,𝑛𝑛 topic can be sampled from 
obtained 𝜑𝜑𝑧𝑧𝑚𝑚,𝑛𝑛 document-topic distribution [29]. Here, the 
word-topic 𝜑𝜑𝑚𝑚 and document-topic 𝜑𝜑𝑧𝑧𝑚𝑚,𝑛𝑛 distributions 
have 𝛼𝛼 and 𝛽𝛽 dirichlet priority parameters. In this paper, 
Gibbs sampling algorithm is used for the purpose of 
determining these parameters [30]. 
 

 
Figure 1 Latent Dirichlet Allocation 

 
After the sentiment classification, we eliminated all of 

the Twitter specific terms to avoid biased results as these 
terms are most frequently observed terms in each category. 

 
Algorithm 1 Sentiment classification using LDA [27] 

procedure LABELTWEETS(Tweets) 
p = positive, n = negative 
topic = 2, iteration = 2000 
topicModel ← LDA(topic, iteration)  
for each topic t in topicModel do 

W = most observed terms in t 
nT = # of n terms in W 
pT = # of p terms in W 
if pT > nT then 

t.label = p 
else 

t.label = n 
end if 

end for 
for each tweet twt in Tweets do 

cTopic = topicModel.getCloserTopic(twt) 
if cTopic = p then 

twt.category = p 
else 

twt.category = n 
end if 

end for 
return Tweets 

end procedure 
 
Feature Extraction: In this step, we used Bag of 

Words (BOW) model to extract features from Twitter 
feeds. In this model, each document sample is usually 
represented by associating the word and its observed 
frequency [31]. The order of words in text content is also 
considered as to be not important [32].  After obtaining the 
BOW features, we applied removal of stopwords, 

stemming, and text normalization steps by using Zemberek 
and Lucene APIs as in [33].  

Representation and Term Weighting: We represented 
each tweet, contained in TTF dataset, as a feature vector by 
using VSM (Vector Space Model) [34]. In VSM, each 
feature is represented as its term frequency or weight value 
using numbers. Therefore, term weighting is an important 
step which assigns a weight to indicate importance of each 
related feature in sample vector. In this step, we used 
TF∗IDF (Term Frequency-Inverse Document Frequency) 
method which is most commonly used weighting scheme 
in text classification [35], [36]. The TF∗IDF applies 
weighting to a feature based on its inverse document 
frequency and term frequency factors. This means that if in 
more tweets a term appears, the less important that term 
will be, and the weighting will be less. The TF∗IDF can be 
formulated as Eq. (1): 

 
𝑊𝑊𝑇𝑇𝑇𝑇∗𝐼𝐼𝐼𝐼𝑇𝑇 =  𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 × log �𝑁𝑁

𝑛𝑛𝑗𝑗
�              (1) 

 
where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖,𝑁𝑁, and 𝑛𝑛𝑖𝑖 represent the raw term frequency of 
term 𝑗𝑗 in a tweet 𝑖𝑖, total number of tweets in the dataset, 
and the number of tweets that term 𝑖𝑖 appears respectively. 
 

 
 Figure 2  GPU allocates more transistors for data processing [41] 

 
3.2.2 GPU Parallel Computing Architecture and CUDA 

Programming Model 
 

CUDA is a parallel computing architecture which 
allows significant increases in computing performance by 
using GPU power of NVIDIA. As a result of the 
development of TESLA GPU architecture [37], NVIDIA 
has shown that GPUs can be programmed by considering 
like a processor. Previously, GPUs were mainly used for 
graphics applications. Research conducted on CUDA 
architecture revealed that the performance is higher when 
compared to CPU [38], [39]. The reason of this difference 
is that the GPU architecture has been developed for the 
operations requiring parallel calculations at high degrees 
and operation intensity such as graphics processing. 
Contrary to the operations requiring a flow control as in 
CPU, the GPU target parallel calculation applications such 
as data processing, image processing, 3D rendering, and 
signal processing consist of the repeating and 
arithmetically intense operations [40]. As shown in Fig. 2, 
GPU parallel calculation enables an architecture that has 
intense transistors devoted to data processing instead of 
cache memory and flow control mechanisms in CPU [41]. 
The excessive performance difference between multi-core 
GPUs and general-purpose multi-core CPUs arises from 
basic design difference between two processors. Compared 
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to CPU, GPU has more ALU (see Fig. 2) and includes less 
components (e.g., cache memory and flow control). This is 
an important factor in terms of obtaining high arithmetic 
operation power and capacity that are required for 
performing parallel arithmetical operations.  

