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Abstract: This paper presents a three-dimensional numerical model based on finite-discrete element method for simulating cracking and predicting failure in reinforced 
concrete (RC) structures. Discrete representation of concrete cracks is coupled with a non-linear reinforcement model where reinforcing bars interact with concrete and slip 
due to crack opening and steel plastic deformation. Hence, it enables a simulation of complex material behaviour of concrete and steel in cracked zones and its influence on 
global structural behaviour. Several numerical examples are used to study the sensitivity of the model to different numerical and physical parameters and its capabilities in 
the analysis of RC structures. 
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1 INTRODUCTION 
 

The structural members in RC structures are often 
exposed to tri-directional stress state, therefore an analysis 
of these structures demands three-dimensional (3D) 
numerical models, both in design and in assessing the state 
of the existing buildings. Due to the complexity of the 
material behaviour of concrete and steel in non-linear 
range, especially crack opening and closing mechanism in 
concrete, accompanied by yielding, pulling out and 
buckling of the reinforcement, 3D numerical modelling of 
these structures is challenging, both for static and for 
dynamic loads.  

The most commonly used computer framework, which 
takes into account the discontinuous nature of the concrete 
after cracking, is based on the finite element method (FEM) 
and smeared representation of the cracks [1, 2], usually 
combined with classical plasticity or damage constitutive 
models. The advantages of this continuum approach are 
primarily in simplicity, low computational cost and 
relatively good approximation of the global structural 
response; hence, it represents a reliable choice in the non-
linear static analysis up to failure where the cracking 
propagates gradually with the increasing of the load. On 
the other side, RC structures exposed to extreme loadings, 
such as earthquakes, impact and explosions, exhibit rapid 
damaging and progressive failure of structural elements. In 
this case, the discrete crack approach provides a more 
precise description of the discontinuities in the concrete, 
which is essential for the simulation of energy dissipation 
due to the cracking process. 

Several computational frameworks are available in the 
discrete modelling of the crack propagation. One is derived 
from the FEM, and the others are related to the discrete 
element method (DEM). Cohesive elements across element 
edges [3, 4] and adaptive refinement techniques [5] are 
examples of discrete crack modelling coupled with FEM. 
Complexity of these approaches motivated researchers to 
find other possibilities in the description of discontinuities, 
like ED-FEM [6, 7] or X-FEM [8, 9] methods. These 
approaches have been adapted in quasi-static analysis of 
RC structures [10-12] and in the dynamic fracturing 
problems [13-15]. Microplane models [16] where the 
stresses are monitored in different predefined directions, 

can be also used in simulation of the damage caused by 
cracking. 

Contrary to the FEM that starts from the idealisation 
of the structures as a continuum, the DEM is based on the 
modelling of the structure as discontinuum. DEM was 
initially developed in granular material problems, but later 
it was applied in the fracture simulation of rocks [17, 18] 
and concrete [19]. Discretisation of the structures is given 
in the form of particles, blocks or Delaunay/Voronoi 
tessellations, while the connections between the discrete 
elements were achieved with contact (joint, interface) 
elements [18], lattice elements [20-26] or rigid body 
springs [27, 28]. Discrete elements are assumed as rigid or 
deformable bodies. Their deformability can be simulated 
by adding strain deformation parameters or by discretising 
them into finite elements. Latter approach results with 
numerical models that combine the advantages of finite and 
discrete element approaches [29-31]. Recently, combined 
FDEM [32] was used in 2D modelling of the fracture and 
fragmentation process of quasi-brittle materials [33-35], 
but few models of FDEM were also developed for solving 
the 3D fracturing with possible applications in concrete, 
rocks and stone masonry [36-38]. Most recently, it was also 
recognised that FDEM offers useful numerical tools for 
solving fracture problems of RC structures. Our team 
applied the method in 2D analysis of the classical RC 
structures [39-42] reinforced by steel reinforcement. 
FDEM was also used in 2D modelling of concrete with 
glass fibre polymer bars [43]. Spherical DEM approach 
combined with FEM and embedded rebar reinforcement 
elements was applied in the damage analysis of RC 
structures [44]. 

The objective of this study is to present a 3D model for 
RC structures within the framework of combined FDEM 
[32]. The fundamental ideas established for 2D analysis of 
RC structures [39-42] by our team have been extended in 
order to simulate their 3D behaviour. The discrete 
representation of concrete cracks, as a main strength of the 
FDEM model, was coupled with the non-linear 
reinforcement model, where the reinforcing bars interact 
with concrete and slip due to crack opening and high plastic 
deformation of the steel. After the transition from the 
elastic zone to the discrete fracture, the contact detection 
and interaction algorithm is used to simulate the interaction 
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between fracture surfaces, represented through the normal 
compression and sliding friction. This very important 
mechanism enables simulation of opening and closing of 
the cracks during the cyclic loading of the structures.  

Although the paper presents the main features of 
FDEM in the modelling of 3D RC structures, special 
emphasis is given to the investigation of the influence of 
mesh refinement, penalty parameter and crack spacing on 
the accuracy of the solution and verification of the model 
in various cases of 3D RC structures. 

