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ABSTRACT 

To improve biomass gasification efficiency through process control, a lot of attention had 

been given to development of models that can predict process parameters in real time and 

changing operating conditions. The paper analyses the potential of a nonlinear 

autoregressive exogenous model to predict syngas temperature and composition during 

plant operation with variable operating conditions. The model has been designed and 

trained based on measurement data containing fuel and air flow rates, from a 75 kWth 

fixed bed gasification plant at Technical University Dresden. Process performance 

changes were observed between two sets of measurements conducted in 2006 and 2013. 

The effect of process performance changes on the syngas temperature was predicted with 

prediction error under 10% without changing the model structure. It was concluded that 

the model could be used for short term predictions (up to 5 minutes) of syngas 

temperature and composition as it strongly depends on current process measurements for 

future predictions. For long term predictions other types of dynamic neural networks are 

more applicable. 

KEYWORDS 

Biomass gasification, Fixed bed reactor, Gasification modelling, Neural networks,  
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INTRODUCTION 

Biomass gasification is a promising technology for efficient, clean and diverse 

utilisation of biomass and biomass residues through production of syngas. The process of 

biomass gasification is a high-temperature partial oxidation process in which a solid 

carbon based feedstock is converted using gasification agents into what is called ‘raw 

syngas’ ‒ a gaseous mixture (hydrogen, carbon monoxide, carbon dioxide, methane, light
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hydrocarbons), tar, char, ash and minor contaminants [1]. Due to the decentralized 

utilization of biomass, small and middle-scale biomass gasification plants for separate or 

combined heat and power generation [2] and trigeneration [3] have potential to become 

rational, efficient and economically viable way of energy conversion and power 

generation [4] even without governmental subsidies [5]. Syngas can be also used for 

hydrogen production through various available thermal processes [6], methanol synthesis 

[7] and for other applications [8]. Besides chemical production, biomass gasification 

residues could also be utilised as constituents for building material [9]. A more detailed 

overview of biomass gasification technologies could be found in the research done by 

Kirkels and Verbong [10]. Although gasification is a relatively well known technology, 

the share of gasification in overall energy demand is small due to current barriers 

concerning high investment costs, biomass pre-treatment, gas cleaning, process 

efficiency and syngas quality control issues [11]. Overview of process utilisation 

potential and process advantages (renewable generation of hydrogen and fuel flexibility) 

and disadvantages (low process efficiency and tar formation) can be found in a review 

paper written by Sikarwar et al. [12]. 

Biomass gasification is a complex thermochemical process whose performance is 

influenced by a large number of operational parameters. The most important ones are 

biomass quality (particle size, shape, chemical composition and moisture content), fuel 

and air flow rate, particle reaction/residence time and the type of a gasification agent 

[13]. Different gasifier designs will affect particle residence time and the heat exchange 

in the reactor. For example, fluidised bed reactors have a relatively short particle 

residence time where heat exchange between fuel particles and surrounding air is quite 

strong due to fast particle movement. Contrary to this, in fixed bed gasifiers, particle 

residence time is quite long and the heat exchange is relatively slow as the particles are 

moving very slowly through the reactor. Furthermore, gasification operating conditions 

have tendency to change during a long term facility operation due to ash sintering, 

agglomeration and deposition on reactor walls which could cause bed sintering and 

defluidisation [14].  

To improve process efficiency or to guarantee constant process quality during 

operation, plant operation simulation models are needed. Those models can be used to 

explain, predict or simulate process behaviour and to analyse effects of different process 

variables on process performance in a fast and a safe way. Most of the available models 

for biomass gasification are based on equilibrium models for Gibbs free energy 

minimisation [15], Computational Fluid Dynamics (CFD) analysis [16], kinetic reactions 

modelling [17] or Artificial Neural Network (ANN) [18] principle. Detailed review of 

available models for biomass gasification process can be found in the research done by 