GPU also allows to carry out same operations on 
different data elements in compliance with SIMD (Single 
Instruction Multiple Data) programming [39] and the small 
cache memory on GPU enables to control the bandwidth 
required by the application. Therefore, there is no need to 
turn back to DRAM (Dynamic Random Access Memory) 
for threads which are trying to have an access to data in the 

same memory area. Thus, results are obtained much faster 
for any application that has parallelizable functions by 
running on GPU [42], [43]. CUDA is quite useful and 
practical thanks to its easy thread management structure 
and being a software with shared memory that can be used 
on GPU. In addition, it enables the applications written in 
C programming language for CPU to be run by using multi-
thread on graphics processor as it is a C based parallel 
programming language [44]. In this aspect, CUDA 
programming with NVIDIA GPUs also provides adequate 
API for non-graphical applications. 

 

 
Figure 3 Flowchart of our CUDA-based parallel k-NN 

 
Table 1 GPU and CPU configurations of four machines used in experiments 

Device configuration Machine I (MI) Machine II (MII) Machine III (MIII) Machine IV (MIV) 

G
PU

 

NVIDIA graphics card GeForceGTX850M GeForceGT650M GeForce9600MGT 

D
oe

s n
ot

 h
av

e 
N

V
ID

IA
 

gr
ap

hi
cs

 c
ar

d 

Total amount of global memory 4096 MBytes 4096 MBytes 512 Mbytes 
# of CUDA cores 640 384 32 
Warp size 32 32 32 
Max. # of threads per multiprocessor 2048 2048 768 
Max. # of threads per block 1024 1024 512 
Max. size of each dimension of a 
thread block 1024×1024×64 1024×1024×64 512×512×64 

Max. size of each dimension of a grid 2147483647×65535×65535 2147483647×65535×65535 65535×65535×1 

CP
U

 Processor (Intel) i7-4700HQ i7-3630QM Core2Duo CPUP8400 i5-4260U 
Processor base frequency 2,40 GHz 2,40 GHz 2,26 GHz 1,40 GHz 
Cache 6 MB Smart Cache 6 MB Smart Cache 3 MB L2 3 MB Smart Cache 
RAM 16 GB 16 GB 2 GB 8 GB 
 
CUDA-Enabled GPU consists of SIMD SMs (Stream 

Multiprocessors) clusters and each of these clusters 
includes 8 stream processors (SPs). Accordingly, CPU acts 
as a multi-core co-processor CUDA device and SMs form 
the graphics card hardware [10], [39], [45]. Each of the SM 
has a fast-shared memory and shares it with all other 
processors. And each SP includes a 32 byte local register 
cluster. SMs make contact by global/device memory and 
shared memory is explicitly managed by programmers 
[10]. When we consider the CUDA technology as a 
software, it actually comprises parallel running thread 
collection. In this way, software can run much faster by 
creating parallelism for arithmetical operations requiring 
heavy calculations. Any program written in CUDA is 
actually a serial program named as a kernel. This kernel 

identifies the operations to be carried out for a specific 
dataset [10], [39]. GPU runs thousands of copies of this 
kernel and makes it as parallel. 

A system with shared memory on GPU is carried out 
by installing driver software that provides parallel 
programming support of the producing company. When 
the program is executed, CPU runs serial part of the code 
and GPU runs parallel CUDA code which requires intense 
calculations. GPU creates a separate kernel copy for each 
sample in dataset and these kernel copies are called as 
thread [41]. As shown in Fig. 3, thread groups are consisted 
by combination of thread structures. Thread groups create 
the blocks and the block groups are called as grid. Grids 
are comprised of thread blocks in computing organization 
and make the operations parallel by running copies of GPU 
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kernel. SM performs one or more thread blocks at the same 
time. The threads in common block communicate by 
common shared memory and each thread includes a 
program counter, register, and state bar belonging to itself. 
In this context, the basis of CUDA technology is based on 
running GPU by many thread series. All of the threads can 
run same code and each thread has an ID. As CUDA is an 
extension of C language, it is generally not necessary to 
change its architecture to direct the programs to CUDA or 
transform them to multi-thread form. CUDA includes both 
C language extensions and runtime time library that 
provides API for GPU control [39], [42]. Therefore, 
millions of threads can be created simultaneously making 
parallel processing possible in various areas such as image 
and data processing [42]. 
 
