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Abstract

Introduction: Moving average (MA) means calculating the average value from a set of patient results and further using that value for analytical qu-
ality control purposes. The aim of this study was to examine whether the selection, optimization and validation of MA procedures can be performed 
using the already described bias detection simulation method and whether it is possible to select appropriate MA procedures for a laboratory with a 
small daily testing volume.
Materials and methods: The study was done on four analytes: creatinine, potassium, sodium and albumin. All patient results of these tests pro-
cessed during six months were taken from the laboratory information system. Using the MA Generator software, different MA procedures were 
analysed. Different inclusion criteria, calculation formulas, batch sizes and weighting factors were tested. Selection of optimal MA procedures was 
based on their ability to detect simulated biases of different sizes. After optimization, the validation of MA procedures was done. The results were 
presented by bias detection curves and MA validation charts.
Results: Simple MA procedures for albumin and sodium without truncation limits were selected as optimal. Exponentially weighted MA procedures 
were found optimal for creatinine and potassium, with the upper truncation limits of 150 μmol/L and 6 mmol/L, respectively.
Conclusions: It has been experimentally confirmed that it is possible to perform the selection, optimization and validation of MA procedures using 
the bias detection simulation method. Also, it is possible to define MA procedures optimal for a laboratory with a small daily testing volume.
Keywords: quality control; moving average; bias detection simulation; MA Generator software
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Introduction

Analytical quality control is one of the key tasks 
facing biochemists in a medical laboratory. For this 
purpose, internal quality control materials are ana-
lysed in certain time intervals and laboratories 
participate in external quality control programs 
(1,2). But, in order to prevent releasing erroneous 
patient results if an error occurs between two con-
trol measurements, there is a need for developing 
quality control plans based on risk management 
(3). In this light, the use of patient samples for the 

purpose of continuous quality control can be con-
sidered through calculating the moving average 
(4). Moving average (MA) means calculating the 
average value from a set of patient results and fur-
ther using that value for control purposes. It is 
called “moving” because the MA is recalculated 
every time a new result is received, which means 
data is continuously updated and evaluated as pa-
tient samples are analysed. The most commonly 
used algorithms for calculating MA values are: sim-
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ple MA, exponentially weighted moving average 
(EWMA) and Bull’s algorithm (5). Simple MA is the 
non-weighted average value of a selected number 
of consecutive results. Exponentially weighted 
moving average is a formula for calculating an av-
erage value which includes previous measure-
ments modified with an exponential weighting 
factor. The weighting for each piece of data is 
changed exponentially, by adjusting the “impor-
tance” assigned to more recent measurements 
compared to the older. The smaller the weighting 
factor, the less importance is assigned to the new 
results and vice versa. Bull’s algorithm is a complex 
formula that calculates an average value from 
batches of 20 measurements on a haematologic 
analyser. The idea of a MA was presented by Hoff-
man and Waid in 1965, suggesting a follow-up of 
the average of normals (AON) for control purpose 
(6). In 1974, Bull et al. published a study on various 
methods for defining MA control procedures 
based on the results of patients’ erythrocyte in-
dexes (7). In 1984, Cembrowski and colleagues de-
fined guidelines for the implementation of the “av-
erage of normals” procedures for quality control in 
medical laboratories (8). However, although it has 
been implemented in almost all haematologic an-
alysers in the form of Bull’s algorithm, the MA has 
never been widely applied in medical laboratories 
for several reasons. One is the complexity of defin-
ing optimal MA procedures, which are specific to 
each laboratory and therefore cannot be general-
ized or downloaded from any other source, but re-
quire individual selection, optimization and valida-
tion (4). The second reason limiting the application 
of MA procedures is the lack of insight in the abili-
ty of selected MA procedures to detect a clinically 
significant bias. In particular, there is the question 
of their ability to detect the occurrence of bias for 
less frequently ordered tests and in laboratories 
with a small daily number of samples and per-
formed tests (1). In recent years, researchers’ inter-
est in this topic has been on the rise again, with 
new proposals for ways in which MA procedures 
could be optimized for routine use (1,2). One of 
them is the MA bias detection simulation method 
proposed by Van Rossum et al. (9). They described 
in detail the use of bias detection curves and MA 
validation charts (10).

The aim of this study was to apply the method for 
the selection, optimization and validation of MA 
procedures described by Van Rossum in a labora-
tory with a small daily testing volume and to select 
the MA procedures that can be used as an addi-
tional tool for analytical quality control (9,10).