Baruah and Baruah [19]. Most of the available models are used to describe process 

equilibrium while taking into consideration well defined (or assumed) operating 

conditions. Progressive fuel quality change and bed sintering is often ignored. Therefore, 

they are not suitable to describe the process when operation parameters change and/or 

when they are not well defined. Furthermore, reactor dependable process mass and 

energy accumulation impose the need for a model that will take a large number of 

thermo-chemical interactions into account together with mass and energy accumulation 

while preserving high prediction speed. One of the ways to describe the process with a 

large number of uncertainties is by using machine learning techniques. ANN models that 

use a non-physical modelling approach which correlates the input and output data are 

universal function approximator that has ability to approximate any continuous function 

to an arbitrary precision even without prior knowledge on structure of the function that is 

approximated [20]. One of the many applications of ANN models includes estimation of 

solar duration [21] and irradiation [22] and estimation of wind resources for renewable 

energy production [23].  
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To describe the process of biomass gasification in changing operating conditions 

Mikulandric et al. [24] used a dynamic ANN which had to be retrained continuously to 

provide good prediction quality. In order to define such a model and to define the level of 

mass and energy accumulation, they took into account a prior knowledge regarding the 

process where important model input parameters were already defined. Accumulation of 

mass and energy has been defined through averaging fuel and air flow rate, and particle 

residence time has been included through fuel feeding frequency calculations. Therefore, 

to implement such a model into existing control system some engineering experience 

regarding particular process behaviour is needed. Furthermore, the model has a limited 

memory of previous syngas temperatures (used as model input) which could influence 

the prediction quality. It was hypothesized that neural networks that contain a larger 

amount of feedback variables (history of predicted variable as model input) could provide 

better prediction results. 

Dynamic type of neural networks, like Nonlinear Autoregressive Network with 

Exogenous inputs (NARX) can be a useful tool to describe process dynamics of nonlinear 

chaotic systems [25]. NARX is a recurrent dynamic neural network, with feedback 

connections enclosing several layers of the network. NARX model is based on the linear 

autoregressive network with exogenous model, which is commonly used in time-series 

modelling. In these models, model outputs depend not only on their inputs but also on 

their previous values and previous values of outputs. In this way mass and energy 

accumulation could be described. In comparison with static (feedforward) networks (like 

standard ANN’s) dynamic neural networks (like NARX) have feedback elements and 

contain parameter delays. In this way process mass and energy accumulations and 

particle residence time could be described. With static networks the output is calculated 

directly from the input through feedforward connections. One of the major drawbacks of 

dynamic neural networks (including NARX models) is that the modeller cannot identify 

the most important parameters that influence prediction performance, process dynamics 

and consequently process performance in general. The influence of different process 

parameters is defined through a complex interaction between model inputs, their delays 

and delays of output variable. For example, the influence of particle residence time on 

process behaviour cannot be clearly defined because it is already taken into consideration 

through delays of fuel flow rate. Similar observation can be made for syngas temperature 

prediction (as an output variable) where temperature derivatives are already incorporated 

into model structure through delays of model output. Due to the mentioned reasons, 

application of such models for process control purposes should be carefully analysed. 

In the recent research done by Asgari et al. [26] NARX based models have been used 

to model gas outlet temperature dynamics during start-up of a single-shaft gas turbine 

using 6 different time series data sets (3 for modelling and 3 for model validation).  

The maximum prediction error of gas outlet temperature was 7.4%. For modelling of 

biomass gasification in fluidised bed reactors, NARX models were used to predict syngas 

temperature, flow rate and pressure in a 200 kWth sorption enhanced reforming steam 

gasification plant [27]. NARX models seem to be a promising approach to describe 

non-linear systems with significant delays where accumulation of mass and energy is 

considered. However, their application potential for fixed bed reactors (where mass and 

energy accumulation is expected to be even higher) is yet to be analysed. 

In this paper, a NARX model will be developed to predict syngas temperature and 

content of hydrogen (H2), carbon monoxide (CO) and methane (CH4) in a 75 kWth fixed 

bed gasifier, operated by TU Dresden. A similar approach has been used in Salah et al. 