3.2.3 Parallel Implementation 

 
We selected the k-NN algorithm to implement in 

parallel fashion. Main reasons behind our selection are as 
follows:  
• k-NN is generally the slowest algorithm among 

machine learning algorithms, since it often 
outperforms other well-known classifiers (e.g., 
Decision Tree, Naïve Bayes etc.) in terms of 
computation complexity or accuracy especially in text 
categorization, 

• Compared to the other classification algorithms, this 
method is more suitable to run in parallel mode, as 
searching for nearest neighbors can be calculated 
independently and this task is the most time consuming 
part of the k-NN. 

 
Note that implementing other classifiers is also 

possible, but each algorithm has its own calculation 
strategy and not all of the algorithms have the same 
parallelizable potential. For instance, compared to the k-
NN, running Naïve Bayes algorithm in parallel fashion 
may not provide a huge performance difference when 
compared to its serial execution. Therefore, in this study, 
we selected the k-NN algorithm which is also known as 
lazy learner and requires intense calculation especially in 
text categorization. As distance calculation is the most 
time-consuming part in k-NN classification, we performed 
this calculation in parallel using our distance calculation 
kernel. 

k-Nearest Neighbor Classifier: k-NN is a supervised 
learning algorithm based on the distance (or similarity) 
between the samples [46]. In this method, the classification 
process is time consuming and it is hard to estimate the 
most suitable k value [47]. k-NN classifier finds the k 
closest neighbors in accordance with distance function and 
uses category weights of these neighbors to assign a 
category to test sample [48], [49]. The distance (e.g., 
Euclidean, Manhattan, and Minkowski etc.) or similarity 
function may be different [11], [46]. However, Euclidean 
distance is generally used to determine the closest 
neighbors in k-NN classifier [50]. Let 𝑑𝑑0, 𝑑𝑑𝑖𝑖 ∈ 𝑘𝑘 −
𝑁𝑁𝑁𝑁(𝑑𝑑0) and 𝐶𝐶 represent test sample, k closest neighbors 
and category set respectively. Then, assigning a category 
to a test sample using the category weights of its k closest 
neighbors is performed as in Eq. (2) and (3): 

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑑𝑑0,𝐶𝐶𝑖𝑖� = ∑ 𝑆𝑆𝑖𝑖𝑚𝑚(𝑑𝑑0,𝑑𝑑𝑖𝑖)(𝑑𝑑𝑖𝑖 ,𝐶𝐶𝑖𝑖)𝑑𝑑𝑗𝑗∈𝑘𝑘−𝑁𝑁𝑁𝑁(𝑑𝑑0)  (2) 
𝐶𝐶 = 𝑎𝑎𝑠𝑠𝑎𝑎𝑚𝑚𝑎𝑎𝑎𝑎𝐶𝐶𝑖𝑖(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑0,𝐶𝐶𝑖𝑖))      (3) 

 
In above equations, the (𝑑𝑑𝑖𝑖 ,𝐶𝐶𝑖𝑖) statement takes value of 1 
if the category of document 𝑑𝑑𝑖𝑖 is 𝐶𝐶𝑖𝑖, 0 otherwise. Finally, 
the classifier assigns the category which has higher weight 
to the test sample [51]. 
 

Table 2 The effect of pre-processing on TTF dataset 
Feature reduction # of features Percent of original (%) 

None 155603 100 
(-)Hashtag{#} 1512 0,97 
(-)URL{http://} 3463 2,22 
(-)Username{@} 12436 7,99 
(-)Emoticon{:),-),:(} 21944 14,1 
(-)FilteredTerm 39130 25,1 
(-)NormalizedTerm 2530 1,62 
(-)All 81015 52,0 

 
Distance Calculation Kernel: The most time-

consuming components of k-NN algorithm are distance 
calculation and sorting process [52]. Even though this 
expense may be decreased with some indexing methods 
(e.g., K-D tree), it is observed that this operation can be 
performed faster with less expense by making it parallel 
[38]. Therefore, we focused on speed-up the distance 
calculation component in this study. In this way, the 
consistency between different threads is raised to top level 
in distance calculation. Also, the access to global memory 
is minimized as it has a delay. As the distance calculation 
between training and test vector pairs is independent, it can 
be calculated in parallel. Therefore, the k-NN algorithm is 
perfectly suitable to be implemented in parallel with GPUs 
[12]. In this study, firstly, we detected the optimum k value 
for k-NN classifier. Secondly, we applied the following 
steps: 
• For each test sample, we calculated the distance 

between test and training samples in parallel mode by 
using GPUs (i.e., Distance Calculation Kernel), 

• We sorted all training samples based on their distance 
and selected the k nearest neighbours by minimum 
distance, 

• We assigned the category which has highest weight 
among the k nearest neighbours to the test sample. 