The paper is structured as follows. Section 2 briefly 
introduces a 3D concrete fracture model with embedded 
reinforcement in the framework of the FDEM. Formulation 
and algorithms, which are essential for coupling of 
reinforcement and concrete, are given through several 
phases, starting with the continuum modelling of 
uncracked RC structures, crack opening in the concrete and 
its influence on the behaviour of the reinforcement in 
discrete cracks. Sensitivity analysis of the model to various 
physical and numerical parameters together with 
applications in analysis of RC beam under cyclic load and 
monotonically increasing load are provided in section 3. 
 
2 THREE-DIMENSIONAL CONCRETE FRACTURE MODEL 

WITH EMBEDDED REINFORCEMENT 
 

Three-dimensional fracture model for RC structures, 
presented in this study, was derived as a coupled problem 
connecting two materials with quite different properties. In 
fact, when the RC structure is exposed to increasing load, 
due to the low tensile strength, the concrete passes through 
several different phases, starting with the continuum, 
microcracking and finally crack opening at the macro-
level. At the same time, the stress in the reinforcing bars 
placed in the cracking zones increases, initially in the linear 
range and later in the non-linear range, due to the 
significant deformation of the bars inside the opened cracks 
and pulling out of the bars from the surrounding concrete. 
The bars hold the separated parts of concrete together until 
the deformation in the steel achieves the critical value, 
leading to the breaking of the reinforcement.  

FDEM enables the simulation of aforementioned 
effects in the concrete by using finite elements and joint 
elements implemented within the finite elements [32]. 
Joint elements enable the cracking of the concrete, 
managing through the penalty method and contact 
detection and interaction algorithm, which interact with 
each other. There are two main regimes: (1) uncracked, 
where the penalty serves for maintaining compatibility 
between the elements, and (2) cracked, where the penalty 
is used for computing interaction forces between the 
separated elements. In both regimes, the contact algorithm 
is needed to detect either the neighbouring elements 
(uncracked regime) or crack the separated elements which 
interact with each other (cracked regime). The penalty 
method and the contact interaction algorithm allow the 
simulation of opening and closing of the cracks in the joint 
elements, which makes the method applicable in 
modelling, not only of the structure under the static 
loading, but of the cyclic loading and unloading as well.  

The presented model, derived for the 3D RC 
structures, uses discretisation by 4-node tetrahedron finite 
elements with embedded 6-node cohesive joint elements 

for the simulation of concrete behaviour (Fig. 1). 
Reinforcement is represented by the reinforcing bars 
consisting of 2-node line finite elements and 2-node line 
joint elements. The intersection between the axis of the 
reinforcing bar with the sides of the concrete tetrahedron 
finite elements defines the nodes of the reinforcing bar 
finite elements. The part of the reinforcing bar between the 
two reinforcing bar elements belongs to the reinforcing 
joint element (Fig. 1). As the joint elements of concrete 
allow the opening and the closing of the cracks, similarly, 
the reinforcing bar joint elements allow the plastic 
deformation and the breaking of the reinforcement within 
the cracks. Hence, in the case of the modelling of RC 
structures, FDEM combines the FEM formulation for 
representing the behaviour of the concrete before the 
fracture initiation and reinforcement with the DEM 
formulation aiming to model fracture process in the 
concrete and the reinforcement. These mechanisms occur 
in the finite and joint composite elements, both consisting 
of concrete and reinforcement elements. 
  

 
Figure 1 Discretisation of RC structure 

 
In terms of mathematical formulations and applied 

numerical algorithms, the 3D concrete fracture model 
intended for the analysis of RC structures contains the 
following features: 
•  Discretisation of the structure is performed by 3D 
finite and joint elements intended for the modelling of 
concrete behaviour and 1D finite and joint elements for the 
reinforcing bars. Concrete failure criteria generate discrete 
cracks in the concrete, represented with concrete joint 
elements, which lead to high plastic deformation and the 
breaking of the reinforcing steel. Material non-linearity of 
the concrete and reinforcement is considered in concrete 
and reinforcement joint elements. 
•  Material models consider both static and cyclic 
material behaviour. Their implementation in the finite-
discrete element framework, based on dynamic 
equilibrium equations, enables the simulation of the 
behaviour of RC structures for quasi-static and dynamic 
loading. 
•  Discretised equilibrium equations of motion are given 
in the form: 
 

nFuM =                                                                (1) 
 
where M refers to mass diagonal matrices, u  to the 
acceleration vector of the nodes, Fn to the vectors of nodal 
forces which include the contribution of reinforcement and 
concrete, contact interaction algorithm, damping 
introduced into the model and external loading. Therefore, 
the vector of nodal forces Fn is given in the form: 
 

n conc,FE conc,JE rc,FE

rc,JE int er damp ext

σ σ σ

σ

, , ,

,

= + + +

+ + + +

F F F F
F F F F

                     (2) 
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In Eq. (2) FE,conc,σF  and FE,rc,σF  are the internal 
nodal force vectors derived from the deformation of 
tetrahedron elements, which include the influence of the 
concrete and the reinforcement, whereas JE,conc,σF   and 

JE,rc,σF  are the internal nodal force vectors contributed by 
the deformation in the joint elements of concrete and 
reinforcement. erintF  is the force vector generated by the 
contact interaction algorithm which includes the normal 
compression and the sliding friction. dampF  is the nodal 
force vector generated by introducing the damping into the 
model or to model quasi-static phenomena by dynamic 
relaxation. Finally, extF  is the external nodal force 
contributed by structural loading, consisting of body forces 
and surface tractions. An explicit time integration scheme 
is used to solve the discretised equations of motion (1). 
 