[27] but for fluidised bed gasifiers which usually operate at higher pressures and where 

process changes are much faster. Compared to the dynamic neural network model and the 

research done in Mikulandric et al. [24] the model should be able to predict syngas 

temperature based on raw measured data of fuel and air flow rates and without any prior 
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knowledge of process dynamics. It should also be able to predict process parameters 

under changeable operating conditions that will not be explicitly defined while keeping 

prediction speed appropriate for implementation in an on-line control system. Prediction 

quality will be quantified by coefficient of determination (R2) and Average Prediction 

Error (APE). The simulation performance of NARX model will be compared with 

simulation results of dynamic model from Mikulandric et al. [24] and standard 

neural-network model from Mikulandric et al. [18] as they were developed by using the 

same set of measured data. This will give indicators which of the neural-network based 

models has the best performance for short and long-term process predictions of biomass 

gasification in fixed bed reactors. 

MATERIALS AND METHODS 

Development and training of NARX networks consist of 2 steps, namely, an open 

loop NARX model training and closed loop NARX model training. In an open loop 

NARX model training, a feedforward multilayer neural network is trained using 

backpropagation algorithms to define main structure of neural network. Afterwards, in a 

closed loop, NARX model training model outputs are estimated on current and previous 

inputs together with previously estimated outputs (making a closed loop) [27]. A detailed 

explanation of NARX structure can be found in Chen and Billings [28]. In order to be 

trained, measurement data that represent model input and output should be collected.  

As the goal of this research is to analyse potential of NARX models to describe process 

delays (resulting from mass and energy accumulation) without any prior knowledge 

about the process, only raw measurement data will be used. 

Gasification plant and operating conditions for model training  

The object of the modelling is a co-current fixed bed gasifier with thermal input of  

75 kWth, located in Pirna (Germany), operated by TU Dresden. Two sets of experiments 

(experiments 1-4 from 2006 and experiments 5-9 from 2013) were performed to analyse 

the process behaviour and to develop the model. Experiments were performed to measure 

following process parameters that will be further used for modelling purpose: biomass 

mass flow rate (mb), air volume flow rate (mair), syngas temperature at the exit of the 

gasifier, syngas composition, pressure in the reactor and temperature of inlet air. All the 

data was recorded on a 30 seconds base. The length of an experiment depends on gasifier 

initial conditions. For example, if the reactor was pre-heated due to previous utilization 

and the initial temperature in the reactor was relatively high (experiment 4) the time to 

reach stationary syngas production regime was much shorter, compared to experiment 1 

where this was not the case. The goal of the experiments was to have a stable syngas 

production for approximately 3 hours in which the syngas composition was measured. 

The measurement of syngas composition started when the outlet syngas temperature was 

above or around 250 °C.  

Biomass wood chips, distributed from a local provider, are used as fuel in the 

gasification process. Biomass composition has been determined by means of ultimate 

fuel analysis on wet basis for experiments 1-4 at TU Dresden laboratory before the start 

of operation and considered as constant during operation. The lower heat value of the 

biomass is 17.473 MJ/kg, carbon content is 47.40%, hydrogen content is 5.63%, moisture 

content is 7.87%, ash content is 0.55% and the content of chlorine is 0.01%. Biomass 

composition for the experiments 5-8 has not been determined before the start of 

experiments. Biomass is first fed manually in a small storage room, located in front of the 

valves for biomass feeding control. When the gasification bed height goes under a certain 

threshold (set by the control system) an alarm is activated and the operator can manually 

open the valves. Once the valve opens, the whole amount of biomass from the storage 
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room is fed into biomass shredder. The biomass is shredded and fed into gasification 

reactor. Air flow rate for gasification is controlled manually by setting the air valves 

opening and distributed by air pumps. Ash removal is also controlled manually by 

opening the ash valves. The facility scheme is presented in Figure 1. The list of sensors 

and other details regarding plant design and operation can be found in  

Mikulandric et al. [24]. 
 

 
 

Figure 1. Co-current fixed bed biomass gasification facility operated by TU Dresden [24] 

Measurements on the gasification plant 

Measurements of fuel flow rate are presented in Figure 2 and air flow rate in Figure 3.  