 
In our CUDA-based k-NN implementation (see Fig. 3) 

which includes a parallel distance calculation kernel, the 
training and test data are read at first. Then, optimum k 
value to be used in classification process is detected in the 
serial part. However, the Euclidean distance between test 
and training samples is calculated by different threads by 
transferring data from CPU to GPU in parallel distance 
calculation kernel [10], [11], [52]. These distances are 
obtained quickly and independently from each other in 
parallel part. In this process, a vector pair is obtained  from  
both  test  and  training  samples  which  are contained in 
global memory and placed on shared memory in each 
block. Then, the entire SPs in each block fetch data from 
common shared memory. Using this approach, the threads 
in the common blocks share reference data (i.e., a unique 
sub-set of training data) in the shared memory. There are 
many blocks and threads that perform this process as the 
training reference data is huge.
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Table 3 Evaluation of the optimum k value for highest accuracy on MII 
Evaluation metric # of nearest neighbours (k) 

1 3 5 7 9 11 13 15 
Precision 0,66 0,65 0,65 0,66 0,65 0,63 0,63 0,64 
Accuracy 0,77 0,81 0,81 0,82 0,83 0,83 0,84 0,85 
Recall 0,53 0,61 0,61 0,63 0,66 0,66 0,69 0,70 
Specifity 0,88 0,88 0,88 0,89 0,89 0,88 0,88 0,89 
F-measure 0,59 0,63 0,63 0,64 0,65 0,64 0,66 0,67 

 
Table 4 Obtained speed-up by MII on TTF dataset for the different k values and thread block sizes 

Thread 
block size 

# of nearest neighbours (k) 
1 3 5 7 9 11 13 15 

CT GP SU CT GP SU CT GP SU CT GP SU CT GT SU CT GT SU CT GT SU CT GT SU 
1024×1024×1 

30
06

89
 

3765 79,86 

30
08

32
 

3788 79,41 

30
09

66
 

3745 80,36 

30
21

81
 

3729 81,03 

30
29

64
 

3742 80,96 

30
45

77
 

3790 80,36 

30
98

60
 

3870 80,06 

31
45

24
 

3860 81,48 
512×512×1 3816 78,79 3800 79,16 3756 80,12 3778 79,98 3753 80,72 3785 80,46 3891 79,63 3870 81,27 
256×256×1 3837 78,36 3809 78,97 3878 77,60 3787 79,79 3772 80,31 3787 80,42 3952 78,40 3882 81,02 
128×128×1 3918 76,74 3830 78,54 4086 73,65 3810 79,31 3910 77,48 3801 80,13 4007 77,32 3912 80,39 
64×64×1 3967 75,79 3872 77,69 4266 70,54 3903 77,42 4001 75,72 3811 79,92 4050 76,50 3949 79,64 
32×32×1 4135 72,71 4023 74,77 4450 67,63 4295 70,35 4237 71,50 3915 77,79 4105 75,48 4055 77,66 

Consequently, the distance calculation kernel is being 
parallel in compliance with parallel logic. The distances of 
each test sample to training samples are calculated 
respectively in conclusion with running of distance 
calculation kernel in threads. After that, the results of each 
distance calculations are stored in a vector in order to sort 
by k value.  After the distances are calculated in parallel 
kernel, the vector including distance calculations is sent to 
CPU. Then, the samples are sorted by minimum distance 
and category weights of the k closest neighbours are 
obtained in CPU. Since the number of samples used in the 
voting phase is k, which is generally set to a small value in 
order to maintain accuracy and avoid over-fitting, the 
computation for this step is negligible. For this reason, we 
execute this step on the CPU. 

 
4 EXPERIMENTAL RESULTS 

 
In this section, the results for our CUDA- based 

parallel k-NN implementation are analyzed on TTF 
dataset. First, we describe the configuration and evaluation 
metrics that is employed and then, our results are 
presented. 