Materials and methods

Materials

The study was conducted at the Department of 
laboratory diagnostics, Railway Healthcare Insti-
tute, using data from the laboratory information 
system Next lab (BitImpex, Belgrade, Serbia). Four 
analytes were chosen for the study: creatinine, po-
tassium, sodium and albumin. The selection was 
based on the daily number of tests performed. 
Creatinine was chosen as a representative of the 
high frequency tests, sodium and potassium as 
moderately frequent and albumin as a low fre-
quency test in our laboratory. All the results of 
these parameters obtained over a period of six 
months (January-June 2018) were extracted from 
the laboratory information system (LIS). During 
this time, both internal and external quality con-
trols were within acceptable limits for all four ana-
lytes. Numerical values of the patient results, as 
well as the exact measurement times (date, hour, 
minute, second) were extracted, without clinical or 
demographic data. The results were taken from 
the LIS with a preserved sequence of measure-
ments on the analyser, which enabled the dataset 
to keep the within-day and day-to-day variations. 
All results were obtained from adult outpatients 
because our Institute takes care of the general 
adult population at the primary healthcare level 
without any department of specific pathology. All 
tests were performed on a clinical chemistry ana-
lyser Architect c16000 (Abbott, Abbott Park, USA), 
with the original reagents. The use of LIS data for 
the purpose of this study was approved by the Ethi-
cal Committee of the Railway Healthcare Institute.

Methods

For each of the 4 examined analytes, a selection of 
inclusion criteria (truncation limit), calculation for-
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mula (simple MA or EWMA), size of the batch or 
the weighting factor (depending on the formula) 
and control limits were made. The only inclusion 
criteria used were truncation limits. Truncation 
limits are the end points of concentration ranges 
of examined analytes which are included in MA 
calculation. Values outside of these limits are outli-
ers and they are excluded from calculation. The 
choice of truncation limits depends on the patient 
population with which the laboratory is working. 
Based on spread in the concentration values of ex-
amined analytes, the following truncation limits 
were tested: for creatinine, upper limit 150, 200, 
300 and 400 μmol/L; for sodium, lower limit 130 
mmol/L, upper limit 145 mmol/L; for potassium, 
upper limit 6 mmol/L; for albumin, lower limit 30 
g/L. For each of the 4 analytes, calculations were 
carried out first without the inclusion criteria, and 
then with them.

For the calculation of MA values, 2 formulas were 
used: simple MA and EWMA. Both simple MA and 
EWMA formula were examined for each analyte. 
Simple MA is calculated using the formula: z (t) = x 
(t) / n + x (t-1) / n + x (t-2) / n + ... + x (t- n + 1) / n, where z 
(t) is the calculated mean value on the result num-
ber t, x is the result, n is the batch size. The size of 
the batch is the number of consecutive test results 
which are used for calculating a MA value in a sim-
ple MA algorithm. Each time a new result is re-
ceived, MA is recalculated from the number of re-
sults that is configured as the batch size. The fol-
lowing batch sizes were used: 5, 10, 25, 50 and 100 
results. Exponentially weighted moving average is 
calculated using the formula: z (t) = λ x (t) + (1-λ) z (t-
1), where z (t) is the calculated mean value on the 
result number t, x is the result and λ is the weight-
ing factor. As the starting point for z(t-1) the mean 
of the overall population was used. For each new 
result, new MA value was recalculated. Weighting 
factor is a coefficient which determines how much 
the current and the previous test results affect the 
calculation in the EWMA algorithm. It can take val-
ues between 0 and 1. Based on the literature data 
the following weighting factors were used: 0.2, 0.1, 
0.05 and 0.02 (9).

Control limits are MA values which, when exceed-
ed, trigger a MA alarm. In order to establish the 

upper and lower control limits of an MA proce-
dure, the maximum and minimum value of the MA 
were used. By choosing control limits to be the 
maximum and minimum value of the MA, we 
should almost completely avoid generating false 
alarms when optimized MA procedures are put 
into routine work. These minimum and maximum 
values were obtained for each combination of cal-
culation formula and truncation limits. Also, they 
were calculated without truncation limits.

Bias simulation was performed for every 400 con-
secutive results. The following bias quantities were 
introduced into the results of all 4 analytes: ± 50%, 
± 40%, ±30%, ±20%, ± 10%, ± 5%, ± 3%, ± 1%. In 
addition, for each analyte, a bias equal to the al-
lowable total error (TEa) for that test was addition-
ally introduced. This was done considering TEa as 
clinically significant bias. The Clinical Laboratory 
Improvement Amendments (CLIA) data were used 
for TEa, because they were already used in our lab-
oratory for Sigma metrics calculations (11). Values 
were rounded to the nearest integer value, since 
the software does not allow the use of decimal 
numbers. So, the introduced additional biases 
were: for creatinine ± 15%, for potassium ± 18% 
(TEa 17.97%) and for sodium ± 4% (TEa 3.57%). For 
albumin, TEa coincided with an already tested bias 
of ± 10%.