As it can be seen from Figure 2 there is an obvious difference between experiments 1-4 

(conducted in 2006) and experiments 5-8. Experiment 9 is not presented due to practical 

reasons (better visual comparison between 2 set of experiments) as it is relatively short 

and will be used only for validation of temperature model. In experiments 1-4 fuel flow 

rate is relatively constant and ranges between 50 and 150 kg/h while in experiments 5-8 

(and 9) fuel flow rate is generally higher and usually ranges between 50 and 250 kg/h.  

Air flow rate in experiments 1-4 is slightly higher than in experiments 5-8. This change 

indicates a shift from enhanced complete fuel combustion regime (experiments 1-4) 

towards incomplete fuel combustion regime (experiments 5-8) which results in lower 

process temperatures in experiments 5-8. As fuel flow rate control system (related to bed 

height alarm system) has not been changed (the system is described in Mikulandric et al. 

[24]) this shift represents a change in operating conditions that can be due to changes in 

fuel quality, amount of ash sintering or due to some other unknown reason. 
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Figure 2. Fuel flow rate for experiments 1-8 [24] 

 

 
 

Figure 3. Air flow rate for experiments 1-8 [24] 

Nonlinear autoregressive exogenous model 

Syngas temperature and syngas composition of presented gasification system is 

predicted through sub-models that are defined with non-linear functions. They include 

current and past fuel and air flow rates together with previous values of the output 

(syngas temperature and H2, CO and CH4 content) itself. Each sub-model can be 

represented as a nonlinear time series with following equation [29]: 

 

���� = ����� − 1�, … , ��� − ��, ��� − 1�, … , ��� − ���� + ���� (1)

 

where y(t) represents model output for the time t, u(t) model input for the time t, dy, du 

corresponding number of lags (delays) for output and input, and e(t) error or noise for 

time t. For a detailed explanation of NARX structure authors refer to the research done by 

Chen and Billings [28]. By interaction of different non-linear sub-models (which could 

represent sub-processes during gasification) an effect of different input parameters on 

final gasification variables (syngas temperature and composition) can be defined.  
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For prediction of syngas temperature and quality a NARX model that consists of 2 

layer network with 2-delay feedback with one hidden layer of 5 neurons has been 

proposed. Tan-sigmoid transfer function is used between hidden layers (as it provides a 

good trade-off between the calculation speed of sigmoid functions and prediction 

flexibility of tanh functions) and linear transfer function for output layer. After changing 

the number of training epochs to define the case with the best prediction quality it has 

been concluded that 600 training epochs provides the best prediction quality for 

considered system. More training epochs could lead to model overfitting. Fuel and air 

flow rates have been chosen as model inputs while syngas temperature is chosen as 

model output. Simplified model scheme is presented in Figure 4.  
 

 
 

Figure 4. General scheme of NARX temperature prediction model (for model training) 

 

To analyse the effect of training data quantity on prediction performance, 10 different 

cases with different training data quantities have been defined (Table 1). For example in 

CASE 1, first 60 minutes have been used as training data for NARX model. The rest of 

the process (second part of experiment 1 and experiments 2-9) has been used for model 

validation (validation set of data). For model validation, syngas temperature and 

composition were predicted based on developed model and measured model inputs.  

In CASE 2 the data from the first 120 minutes of the process has been used for model 

training and the rest has been used for validation. In CASE 3 data from whole first 

experiment (first 800 minutes of the process) has been used for NARX training. 

Experiments 2-9 were used for model validation and prediction potential analysis.  

Later on (cases 4-10), the number of training data was increased until the data from 

experiments 1-8 was used as training data and only experiment 9 was used for  

model validation.  