 
4.1 Configuration and Evaluation Metrics 

 
We conducted the experiments on four machines 

which have different CPU and GPU configurations. We 
present the detailed information about every single 
machine in Tab.1. For instance, MII has Intel Core i7-
360QM processor (2.40 GHz), 6 MB cache, 16 GB main 
memory, GeForce GT 650M graphics card, and 384 CUDA 
cores. This machine also has CUDA 7.5 software and 
NVDIA 353.90 graphics card driver.We obtained the 
speed-up value that is equal to the execution time of CPU, 
divided by the execution time of GPU [53], [54]. In all 
experiments, we employed the Holdout [55] validation 
method by taking 90% and 10% of the dataset as training 
and test set respectively. Evaluation metrics are the key to 
understanding how classification model performs when 
applied to a test dataset. In other words, a metric evaluates 
the quality of an engine by comparing the engine’s output 
(i.e., predicted result) with the original (i.e., actual result) 
label. Therefore, we report weighted average values of 
well-known evaluation metrics such as F1-score, precision, 
recall, and accuracy [56], [57]. 

 

4.2  Results 
 

In this section, experimental results are presented. Our 
main goal is to investigate the speed-up of our CUDA-
based k-NN implementation. For this purpose, we pre-
processed the TTF dataset and transformed it into 
classification-ready structure. After the sentiment 
classification, we eliminated the emoticons and Twitter 
specific terms from the dataset. For this reason, we also 
removed some messages from the dataset as they do not 
have enough content. Thus, we obtained 4578 unique 
features from the remaining 18760 messages in TTF 
dataset. As seen from Tab. 2, this has enabled us to reduce 
the feature space at the rate of 52%. After the pre-
processing, we investigated the speed-up in two different 
phases. Firstly, we conducted experiments on CPU for 
determining the optimum k value in terms of accuracy. As 
shown in Tab. 3, we detected that the optimum k value is 
15 which gives the best accuracy at the rate of 85%. Then, 
we also used different threads per block sizes including 
32×32×1, 64×64×1, 128×128×1, 256×256×1, 512×512×1, 
and 1024×1024×1 to detect optimum thread value in each 
block. 

In this step, we conducted experiments by taking the 
serial and parallel running times to calculate the speed-up 
for each k value ranging from 1 to 15 again.We changed 
the number blocks on the grid and the number of threads in 
each block manually from within the program for the 
parallel distance kernel function. One point to mention here 
is that we set the number of blocks on the grid as equal to 
the number of samples and features in the dataset. When 
the number of samples exceeds the maximum number of 
blocks supported by graphics card, we accepted the 
maximum number of blocks size on the grid as maximum.  

We show our results in Tab. 4 which indicates the 
effect our parallel distance calculation kernel on speed-up 
for the cases where number of threads and the number of 
nearest neighbors (i.e., 𝑘𝑘 value) are different. The CT, GP, 
and SU represent CPU time (in ms), GPU time (in ms), and 
speed-up (CPU time/GPU time) respectively. According to 
Tab. 4, the speed-up was changed in range from 67 to 81 
times for the number of threads per block that was between 
32×32×1 and 1024×1024×1. We achieved the best speed-
up till 81.48 times for the cases that the k and thread block 
size as equal to 15 and 1024×1024×1 respectively. 
Therefore, in our all subsequent experiments, we have 
taken the optimum values of both k and thread block size 
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as equal to 15 and 1024×1024×1 respectively. Tab. 4 
shows that as the k increases, the CPU time also increases. 
In addition, the difference between the total CPU time and 
the GPU time also tends to increase depending on the 
increase in k value. Therefore, the classification process is 
faster in the small values of k, but the resulting speed-up is 
higher for large values of k. The reason for this is that other 
parts of the k- NN classification take more time as k 
increases. In addition to these findings, we investigated the 
GPU running time and the speed-up depending on the 
number of threads for optimum k value. We obtained the 
results for this experiment as shown in Fig. 4. When we 
consider Fig. 4, we observe that as the number of threads 

increases, the speed-up can reach up to 81 times. In 
addition, we investigated the effect of the number of 
samples in dataset on speed-up. We also detected that there 
is a right proportion between the number of samples and 
speed-up as shown in Tab. 5. This shows the scalability of 
our parallel distance calculation kernel. 
 
