Analysis of the Drive Shaft Fracture of the Conveyor Belt for Transport of Coal

Mile SAVKOVIĆ, Milan DEDIĆ, Goran PAVLOVIĆ, Miodrag ARSIĆ, Zoran STAMENIĆ

Abstract: The conveyor belt for slag and coal transport in the open mine pit "Kolubara" - Serbia is driven by means of two drive drums, attached on separate shafts. Each shaft is driven by two electric motors on both sides. During exploitation, the conveyor belt drive shafts are subjected to torques and transverse forces due to belt tension. The gearboxes and the bearing units on both sides of the drive drum support each shaft. A fracture of one of the drive shafts of the conveyor belt occurred at its connection point with the gearbox. The first part of the paper defines the loads relevant for shaft calculation, based on measurements in different phases of operation and the manufacturer's data. It is followed by the FEM analysis and fatigue analysis, for the most unfavourable load case. It has been established that the critical stress value has occurred near the connection point between the shaft and the gearbox, in the fracture zone. The second part of the paper presents chemical composition and mechanical properties of material, as well as metallographic examination of fracture surface. The experimental test procedure shows that the fracture has occurred not because of an error in the material but as a consequence of the inadequate heat treatment. Superposition of two negative influences: material fatigue and inadequate heat treatment, expressed in the cross section at the point of fracture is the main case of the conveyor belt shaft fracture.

Keywords: conveyor belt; drive shaft of the conveyor belt; experimental testing; fracture analysis

1 INTRODUCTION

Transport of excavated material and coal mining in open pit mines represents the most important and most complex process in the technology of surface mining. The length of this transport varies depending on the distance between the pit and the place where material is deposited. In the open pit mine "Kolubara", the length of transport is between 5 km and 20 km. The capacity of machines performing excavation and depositing, the productivity of excavation and costs of production of ore body depend, to the largest extent, on the organization of this transport.

The conveyor belt TS305 (Fig. 1) is used for transport and depositing of slag and coal, and represents one of the most important elements in the chain of transporting excavated material. This conveyor belt is installed as the first in a line, to transfer material from the bucket wheel excavator to the mobile conveyor belt. Its theoretical capacity is 15 t/h, length is 1500 m, and working width is 1500 mm (Fig. 2).

The drive of this conveyor belt is accomplished by means of two drive drums. Each drive drum is driven by two electric motors, each with the power of 315 kW, through clutches and gearboxes (Fig. 3). The drive is accomplished in such a manner that there is simultaneous starting of both drive drums with gradual start-up in four phases, so that the maximum torque on the shafts of the drive drums is achieved in 30 s from the moment of starting. Such drive is characteristic for conveyor belts with large capacities and lengths of transport [1-4]. The largest diameter of drive drum shaft is 170 mm, located at the support, i.e. 380 mm at the point of connection with the drive drum (Fig. 4). The shaft length is 4800 mm, its mass 2794 kg, and rotation frequency 61.25 min⁻¹. The shaft is by one of its ends inserted into the gearbox and connected with it through stiffening rings, by means of which it receives its drive.
2 CAUSE OF DRIVE SHAFT FRACTURE

Investigation of causes of damage of the drive drum shaft of the conveyor belt TS305 was performed in two phases:

- stress state analysis, and
- testing of material, including fracture surface.

2.1 Calculation of Stresses

Loading of the drive drum shaft of the conveyor belt TS305 depends on its service conditions. The largest loads of the conveyor belt shaft appear while starting the loaded conveyor belt when the bucket wheel excavator is near the return point (position I-I, Fig. 2). In that case, there is the largest quantity of material that is being transported on the conveyor belt. A more favourable case of conveyor belt operation is in the usual mode of operation, which starts approximately 30 s after starting the drive, while the bucket wheel excavator is near the conveyor belt drive (position II-II, Fig. 2). In this mode loads are up to 2.5 times smaller. During exploitations in pits, the conveyor belt is moved following the position of the bucket wheel excavator and spreader, so that it may enter the zone with terrain inclination which additionally makes its operation difficult. Torque loads recordings are presented in Fig. 6 for different service conditions. Additional loads are considered in [5, 6], but not here, since it was assumed that shaft was made in accordance with its design. Load changes are determined more precise by means of electric current measurements during operation, which is a common method in practice, [7].

The stress state analysis of drive shaft was performed by using the finite element method (FEM). In accordance with its design, the shaft support was accomplished through bearings at points C and D (Fig. 7). The shaft is also supported at points A and B, i.e. through stiffening rings A and B, but it also receives its drive in the form of torque. At the support C, the shaft transmits the torque through the stiffening rings to the drum (Fig. 4 and Fig. 7).