 
Table 1. Model performance analysis for different training data sets 

 

CASE 
Training 

experiments 

Validation 

experiments 

Prediction error 

for training data 

set [%] 

Prediction R2 

[-] 
APE [%] 

1 1 (first 60 min) 1-9 0.7435 0.90 46.96 

2 1 (first 120 min) 1-9 0.3766 0.95 1.4017 

3 1 (whole) 2-9 0.3137 0.98 0.6165 

4 1-2 3-9 0.4989 0.98 0.6064 

5 1-3 4-9 0.4471 0.98 0.6769 

6 1-4 5-9 0.3906 0.97 1.1885 

7 1-5 6-9 0.2756 0.98 0.7372 

8 1-6 7-9 0.4863 0.98 0.9858 

9 1-7 8-9 0.9563 0.98 0.9464 

10 1-8 9 0.5109 0.97 1.0969 
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Furthermore, the number of model input delays has been varied from 1 to 20 in order 

to investigate the influence of model delays on temperature prediction performance. 

Model input delays are used during model training procedure as process history/memory 

data (feedback temperature loop and corresponding air and fuel flows for that moment). 

Higher number of model input delays means that during the training procedure more 

history data will be taken in consideration for prediction of future values. Each 

simulation delay represents an actual time delay of 30 seconds. Therefore, time delays for 

model inputs will range from 30 s to 10 minutes.  

Continuous model prediction error will be analysed using eq. (2) and eq. (3) for 

syngas temperature (T) and volume fractions of constitutive gases (φ) while overall 

model prediction performance will be defined by using coefficient of determination (R2). 

APE represents time averaged absolute values of prediction errors. 
 

error ��� =
���������� − ��� !"���

��� !"���
 (2)

 

error �syngas composition� =
-��������� − -�� !"���

-�� !"���
 (3)

RESULTS AND DISCUSSION 

The performance of the developed NARX modelling approach has been analysed 

using 9 different experiments. The first 4 experiments were performed in 2006 and 

present process behaviour before changes in operating conditions. Experiments 5-9 were 

performed in 2013 and represent process behaviour after changes in operating conditions. 

The process changes (changes in fuel flow which resulted in different temperature 

distributions) could be due to changes in fuel quality, amount of ash sintering or due to 

some other unknown reason. 

Data size for syngas temperature model training 

Model prediction performance and model validation has been performed based on 

methods described in previous sections. First, a different size of training data sets has 

been used to analyse the influence of training data set size on prediction performance. 

Number of delays has been set to 2. Afterwards, the number of delays for model input has 

been varied in order to analyse the effect of model delays on prediction performance. 

In the first case (Figure 5) first 60 minutes of experiment 1 have been used as training 

data set for NARX model. The rest of the process (experiment 1 from 60th till 800th 

minute and experiments 2-9) has been predicted based on developed NARX model (blue 

line) and measured model inputs. Simulation results show that the first 60 minutes 

(training data) of the experiment 1 has been described with very low prediction error 

(between ±10%). For comparison, simulation prediction error of commercial state-of-art 

software like ASPEN-PLUS on a different set of data and for fluidised bed reactor type is 

in the range of ±30% [30]. This is understandable because this data set was used as 

training data for model development. However, the rest of the process (part of the process 

data not used for the training) has not been described in a quality way. The prediction 

error that is well above 50% suggests that used training data size is generally not 

sufficient for modelling purpose. Negative prediction error values suggest that the syngas 

temperature is underestimated while positive prediction error values suggest that the 

syngas temperature has been overestimated. Resulting coefficient of determination (R2) 

has been defined at the end of performed simulation (presented in Table 1, CASE 1). 

Due to a high prediction error from the first simulation case the training data set has 

been increased. In CASE 3 data from the whole experiment 1 has been used as training 
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data set and syngas temperature from experiments 2-9 was predicted based on developed 

model and model inputs (experiments 2-9 are validation data). Simulation results show 

that for this training data set (experiment 1) model prediction error is usually below ±4%. 

For experiments 2-4 which are based on the same operating conditions but were not used 

for model training model prediction error is below ±8%. After changes in operating 

conditions (experiment 5-9) the prediction error generally rises but remains under ±10%. 