2.1 Continuum Modelling of Uncracked RC Structures 
  

Concrete structure is discretised by 4-node tetrahedron 
finite elements in the area without reinforcement, whereas 
composite finite concrete-reinforcement elements are used 
for the discretisation when the reinforcing bars cross the 
tetrahedron concrete elements. Composite finite elements 
consist of a 4-node tetrahedron concrete element and a 2-
node reinforcing bar element (Fig. 2).  
 

 
Figure 2 Composite finite concrete-reinforcement element 

  
Strain in the reinforcing bar is obtained from the 

current and initial length of the reinforcing bar finite 
elements (Fig. 2) according to the expression: 
 

i

ic
se l

ll −
=ε                                                                 (3) 

 
By taking into account the Young’s modulus of 

elasticity of steel Es, the stress in the bar is obtained as: 
 

sesse E εσ =                                                                   (4) 
 
This yields the forces in the nodes of the reinforcing 

bar finite element (Fig. 3a) which are given by: 
 

ssesese Aff σ== 10                                 (5) 
 
where As  is the cross-sectional area of the reinforcing bar.  

Forces f0se and f1se acting in points P0 and P1 are 
distributed as equivalent nodal forces into the nodes of the 
corresponding concrete tetrahedron finite element, as 
shown in Fig. 3b. Strain in the tetrahedron concrete 
element is calculated from the global coordinates of each 
node in the initial configuration (xi, yi, zi) and the current 

configuration (xc, yc, zc). Displacements of the element 
result from the translation and the rotation of the solid body 
and its shape and volume deformations. 

 
Figure 3 (a) Forces in the nodes of reinforcing bar finite element; (b) Equivalent 

nodal forces in concrete tetrahedron element 
  

Deformation of the element is derived from the 
deformation gradient F: 
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Green-St. Venant strain tensor E



can be calculated as 
follows: 
 

1 ( )
2

T= −E FF I


                                                            (7) 

 
while Cauchy stress tensor T is obtained according to: 
 

1 1 2 v
E E ε µ

ν ν
= + +

+ −
T E I D



                                       (8) 

 
where E is the modulus of elasticity, ν is the Poisson's ratio, 
εν is the volume deformation expressed as: 
 

zzyyxx εεεεν ++=                                                        (9)     
 
µ is viscous damping coefficient and D is the rate of the 
deformation tensor [32]: 
 

1 ( )
2

T= +D L L                                                       (10)     

 
where L is the velocity gradient expressed as: 
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The nodal forces from the corresponding surface of 

tetrahedron finite element are obtained as: 
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where c
xn , c

yn  and c
zn define the components of the normal 

to the surface of the tetrahedron finite element. Final 
equivalent nodal forces are obtained as a sum of the forces 
expressed by Eq. (12) for each of the four surfaces of the 
tetrahedron and equivalent nodal forces resulting from the 
2-node reinforcing bar finite element. 
 
2.2 Discrete Crack Model of Concrete 
 

Fracture initiation and propagation of the cracks in the 
concrete is modelled by 6-node joint elements inserted 
between the adjacent 4-node tetrahedron elements. The 
normal and shear separation (δ, t) of the surfaces of 
adjacent tetrahedron concrete finite elements induces 
normal and shear bonding stresses. The normal and shear 
springs are used to model this phenomenon (Fig. 4b). The 
material model is shown in Fig. 4a, where Gf is energy 
release rate and defines the area under the softening part of 
stress-displacement curve. 
  

 
Figure 4 (a) Strain softening curve defined in terms of displacements; (b) 

Normal and shear spring model 
  

The penalty method [32] ensures compatibility before 
reaching the tensile strength. For the separation δ ≤ δt, the 
bonding stress is given by: 
 

t
tt
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where δt = 2hft/p is the normal separation which 
corresponds to the tensile strength ft, h is the size of the 
finite concrete element, and p is the penalty parameter. 

After reaching the tensile strength ft, the stress 
decreases with an increasing of the normal separation δ, 
whereas at δ = δc the bonding stress tends to zero. For the 
separation δt < δ < δc, the bonding stress is given by: 
 

tfz=σ                                                                          (14) 
 
where z is the scaling function representing the softening 
behaviour of the concrete. It is used according to Hillerborg 
[45] in order to approximate the experimental stress-
displacement curves for the concrete: 
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where a = 0,63, b = 1,8 and c = 6,0, while the damage 
parameter Dt is determined according to the expression: 
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 The faces of the two adjacent elements are held 
together by the shear stress. After reaching the shear 
strength fs, the stress decreases. For sliding ts<|t|<tc, the 
shear stress is represented by: 
 

sfz=τ                                                                          (17) 
 
where z is given by Eq. (15), but with damage parameter 
Ds, instead of Dt, expressed by:  
 

( )
,   if  

( )
1    if   

s
s c

c ss

c

t t
 t t t

t tD
, t t

− < < −= 
 >

                                     (18) 

 
If the normal and shear separations act simultaneously, 

the tension and shear damage parameter Dt and Ds in Eq. 
(15) are replaced by:  
 

22
st DD'D +=                                                              (19) 

 
2.3 Reinforcement Model in Discrete Cracks 
2.3.1 Reinforcement Strain-Slip Relation in the Crack 
 

Numerical model of the reinforcing bar joint element 
is based on the assumption that the separation of the 
adjacent bar finite elements induces the stress in the bar 
joint element (Fig. 5a). Considering that there is no 
separation of the nodes of the reinforcing bar joint elements 
before reaching the tensile strength, the model of the 
reinforcing bar in the joint element is divided into parts 
before and after reaching the tensile strength of concrete 
(Fig. 5b). Before reaching the concrete tensile strength, the 
reinforcing bar joint element ensures the continuity of 
displacements of the reinforcing bar and the concrete finite 
elements. 