Figure 4 Location of drive drum shaft fracture

Figure 5 Fracture surface of drive drum shaft of the conveyor belt TS305

Figure 6 Torque loading of drive drum shaft: (a) starting full conveyor belt - excavator and spreader near the return point, measurement time 30 s; (b) starting the full conveyor belt - excavator and the spreader near the return point, measurement time 60 s; (c) loading of shaft in the nominal (stationary) mode of operation - excavator and the spreader near the return point; (d) comparative presentation of two measurements of starting the conveyor belt – the excavator and the spreader near the conveyor belt drive
The FEM 3D model of the drive drum shaft of the conveyor belt BCS was formed by assembling its parts (Fig. 8). The 10-node tetrahedral elements [8] were used to form the FEM model with 49031 nodes and 27850 elements. There are four modes of operation of the conveyor belt characteristic for the calculation [8-9]: conveyor no-load, light-load, average load and maximal load, all of them both for start-up and service condition.

In accordance with [9], the analysis of the drive drum shaft was performed for two load cases [10]:
- loading of shaft in the nominal (stationary) mode of operation – the excavator and the spreader between the drive station and the return point: \(T_{1z,\text{max}} = 28 \text{kNm} \) and \(H_{1\text{max}} = 250 \text{kN} \)- load case I.
- start-up of the full conveyor belt-excavator and the spreader near the return point: \(T_{2z,\text{max}} = 64.1 \text{kNm} \) and \(H_{2\text{max}} = 250 \text{kN} \)- load case II.

Uniaxial stress fields for load cases I and II, are shown in Figs. 9 and 10, respectively, obtained according to the Huber-Hencky-von Mises hypothesis [8, 11-12].

2.1.1 Fatigue Analysis

Service stresses obtained by the FEM are presented in Tab. 1. According to the technical documentation of manufacturers, material of shaft is 42CrMo 4 (DIN EN 10083). Fatigue analysis at the point of fracture is performed by using the Goodman endurance diagram. The minimum recommended value of amplitude stress is \(\sigma_{\text{f}} = 330 \text{ MPa} \); [13-15]. For real exploitation conditions, in compliance with the recommendations [14-21], the corrected minimum values of amplitude stress (\(\sigma_{\text{f,corr}} = 125 \text{ MPa} \)) were adopted, while the minimum tensile strength was \(\sigma_{\text{m,corr}} = 830 \text{ MPa} \), Tab. 2. These values are marked with points B and C (Fig. 11), defining the modified boundary of the Goodman diagram.
The strip-like microstructure is seen in the longitudinal section of the shaft, being the undesired consequence of plastic deformation during forging of the shaft (Fig. 13).

It is obvious that the normalizing heat treatment of the shaft did not eliminate the strip-like structure, i.e. the heat treatment procedure was insufficient, reducing significantly material resistance to variable loads and creating favourable conditions for fatigue fractures [26].
2.5 Discussion of the Testing Results

Chemical composition and mechanical properties of the samples taken at the point of drive shaft fracture are in accordance with the quality of steel 42CrMo4 (DIN EN 10083). The appearance of the fracture surface (Fig. 5) indicates fatigue fracture with characteristic marks of tearing [27, 28], although initiation spot is not clearly seen (Zone 3 - Fig. 12). The most probable reason that fatigue fracture initiation is not clearly seen is the fact that the initial crack is consequence of unfavourable material microstructure. Anyhow, there was no initial crack in material itself.

3 CONCLUSIONS

Taking into account presented results, the following conclusions can be made:

- Fracture of the drive shaft of conveyor belt occurred due to superposition of three effects: fatigue loading, stress concentration, and inadequate heat treatment.
- Appearance of fracture surface indicates that the normalizing heat treatment produced unfavourable ferritic-pearlitic microstructure, with strip-like bands, contributing significantly to the failure.

Acknowledgements

A part of this work is done in the scope of Project TR35038, financed by Ministry of Education, Science and Technological Development of Serbia

4 REFERENCES

Contact information:

Mile SAVKOVIĆ (Corresponding author)
University of Kragujevac,
Faculty of Mechanical Engineering Kraljevo,
Dostijeva 19, 36000 Kraljevo, Serbia
E-mail: savkovic.m@mfkv.kg.ac.rs

Milan DEDIĆ
University of Kragujevac,
Faculty of Mechanical Engineering Kraljevo,
Dostijeva 19, 36000 Kraljevo, Serbia
E-mail: dedic.mi@mfkv.kg.ac.rs

Goran PAVLOVIĆ
R&D Center Alfatec Ltd
Bul. Nikola Tesla 63/5, 18000 Niš, Serbia

Miodrag ARSIĆ
Institute for Materials Testing IMS, Belgrade
Bulevar vojvode Miloša 43, 11000 Belgrade, Serbia
E-mail: miodrag.arsic@institutims.rs

Zoran STAMENIĆ
University of Belgrade,
Faculty of Mechanical Engineering,
Kraljice Marije 16, 11120 Belgrade 35, Serbia
E-mail: zstamenic@mas.bg.ac.rs