This general increase in model prediction error for experiments 5-9 is due to changes in 

operating conditions which current NARX model structure is not able to describe in a 

very precise way. Those changes in operating conditions could be due to use of different 

biomass quality or due to changes in the reactor (ash sintering). Use of different biomass 

compositions (moisture content or lower heat value) results in different syngas 

compositions but also in different temperature distributions in the reactor. Ash sintering 

could change the heat transfer between the reactor and environment which will result in 

different temperature distribution and consequently in different syngas composition. 

However, a prediction error under ±10% suggests that training data set from experiment 

1 is still sufficient for general NARX model. Model performance for NARX model with 

experiment 1 as training data set is presented in Figure 6. 
 

 
 

Figure 5. Model performance with 60 minutes of training data set (CASE 1) 
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Figure 6. Model performance with experiment 1 as training data set (CASE 3) 

 

Different training data sizes have been used to analyse model prediction performance. 

Summary of the analysis is presented in Table 1. For example, in CASE 1 first 60 minutes 

of experiment 1 was used for model training. In CASE 2 first 120 minutes of experiment 

1 was used for model training. In CASE 4, data from experiment 1 and 2 was used for 

model training. In CASE 10 data from experiment 1-8 was used for model training and 

experiment 9 was used for validation purpose. First 60 minutes as a data set for model 

training is not sufficient to develop a NARX model with reasonable prediction accuracy 

(prediction error under 30%). Average prediction error is above 40% and R2 is 0.9.  

With increasing training data size the model prediction performance improves.  

However, with increase of a training data size beyond data from experiment 1 the model 

prediction performance does not increase significantly and it some cases it even declines. 

This leads to conclusion that increasing data size (after including data from experiment 1) 

leads to over-fitting of the model and does not contribute to increase of model  

prediction accuracy. 

Output memory size for syngas temperature model training 

After the size of model training data has been determined (the whole experiment 1 has 

been used as training data set) a different number of model input delays and model output 

feedback delays have been used to analyse model prediction performance. With 2 delays 
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of input and output variables (which represents a time delay of 1.5 minutes) the NARX 

model has the highest prediction performance. With increasing the number of delays 

prediction performance of temperature prediction model decreases. This can be due to a 

slow response of the model with a high number of delays. In the case of large number of 

delays a parameter history that is no longer relevant to the process is taken into 

consideration to predict future values. Furthermore, the number of delays gives the 

indication of particle residence time in the reactor. It implies that the residence time of 

particles close to oxidation zone is around 90 seconds. The summary of model prediction 

performance for different number of time delays is presented in Table 2. 
 

Table 2. Model performance analysis for different time delays of input and output model variables 
 

Number of delays Temperature prediction model (R2 [-]) Temperature prediction model (APE [%]) 

1 0.96 0.8765 

2 0.98 0.6165 

3 0.92 2.7462 

4 0.95 1.0042 

5 0.97 0.7903 

10 0.95 2.5122 

20 0.90 6.0452 

Model prediction speed 

The overall training and prediction time of developed NARX model for experiments 

1-8 is 16 seconds which represents an adequate speed for on-line parameter prediction 

models. Together with model R2 of 0.98 it can be concluded that developed NARX model 

can be used to predict syngas temperature in changeable operating conditions. 

Data size for syngas composition model training 

A similar modelling method has been used to predict volumetric content of H2, CO 

and CH4 in syngas. Model prediction performance for syngas composition predictions is 

presented in Figure 7 (H2), Figure 8 (CH4) and Figure 9 (CO). For prediction of syngas 

composition, the training dataset derived from experiment 1 was not of sufficient to 

quality describe the process. It must be emphasized that dataset of syngas composition is 

smaller than a dataset for process temperature as it was measured when temperatures 

reached 250 °C. Therefore, the training dataset had to be expanded to datasets from 

experiment 1 and 2 for H2 and CH4 values and datasets from experiments 1, 2 and 3 for 

CO values. In general, syngas composition predictions follow measured values with a 

good accuracy, with R2 of prediction above 0.73 in all cases. The highest prediction error 

occurs in experiment 7 and during some parts in experiment 8 and 9. 
 