 
                                  (a)                                                           (b) 

Figure 5 (a) Stress in the concrete and bar joint element; (b) Reinforcing bar 
joint element 

  
After reaching the tensile strength and the crack 

initiation in the concrete, the influence of reinforcing bar 
axial force on concrete between the adjacent cracks is 
implemented through the bonding between the 
reinforcement and the concrete. Therefore, the local stress 
along the bar and stress at the interface are different. That 
is why strains along the reinforcing bar are not uniformly 
distributed, and, inter alia, depend on the bar pull-out from 
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the interface of crack S (Fig. 6a). To model that, 
mechanical model for the deformed reinforcing bar at the 
RC interface developed by Soltani and Maekawa [46] was 
used as the basis for the numerical model of reinforcing bar 
joint element (Fig. 6b). The model assumes that the 
longitudinal cracks propagate along the bar causing bond 
deterioration between the bar and the concrete near the 
crack plane [46, 47]. 

Unbonding between the reinforcement and the concrete 
causes the local slip S of the bar from the crack interface. 
The non-dimensional slip s of the bar is obtained according 
to: 
 

32

20

/
c

fcfc
fK,K

D
Ss 







=





=                                      (20) 

 
where D is bar diameter and fc is compressive strength of 
concrete (MPa).  

Expressions used in presented model for slip-strain 
relation in pre-yield and post-yield steel region [39] are 
presented in Fig. 6., where εs presents the strain at the 
reinforcing bar in the crack, εy and εsh are the yield strain 
and strain at the onset of hardening of the bar respectively, 
while fu and fy are tensile strength and yield stress of steel 
(MPa). 

 

 
Figure 6(a) Definition of local slip; (b) Strain-slip relation under monotonic 

loading 
 After the yield of the bar occurs, the sum of the slip in 
the yield region spl and the slip in the elastic region se 
presents normalised steel slip s [42, 47]: 
 

epl sss +=  (21) 
  

 
Figure 7 Strain distribution along the bar after yielding 

  
Under the assumption that the distribution of strain in 

the yield zone is linear (Fig. 7), the normalised steel slip spl 
is expressed as: 
 

max
max

max

(1 )
( )s sh

pl y
sh

s s s
β ε ε βε

ε ε
+ + −

= −
+

                      (22) 

 
where εmax and smax are steel strain and non-dimensional 
slip instantly after the change from the loading to the 
unloading, β is the factor obtained from experiments and is 
approximately equal to 1,0. By substituting the equation 

(22) in (21), the strain in the reinforcing bar at the crack 
can be obtained from the known non-dimensional slip s. 
  
2.3.2 Influence of Shear Stress in Reinforcement to Yield  

Stress Reduction 
 

Although the reinforcing bar in the RC structures 
primarily adopts axial forces, their deformation within the 
cracks also induces shear forces due to the deflection and 
curvature of the bar near the face of the crack (Fig. 8).  

 

 
Figure 8 Deformation of reinforcing bar within discrete crack 

 
This phenomenon was investigated in the work of 

Qureshi and Maekawa [48]. Considering the curvature 
distribution within the curvature-influencing zone, the 
length of the curvature-influencing zone and the local slip 
of the reinforcing bar [39], the shear force in the 
reinforcing bar within the RC faces is given by:     
 

3
34 9091 s

s s s
c

, t
V E I

L
=                                                     (23) 

where Lc presents the length of the curvature-influencing 
zone while Es is the Young modulus and Is is the moment 
of inertia of the bar respectively. The shear stress in the 
reinforcing bar influences the reduction of the yield stress 
in the bar, which is computed according to the Von Mises 
yield criterion: 
 

2

1 3 s
y y

yf
τ

σ σ
 

′ = −   
 

                                                  (24) 

 
where σy’ is the reduced yield stress, τs = Vs/As is the shear 
stress of the reinforcing bar between the crack surfaces, and 
As is the cross-sectional area of the reinforcing bar. 
 
2.3.3 Effect of Adjacent Cracks to Steel Slip 
 

 Strain in reinforcement depends on the slip of the bar 
from the crack interface, as mentioned earlier. Developed 
formulations consider bond deterioration between the 
concrete and the reinforcement in an implicit way [46, 47]. 
In order to achieve realistic results, the unbonded length of 
the bar could not exceed the total bar length. This demand 
can be ensured by accounting the influence of the adjacent 
cracks through the reduction factor α depending on the 
distance lcr [46] (Fig. 9). The steel slip scr is expressed as: 
 

crs sα=                                                                         (25) 
 
where s is defined by expression (21), and presents the non-
dimensional slip. The reduction factor α is: 
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30 065
0 51

. lcr
D .eα

 − + = −                                                        (26) 
 

 
Figure 9 Effect of adjacent crack to steel slip 

  
In FDEM model, finite element edge defines the 

position of the crack. Therefore, in this model lcr is an input 
parameter and it is equal to h/2, where h is the average size 
of the concrete finite element. Thus, the unbonded length 
of the bar is limited by the distance lcr between the cracks, 
i.e. average size of the concrete finite element. 
 