Table 5 Obtained speed-up by MII depending on the number of samples in 

t hree different subsets of t h e  TTF dataset 
GPU vs. CPU # of samples (n) 

6000 12000 18000 
Speed-up 52,8 72,8 81,4 

 

 
Figure 4 Effect of the number of threads for the TTF dataset on the GPU execution time and the speed-up of the k-NN on MII 

 

 
Figure 5 Comparison of CPU and GPU execution time on TTF dataset for k-NN classfication using four different machines listed in Tab.1 

 
In the first stage, we performed all of these 

experiments on a single machine (MII) to prevent the 
difference in terms of hardware and software source and 
parameters. Secondly, we performed the k-NN 
classification both in serial and parallel on different 
machines which have different CPU and GPU 
configurations. We also investigated the effect of both 
processor and CUDA configuration on speed-up. Based on 
our results, we observed that while the classification 
process approximately takes 5-12 minutes with the CPU, 
this process takes 3-15 seconds (see Fig. 5) by using 
CUDA GPUs. In summary, we obtained the highest speed-
up as 81,48 times in all of our experiments in which the 
classification results both in serial and parallel as identical. 
 
5 CONCLUSIONS  

 
The high dimensionality of feature space and the 

number of samples especially on large data sets are major 
problems in Twitter sentiment analysis as it is considered 
as a text classification task in general. This situation causes 
disadvantages in terms of time and performance. 
Moreover, it needs high calculation power when it uses a 
lazy classifier like k-NN. Therefore, in this study, it has 
been intended to speed-up Twitter sentiment analysis with 

CUDA based parallel k-NN classifier. For this purpose, the 
sentiment analysis techniques were applied on TTF 
dataset. Firstly, the sentiment classification of tweets was 
performed by using the LDA method and preprocessed 
tweets were transformed into the classification-ready 
structure. To achieve our goal, we performed different 
experiments for varying number of samples, thread block 
sizes, and k values to investigate the effect on results. In 
Tab. 6, we summarize all of our experiments which are 
composed of two phases. Based on all of our observations, 
in this paper, we have the following conclusions in 
summary: 
• A large number of obtained features from the TTF 

dataset produce high feature space. This clearly shows 
that the feature space to be processed on large datasets 
would be much higher. Therefore, there is need to 
parallelize the sentiment analysis task especially when 
selected classifier (e.g., k-NN) requires intense 
calculations. 

• For the k-NN algorithm, determining the optimum k 
value, sorting samples by minimum distance, and 
determining the category weights of the nearest 
neighbors do not provide any remarkable gain in terms 
of performance when they are performed in parallel 
fashion. This proves that the distance calculation 
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process is the most time consuming part of the k-NN 
classifier.  

• It is possible to achieve 81,48% speed-up by 
employing CUDA in sentiment analysis even though 
the TTF is a small dataset. This shows that the speed-
up will increase even more over larger datasets.  

• The speed-up increases too when we increase the 
number of tweets and use higher values of k as these 
parameters cause to increase in search space when 
detecting nearest neighbors. Thread block size and the 
number of threads have also positive effect on speed-
up through increasing these parameters also means 
having more workers to perform distance calculation. 

• Machines that have i7 processor run serial code faster 
and the best performance is provided by GeForce GTX 
850M driver among NVIDIA graphics cards. 
Achieved speed-up could be increased even further 
when running the parallel CUDA code on a more 
powerful machine (e.g., MI).  
 
As a future work, we are planning to make the TTF 

dataset larger and compare NVIDIA's CUDA technology 
with Hadoop MapReduce paradigm in terms of the speed-
up.

 
Table 6 The summary of our experiments 

Experiments Conducted on 
CPU GPU 

First phase 
on single machine (Machine II) 

Optimum k for higher accuracy Tab. 3 - 
Optimum thread block size for higher speed-up Tab. 4 (CPU and GPU) 
The effect of the number of samples on speed-up in three different subsets of TTF dataset Tab. 5 (CPU and GPU) 
The effect of the number of threads time and the speed-up of the k-NN Fig. 4 (CPU and GPU) 

Second phase 
on four machines (see Tab. 1) Optimum thread block size for higher speed-up Fig. 5 (CPU and GPU) 

 
Abbreviations and symbols 
 

API − Application Programming Interface 
ALU − Arithmetic Logic Unit 
BOW − Bag of Words 
CPU − Central Processing Unit 
CT − CPU Time 
CUDA − Compute Unified Device Architecture 
DRAM − Dynamic Random Access Memory 
GPU − Graphics Processing Units 
GT − GPU Time 
IDF − Inverse Document Frequency 
k-DT − k-Dimensional Tree 
k-NN − k-Nearest Neighbors 
LDA − Latent Dirichlet Allocation 
NLP − Natural Language Processing 
SIMD − Single Instruction Multiple Data 
SM − Stream Multiprocessor 
SP − Stream Processor 
SU − Speed-up 
TF − Term Frequency 
TTF − Turkish Twitter Feeds 
VSM − Vector Space Model 
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