 
 

Figure 7. NARX model prediction performance for H2 predictions 
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Figure 8. NARX model prediction performance for CH4 prediction 

 

 
 

Figure 9. NARX model prediction performance for CO predictions 

Model prediction performance analysis 

The prediction performance of NARX models is summarised in Table 3. From the 

table it can be seen that the maximum temperature prediction deviation is 13.52 °C while 

the average temperature prediction deviation is 1.21 °C. For syngas composition in some 

sporadic time periods the model is not able to predict syngas composition values 

(example – Figure 7, H2 prediction, experiment 8, 140-145 s). However, the average 

prediction deviation for syngas composition is below 1% vol. Resulting R2 is 0.98 for 

temperature, 0.82 for CH4, 0.73 for H2 and 0.97 for CO.  
 

Table 3. NARX prediction deviation for different process variables 

 

Model Unit Max. Average Min. R2 [-] 

Temperature [°C] 13.52 1.21 0.00007 0.98 

CH4 [% vol.] 2.41 0.25 0.00015 0.82 

H2 [% vol.] 9.92 0.92 0.00024 0.73 

CO [% vol.] 19.42 0.78 0.00041 0.97 

 

The overall model prediction performance of developed models is presented in  

Table 4. NARX model performance has been compared with dynamic Adaptive Neuro 

Fuzzy Inference System (ANFIS) model, described and reported in Mikulandric et al. 
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[24] and standard ANFIS model developed, described and reported in Mikulandric et al. 

[18] as the model training was performed on the same set of data. Compared to the 

training of NARX model the training of ANFIS model requires more data pre-processing 

and the feedback history of model input is very limited (only one delay is implemented). 

It can be seen that NARX model requires a significant smaller training database for a 

higher prediction performance. This also results in a faster prediction speed. The highest 

improvement can be seen in prediction of syngas composition quality where R2 of NARX 

model ranges between 0.73 and 0.97 while R2 of dynamic ANFIS model ranges between 

0.45 and 0.83. Compared to standard ANFIS model, NARX model has a much better 

prediction performance for syngas temperature (1% of prediction error of NARX model 

compared to 7% of prediction error of standard ANFIS). Furthermore, standard ANFIS 

model is proven not to be appropriate as a simulation tool in changing operating 

conditions [24]. It has been concluded that NARX model shows a better model prediction 

performance than developed dynamic and standard ANFIS models. However, it should 

be noticed that in this kind of a comparison NARX model uses history of measured 

output data (temperature and syngas composition) in order to predict their future values. 

This means that NARX model should be constantly updated with measured past values of 

syngas temperatures. By this, prediction horizon of NARX model without active 

temperature measurements is quite limited. To compare performance indicators of 

NARX and dynamic ANFIS model for a longer-term predictions without active 

temperature measurements and history updates NARX model outputs/predictions were 

taken to update model output history (instead of measured temperatures). 

 
Table 4. Overall model prediction performance of NARX and dynamic ANFIS models 

 
Model Datasets for training R2 [-] APE [%] 

NARX ‒ CH4 2 experiments 0.82 0.15 

NARX ‒ H2 2 experiments 0.73 0.25 

NARX ‒ CO 3 experiments 0.97 0.18 

NARX ‒ Temperature 1 experiment 0.98 0.01 

Dynamic ANFIS ‒ CH4 [24] 4 experiments + re-training 0.45 0.38 

Dynamic ANFIS ‒ H2 [24] 4 experiments + re-training 0.47 0.30 

Dynamic ANFIS – CO [24] 4 experiments + re-training 0.83 0.26 

Dynamic ANFIS – Temperature [24] 4 experiments + re-training 0.82 0.07 

Model performance analysis for long-term predictions  

Prediction potential of NARX model for a long-term temperature prediction is 

presented in Figure 10. By term ‘long-term’ is considered a time period between plant 

start-up and the point when the stationary operating conditions have been reached.  