2.3.4 Material Model of Steel 
 

The adopted steel material model for the monotonic 
and the cyclic loading is shown in Fig. 10. Steel bar in RC 
structures subjected to cyclic loading exhibits hysteresis 
behaviour enforced through the Kato’s stress-strain model 
[49]. Stress-strain relations are expressed for the cycles of 
unloading, negative loading, reloading-unloading and 
reloading (curves 1, 2, 3, 4) in the following form:  
 
(1) ( )

( 1)(2)
( ) 1

(3) ( )

( 1)(4)
( ) 1

s y s sh s

s y
B

s sh y
y

s pm s s pm

s y pm y
B

y s pm
y

f E

a af a
E a
f

E

a af f a
E a
f

σ ε ε

σ
ε ε ε

σ σ ε ε

σ σ
ε ε ε

= − −

 
 − = − −
 − − + + − 
 

= + −

 
 − = + + −
 − − + + − 
 

(27) 

where log10( )
6

s
B sh y

E
E ε ε= − − , ( )s s Ba E / E E= − , Es, fy 

and fu are modulus of elasticity, yield stress and tensile 
strength of the steel, εs and εsh are strain at the reinforcing 
bar in the crack and strain at the onset of hardening, while 
εy, εu are yielding and ultimate strain of steel and σpm is 
minimum value of σs. 
 

 
Figure 10 Stress-strain model of steel 

 

3 SENSITIVITY ANALYSIS 
 
 In this section, sensitivity analysis of the model to 
mesh size, crack spacing and penalty parameter has been 
carried out on the examples of concrete and RC structures. 
Considering that FDEM starts with the discontinuum 
representation of uncracked RC structures, maintaining 
compatibility between the tetrahedron finite elements is 
essential for the reliable modelling of the structures as a 
continuum. Therefore, the influence of the penalty 
parameter on the solution in the linear elastic range was 
analysed on several examples for both concrete and RC 
beams. As the cracks in FDEM model are predestined with 
the finite element mesh, the sensitivity analysis of the 
model to crack spacing and mesh refinement was also 
investigated. 
  
3.1 Sensitivity Analysis of the Model to Mesh Refinement  

and Penalty Parameter in Tension 
  

This example was selected to analyse the sensitivity of 
the model to mesh refinement and penalty parameter p. 
Concrete beam (Fig. 11) was exposed to monotonic 
increasing tension load represented by a constant velocity 
v = 1,25×10−4t m/s at the beam ends. Modulus of elasticity 
of concrete was equal to Ec = 30 GPa. 
  

 
Figure 11 Geometry and load of structure 

  
The analyses were first performed without and with 

joint elements using two different finite elements mesh 
refinement (mesh A, mesh B), as shown in Fig. 12. Mesh 
A comprised 240 finite elements, whereas mesh B 
comprised 1920 finite elements. In the analyses performed 
with joint elements, the penalty term was p = 20 Ec. 
  

 
              (a) 

 
          (b) 

Figure 12 Discretisation of structure: (a) mesh A, (a) mesh B 
  

The comparison of the analytical and numerical results 
is presented in Fig. 13. In the case when analyses were 
performed without the joint elements, the numerical results 
corresponded to the analytical solution. The introduction of 
joint elements led to the relative error of numerical results 
in comparison to the analytical solution. In both cases (with 
and without joint elements), the numerical model is not 
sensitive to mesh refinement. 

The sensitivity analyses of the model in the linear 
elastic stage to the penalty parameter p were performed for 
three values of the penalty parameter (p = 20Ec, p = 60Ec 
and p = 100Ec) with discretization presented in Fig. 12a. 
The comparison of analytical and numerical results 
obtained by the presented model is shown in Fig. 14. 
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Figure 13 Force-displacement relations - sensitivity to mesh refinement 
 

 

 

Figure 14 Force-displacement relations - sensitivity to penalty parameter 
  

The influence of the penalty parameter on the relative 
error is shown in Table 1. It is evident that the relative error 
decreases with the increasing of the penalty. The values of 
the penalty parameter higher than 100Ec provide a relative 
error below 3%. These results are very close to those 
obtained in the 2D case [40]. Of course, by increasing the 
penalty parameter the solutions are more accurate but 
require much smaller time steps to ensure numerical 
stability [32]. Hence, there is a need to make a reasonable 
choice with the aim of achieving the smallest possible error 
and the longest possible time step. 
 

Table 1 Relative error in dependence of penalty parameters) 
Penalty parameter Relative error (%) 

20Ec 10,7 
60Ec 3,9 
100Ec 2,5 

  
3.2 Sensitivity analysis of the model to mesh refinement 
and penalty parameter in bending 
  

Similarly to the previous case where the sensitivity 
analysis of the model was performed on the concrete beam 
dominantly exposed to tension load, in this example the 
influence of mesh refinement and penalty parameter to the 
solution error was analysed for the beam with dominant 
bending.  
 

 
Figure 15 Geometry of the structure 

  
The analysis was performed on a simply supported 

concrete beam (Fig. 15) subjected to gravitation load. The 
modulus of elasticity and density of concrete was equal to 
Ec = 30 GPa and ρ = 2500 kg/m3, respectively. Three 
meshes were used for discretisation of the beam (Fig. 16). 
Mesh A is characterised with finite elements equalling h = 
H/4, while meshes B and C are characterised with finite 

elements equalling h = H/6 and h = H/8, respectively, 
where H is the height of the cross-section. The beam 
oscillates due to its self-weight and subsequently, finds an 
equilibrium due to damping (Fig. 17). 

 

 
                                          (a)                                           (b) 

 
(c) 

Figure 16 Discretisation of structure:  
(a) mesh A (h = H/4), (b) mesh B (h = H/6), (c) mesh C (h = H/8) 

 

  
Figure 17 Midspan deflection response for beam with mesh C and damping 

coefficient µ = 7×106 N/m2/s 
 

Relative errors of the numerical results obtained with 
the proposed model are compared to the theoretical 
solution for Timoshenko’s beam [50] and shown in Tab. 2. 
The beam’s midspan deflection for the beam with shear 
factor k = 2/3 [50] is equal to 0,729 mm. It is observed that, 
as the number of finite elements increases, the numerical 
solution converges to the theoretical ones. 
  

Table 2 Relative error in dependence of mesh patterns 
Mesh type Deflection (mm) Relative error (%) 

Mesh A 0,648 11,11 
Mesh B 0,708 2,88 
Mesh C 0,723 0,82 

 
 The analyses show that the minimum eight finite 
elements at the height of the beam are required to obtain an 
acceptable numerical error for cases with dominant 
bending influence. This finite element mesh pattern is 
adopted as a basis for further analyses. 

The sensitivity analyses of the presented model to the 
penalty parameter for structures with dominant bending 
were performed for the penalty values p = 20Ec, p = 60Ec 
and p = 100Ec and finite element mesh C (Fig. 17c). 

The influence of the penalty parameter on the relative 
errors of the model with joint elements with regard to the 
solution for Timoshenko’s beam [50] is presented in Tab. 
3. 
 

Table 3 Relative error in dependence of penalty parameters 
Penalty parameter Relative error (%) 

20Ec 11,80 
60Ec 3,84 
100Ec 1,92 

 
The analysis shows that the displacement error can be 

controlled by determining penalty parameter p depending 
on the elasticity modulus Ec. The analysis also shows that 

0

5

10

15

20

25

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

f /
 M

N

∆l / mm

analytical
no joint el. - mesh A
no joint el. - mesh B
joint el. - mesh A
joint el. - mesh B

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5

f /
 M

N

∆l / mm

analytical
pen 100E
pen 60E
pen 20E

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

m
id

sp
an

 d
ef

le
ct

io
n 

/ m
m

time / s



Željana NIKOLIĆ et al.: Three-Dimensional Finite-Discrete Element Framework for the Fracturing of Reinforced Concrete Structures 

Tehnički vjesnik 26, 5(2019), 1314-1326                                                                                                                                                                                                       1321 

the relative error is below 3% when penalty parameter is p 
= 100Ec. By further increasing the penalty parameter, the 
error was decreased. 
  
3.3 Sensitivity of the reinforcing bar model to the Penalty  

Parameter for Tension 
  

The sensitivity of the reinforcing bar model in the 
linear elastic range to the penalty parameter p was analyzed 
on the RC beam shown in Fig. 18. 
  

 
(a) 

 
(b) 

Figure 18 RC beam: (a) Geometry of structure, (b) Discretisation of structure 
  
Material characteristics of concrete and steel are 

presented in Tab. 4, while the cross-section area of 
reinforcement was 0,0009 m2. The tension load was 
achieved by a constant velocity v = 1,25×10−4t m/s at the 
beam ends. 

 
Table 4 Material characteristics 

Concrete Steel 
Modulus of elasticity, 

Ec = 30500 MPa 
Modulus of elasticity, 

Es = 210000 MPa 
Tensile strength, ft = 3 MPa Yield stress, fy = 530 MPa 

Compressive strength, 
fc = 30 MPa Ultimate stress, fu = 650 MPa 

 Strain at the onset of hardening, 
εsh = 0,03 

 Ultimate strain, εu = 0,1 
 Strain at the fracture, εbr = 0,12 

 
Penalty parameters (p = 20Ec, p = 60Ec and p = 100Ec), 

previously selected in the sensitivity analyses in earlier 
examples, are implemented here as well. The comparison 
of analytical and numerical results obtained by the 
presented model is shown in Fig. 19. 

Obtained results presented in Tab. 5 reaffirm that the 
penalty above 100Ec produces a relative error below 3%. 