It usually takes around 100 to 300 minutes for the plant to reach stationary regime from 

the start-up (Figure 6). For model performance analysis, 175th minute of experiment 1 has 

been chosen as a starting point for the analysis. This point represents a middle point 

between process start-up and a moment where stationary operating condition has been 

achieved. Therefore, it was tested if the model can predict future values (in the time-span 

of 10 minutes) from 175th minute of experiment 1 without using measurements as model 

input. It can be seen that NARX model cannot predict future temperature values in a 

quality way if it uses history of its own output as an input. In the first 3 minutes NARX 

model has history (2 delays) that equals to measured values. Based on that history the 

model can produce prediction with a relatively small prediction error. However, when 

algorithms start to use output of NARX model as history (in 4th minute) the model soon 

becomes unstable and the prediction error reaches 1% in 9th minute (5th minute after the 

NARX model is disconnected from measurements). This is due to accumulation of 

prediction error that occurs in NARX model predictions. In the 3rd minute (3rd minute of 
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real time represents 5th minute of history) model history suggests that predicted 

temperature from NARX model is higher than measured one. Based on such suggestion 

and measured fuel and air flow rate the model decides to decrease predicted temperature. 

However, in the next time increment, the model history suggests that this value is too low 

(based on previous temperature and fuel and air flow rates) which results in a significant 

temperature prediction increase. In this way the model soon becomes unstable. A similar 

case was observed for syngas composition predictions. 

 

 
 

Figure 10. NARX model (temperature) prediction performance for second validation case 

 

It can be concluded that NARX model can produce quality parameter prediction if 

measured values are used as history for model input. However, if model predictions are 

used as history for model input (like in long-term predictions) the model becomes 

unstable and produces high prediction errors. This leads to the conclusion that NARX 

models are very useful tool for a short term predictions (up to 5 minutes) and, therefore, 

could be used for short-term control loops. However, if such model is decoupled from 

real time measurements they can produce a significant prediction error. In comparison 

with dynamic ANFIS model which works on similar principle (if the prediction error is 

too high after some time it resets predicted value to measured one) NARX models seem 

to have a much lower autonomy in process prediction. Summarised comparison between 

developed NARX model, dynamic ANFIS model from Mikulandric et al. [24] and 

standard ANFIS model [18] for prediction of syngas temperature is presented in Table 5. 
 

Table 5. Comparison of general prediction performance for standard ANFIS, dynamic ANFIS 

and NARX model 

 

 Standard ANFIS Dynamic ANFIS NARX 

General prediction performance Moderate Moderate High 

Prediction performance in changeable operating conditions Very low Moderate High 

Long term process prediction quality High Moderate Very low 

Prediction speed High Moderate Very high 

CONCLUSION 

In order to predict syngas temperature and syngas composition in a 75 kWth fixed bed 

biomass gasification plant a NARX model has been developed. Taking current and past 

values of model inputs and output into consideration specific system time delays caused 

by the accumulation of mass and energy and particle residence time can be modelled. 

Therefore, to model process dynamics it is important to define the right size of data 

history (time delays) for model training and development. Furthermore, the prediction 

quality of such models strongly depends on the quality and the quantity of training data 
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that has been applied. Developed NARX model is robust enough to predict syngas 

temperature under changeable operating conditions. It requires a relatively small amount 

of data for training and can predict syngas temperatures in changing operating conditions. 

In comparison with other state-of-art cases NARX models do not require any prior 

knowledge regarding the process to be developed and thus can be trained based on raw 

measurement data of fuel and air flow rate. The average temperature prediction error of 

developed NARX model is below 1% with R2 of 0.98. Average prediction errors of 

syngas composition are below 25% with R2 equal or higher than 0.73. Prediction quality 

of the syngas composition could be improved by more accurate measurements and larger 

data size for model training. Due to fast prediction speed such models are applicable for 

on-line process analysis of fixed bed biomass gasification systems. However, for a 

quality model prediction, history values of NARX models should be constantly updated 

with measured values. This makes them a good prediction tool only for a short term time 

horizons. In the case of developed NARX model, the prediction horizon was 5 minutes. 

For long-term predictions dynamic ANFIS models are more appropriate. To improve the 

prediction autonomy of NARX models it is suggested to develop sub-models for 

different reactor regions, to perform related measurements for data collection and to 

improve the number of delays in model training.   
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