 

 
Figure 19 Force-displacement relations - sensitivity to penalty parameter 

 
Table 5 Relative error in dependence of penalty parameters 
Penalty parameter Relative error (%) 

20Ec 11,0 
60Ec 4,1 
100Ec 2,5 

3.4 Sensitivity Analysis of the Model to Mesh Refinement  
and Crack Spacing 

 
The law of interaction between the concrete and the 

reinforcement has changed, starting from the perfect bond 
in uncracked concrete structures to the slip of the 
reinforcing bar after the opening of the crack. The slip is a 
function of the reduction factor α (Eq. 26) and depends on 
the distance between the adjacent cracks lcr and the bar 
diameter D. As the faces of tetrahedron finite elements 
predetermine the cracks in the model, the RC beam under 
monotonic increasing tension load, with the same 
geometry and material characteristics as in example 3.3, is 
used to analyse the mesh and crack spacing sensitivity. The 
constant velocity v = 0,1 m/s at the ends of the RC beam 
(Fig. 18a) was applied as a load. Material characteristics of 
concrete and reinforcement are presented in Tab. 4. The 
cross-section area of the reinforcement was 0,0009 m2. 
Four FE meshes (Fig. 20), characterised by the element 
size h of 30 cm (A), 15 cm (B), 10 cm (C) and 7,5 cm (D), 
were used. 

 

 
                                      (a)                                                      (b) 

 

 
                (c)                                                       (d) 

Figure 20 Discretization of RC beam: (a) mesh A (h = 30 cm),  
(b) mesh B (h = 15 cm), (c) mesh C (h = 10 cm), (d) mesh D (h = 7,5 cm) 

 
The influence of the adjacent cracks is considered 

through the parameter α depending on the crack spacing lcr 
= h/2. The relationship between the average stress σ=F/A 
and the average strain ε=Δl/l is shown in Fig. 21. Fig. 22 
shows failure patterns for the analysed meshes. 
 

 
Figure 21 The average stress - strain relationship for different meshes 

 
The comparative analyses reveal that the used 

concrete-reinforcement bond model is not significantly 
mesh sensitive. Hence, the average stress - strain relation 
is independent of the distance between the cracks. This 
conclusion applies under condition that approximately 
linear relationship of α and lcr/D exists, as it is valid for 
lcr/D ≤ 10 (see Eq. (26) and Fig. 9). This requirement limits 
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the maximum finite element size hmax to 20D in order to 
avoid mesh size sensitivity. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 22 Failure patterns for RC beam: (a) mesh A (h = 30 cm), 
(b) mesh B (h = 15 cm), (c) mesh C (h = 10 cm), (d) mesh D (h = 7,5 cm) 

 
4 VALIDATON OF NUMERICAL MODEL 
4.1 RC Beam Subjected to Cyclic Load 
  

The ability of the model to simulate structural response 
under cyclic loading conditions was verified on the RC 
beam experimentally tested by Maekawa et al. [47]. 
Geometric characteristics of the beam and cyclic loading 
history are presented in Figs. 23 and 24, respectively, 
whereas the material characteristics are provided in Table 
6.  
  

 
Figure 23 Specimens for cyclic loading test 

  
The position of the cracks in the experiment was 

predestined by notches, placed at a distance of 30 cm. 
 

 
Figure 24 Cyclic loading history 

 
Table 6 Material characteristics 

Concrete Steel 
Modulus of elasticity, 

Ec = 29000 MPa 
Modulus of elasticity, 

Es = 190000 MPa 
Compressive strength, 

fc = 29 MPa Yield stress, fy= 350 MPa 

 Ultimate stress, fu= 540 MPa 

 Strain at the onset of hardening, 
εsh = 0,0165 

 Ultimate strain, εu = 0,1 
 Strain at the fracture, εbr = 0,019 

 
Two finite element meshes are used to simulate the 

beam’s behaviour (Fig. 25). In the coarse mesh, vertical 
faces of tetrahedrons are placed at the positions of the 

notches, therefore the only possible vertical cracks 
correspond to those experimentally obtained. In the fine 
mesh, the crack opening was ensured by reducing the 
tensile strength, at the position of the notches, in the 
concrete joint elements.  
 

 
(a) 

 
(b) 

Figure 25 Mesh of the beam: (a) coarse mesh, (b) fine mesh 
 

The crack patterns of the beam for meshes correspond 
to those obtained by experiments (see Fig. 26). 
 

 
(a) 

 
(b) 

Figure 26 Crack pattern of the beam: (a) coarse mesh, (b) fine mesh 
 

The relationship between the non-dimensional slip s 
and the strain ε in the reinforcing steel at the crack for both 
discretisations is shown in Fig. 27. 
 

 
Figure 27 Strain-slip relationship of steel 

 
Fig. 28 presents the comparison of steel force-average 

strain relationship obtained by the experiment and by the 
presented model for coarse and fine mesh. It is discernible 
that the numerical force-average strain relationship ε  in 
the steel follows the experimental curve rather accurately 
for both discretisations. This example was chosen to 
emphasize the ability of the model to simulate structural 
behaviour under cyclic loading.  
 

 
Figure 28 Force-average strain relationship of steel 

 
4.2 Simply Supported RC Beam Exposed to Monotonically  

Increasing Load 
 
A simply supported RC beam (Fig. 29) was selected to 

validate the model for monotonically increasing loading. 
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Characteristics of the concrete and steel are presented in 
Tab. 7. 
 

 
Figure 29 Simply supported RC beam 

 
Table 7 Material characteristics 

Concrete Steel 
Modulus of elasticity, 

Ec = 29730 MPa 
Modulus of elasticity, 

Es = 210000 MPa 
Poisson's ratio, ν = 0,2 Yield stress, fy = 420 MPa 

Tensile strength, ft = 3,15 MPa Cross-section area, As1 = 1,02 cm2 
Compressive strength, 

fc = 40 MPa Cross-section area, As2 = 4,52 cm2 

 
The discretisation of the structure was performed by 

6912 tetrahedron concrete finite elements and by 216 
reinforcing bar finite elements. The load was applied 
incrementally until the collapse. Fig. 31 shows the 
discretisation of the structure. 
 

 
Figure 30 Discretisation of structure  

 
The FDEM results were compared to those obtained by 

experiments [51] and by the computer 3D nonlinear FEM 
program PRECON3D [52, 53] for RC structures based on 
smeared crack approach. 

Fig. 31 presents the comparison of the mid-span load-
displacement curve until failure, where a very good 
agreement between the presented numerical model (FDEM 
3D) and results of experiment is obtained. The load-
displacement curve shows that the largest deviation of 
results obtained by FDEM 3D in comparison with the 
experiment is 10,4%, whereas the failure load obtained by 
the presented model is 1,07% lower than the experimental 
result.  
 

 
Figure 31 Load-displacement curve for the mid-span of the beam 

 
Both numerical models, FDEM 3D and PRECON3D, 

exhibit a very good match of failure load with the 
experiments, whereas the FDEM3D model gives a 
significantly lower error for the mid-span beam 
displacement at the failure compared to the solution 
obtained by PRECON3D. In fact, the softening of the 

concrete in joint elements coupled with the deformability 
of joint elements of the concrete and the reinforcement, 
together with the appropriate modelling of the slip of 
reinforcing bars, provides a realistic description of the 
structural deformability leading to the solution of the 
displacement which is very close to the experimental ones. 

Fig. 32 shows the changes of the tensile stress in the 
reinforcement in the mid-span of the beam.   
 

 
Figure 32 Stress in reinforcement in the mid-span of the beam (in reinforcing 

bar joint element at the bottom side of the beam) 
 

The increase of the load caused the reaching of the 
tensile strength in the concrete joint element and the crack 
openings accompanied by the significant increases of stress 
in the reinforcement. The steel yielding stress was achieved 
for the load f = 56 kN and it increased up to the failure. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 33 Failure patterns in beam for forces: 
(a) f = 63,55 kN; (b) f = 63,69 kN; (c) f = 63,83 kN; (d) f = 64,30 kN 

 
The potential of the presented model is not only 

exhibited in the precise description of the load-
displacement curve, failure load and displacement, but also 
in the modelling of the failure patterns. The cracking starts 
at the bottom of the beam and propagates to the top causing 
the transfer of the stress in the cracking zones from the 
concrete to the reinforcement. Fig. 33 shows the 
development of the cracks in the concrete just before the 
final collapse. The collapse of the beam occurred due to the 
yielding of the reinforcement, which enabled notable 
cracking and separation of the concrete. The failure pattern 
of this beam is typical for four-point bending of RC beam 
with inadequate flexural capacity, i.e. insufficient amount 
of reinforcement in the tensile zone leads to the failure of 
the beam over the reinforcement. Due to the constant value 
of the bending moment and zero value of shear forces 
between two loading points, the whole area between these 
points has constant normal stress, while the shear stress 
does not exist. Therefore, vertical flexural cracks in the 
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whole area between two external forces occur, firstly in the 
bottom, and with the load increasing, they elongated to the 
top of the beam. Left and right of the applied external 
forces, at the locations of the beams where both the 
bending moment and the shear stress are high in 
magnitude, flexural shear cracks are formed as a result of 
exceeding the diagonal tensile stress due to the 
combination of significant normal and shear stress. 
 
4 CONCLUSIONS 
 

A complete 3D FDEM formulation for the fracturing 
of RC structures has been proposed, formulated and 
implemented in the open-source FDEM software. The 
discrete representation of concrete cracks, as a main 
strength of the FDEM model, was coupled with the non-
linear reinforcement model, where the reinforcing bars 
interact with the concrete and slip due to the crack opening 
and high plastic deformation of the steel. Concrete 
fracturing, reinforcement nonlinearity up to the breaking of 
the bar, and the slip of the bar from the crack faces were 
modelled in joint elements of concrete and reinforcing bars 
by using the approximation of the experimental curves for 
the concrete and the reinforcement in the interface of crack.  

The solution of the presented model is provided in a 
dynamic framework by using an explicit integration 
scheme. Therefore, the model enables the simulation of the 
behaviour of RC structures, both for the static and the 
dynamic load.  

As the cracks in the FDEM model are predetermined 
with the finite element mesh, special emphasis in the paper 
is given to the sensitivity analysis of the model to different 
mesh sizes, penalty parameters and crack spacing. The 
analyses reveal that the model is not considerably mesh 
sensitive if the ratio between the distance of cracks lcr and 
the diameter of bar D meets the requirement lcr/D ≤ 10. 
This requirement limits the maximum tetrahedron finite 
element size hmax to 20D in order to avoid the mesh size 
sensitivity. 

The performed analyses demonstrated that the 
presented model has a potential to capture complex 
behaviour of RC structures, both in predicting the load-
displacement path and to estimate the failure pattern. 
However, additional validations are required to test the 
model for various load conditions. In fact, this paper was 
primarily focussed on the validation of the 3D model for 
monotonic increasing load and cyclic load, however, 
considering the original intention of FDEM to capture 
dynamic structural response and the fact that the cyclic 
loading-unloading material models were already built in 
the code, the testing of the presented model under dynamic 
load is one of the following aims. 
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