The obtained results were presented and analysed 
using MA bias detection curves and MA validation 
charts. For each investigated combination of the 
calculation formula and the size of the batch with 
a simple MA or the value of a weighting factor in 
EWMA, an appropriate bias detection curve was 
constructed. The curves were constructed using 
graphics on which the size of the introduced bias 
is expressed as percent on the x axis. On the y axis 
is the number of results necessary to detect a cer-
tain bias with the examined MA procedure. Multi-
ple candidate curves were constructed on the 
same graph, representing different MA procedures 
for one analyte, to allow a visual comparison of the 
different MA procedures. This visual assessment 
was the basis for selecting all the elements of an 
optimal MA procedure: truncation limits, calcula-
tion formula, batch size or weighting factor and 
control limits.
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Validation of the selected MA procedures for each 
of the examined analytes was done using valida-
tion charts. Validation charts are bar diagrams in 
which the size of a bias is shown on the x axis, and 
the number of results needed for bias detection 
on the y axis. The columns represent the median 
of the required number of results, and the error 
bars are the minimum and maximum numbers, 
thus providing a detailed insight into the ability of 
bias detection for each examined procedure. Me-
dian number of results required to detect a certain 
bias indicates that in 50% of cases, the bias will be 
detected in less than that number of results, and in 
50% of cases in more than that. Error bars give us 
data on the minimum and maximum number of 
results in which a certain bias will certainly be de-
tected, from which we can conclude whether this 
is possible within our daily production or not, 
which was the basis of our optimization strategy.

Statistical analysis

The normality of distribution of the analysed data 
was tested by the Shapiro-Wilk test using the sta-
tistical software IBM SPSS Statistics, version 25.0 
(IBM Corp, Armonk, NY, USA). All MA calculations 
and simulations were performed using MA Gener-
ator software (Huvaros B.V., Bloemendaal, The 
Netherlands).

Results

The characteristics of the analysed datasets (num-
ber of results used for MA calculations, daily test-
ing volumes and obtained concentrations) are 
shown in Table 1.

Comparison of different MA procedures

Multiple candidate bias detection curves were 
constructed on the same graph, representing dif-
ferent MA procedures for one analyte. This al-
lowed a visual comparison of the different MA pro-
cedures, as shown for albumin in Figure 1. From 
the four presented graphs in Figure 1, it can be 
seen that simple MA calculation for albumin had 
better performance than EWMA. Also, MA proce-
dures for albumin without truncation limits were 
better than those with truncation limits, because 
the introduction of a lower truncation limit of 30 
g/L did not improve the detection of small biases, 
and disabled the detection of negative biases 
greater than 30%.

Similarly, as shown in Figure 2 for sodium, intro-
duction of an upper truncation limit of 145 mmol/L 
led to an insignificant improvement in the detec-
tion of small biases for sodium, while substantially 
compromising the detection of positive biases 
greater than 5% (Figure 2b). The introduction of a 
lower truncation limit of 130 mmol/L disabled the 
detection of negative biases larger than 5% (Fig-
ure 2c). Simple MA procedures without truncation 
limits proved to be the best for sodium (Figure 2a).

In contrast, the introduction of a truncation limit 
for creatinine improved the performance of the 
MA procedure, especially when it came to positive 
biases. The truncation limit of 150 μmol/L was 
shown to be optimal for creatinine (Figure 3). Com-
parison of bias detection curves for different cal-
culation formulas and weighting factors showed 
that EWMA algorithm had advantages over simple 

Analyte Total number 
of results

Average daily 
number of results

Median (Q1-Q3) 
concentration

Minimum 
concentration

Maximum 
concentration

Creatinine 14,800 121 70 (63-80) 26 971

Potassium 7299 60 4.3 (4.1-4.6) 2.8 7.4

Sodium 6663 55 140 (139-141) 123 149

Albumin 2408 20 43 (41-44) 20 52

Q1-Q3 - interquartile ranges. Concentrations are expressed in μmol/L for creatinine, in mmol/L for potassium and sodium and in 
g/L for albumin.

Table 1. Characteristics of analysed datasets
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Figure 1. Comparison of multiple moving average curves for albumin. Curves represent the median number of results required for 
bias detection. Various shades of gray show moving average (MA) procedures with different sizes of the batch (5, 10, 25, 50 and 100 
results) for calculating a simple MA or with different weighting factors (0.2, 0.1, 0.05 and 0.02) for calculating EWMA. On figures 1a and 
1c, MA procedures without truncation limits are shown and on figures 1b and 1d, the same procedures but with a lower truncation 
limit of 30 g/L. EWMA - exponentially weighted moving average.

MA for creatinine and that weighting factor 0.1 
was optimal for this calculation (Figure 3d).

For potassium, a comparison of two candidate 
curves on the same graph (Figure 4) showed that 
the MA procedure with an upper truncation limit 
of 6 mmol/L had better performance in detecting 
positive biases, while for negative biases the curves 
completely coincided, that is, the characteristics in 
detecting negative biases were identical. 

MA procedure validation

Using validation charts, for each selected MA pro-
cedure, the details of its ability to detect bias were 

established (Figure 5). Furthermore, it was possible 
to precisely determine the bias detection details 
for two MA procedures between which differenc-
es had already been detected in the bias detection 
curve, as was the case with potassium (Figure 4e, 
5). The selected MA procedure for potassium is 
able to detect bias the size of TEa 18% slightly fast-
er and smaller biases between 10 and 18% much 
faster. In this case, the detection of positive biases 
greater than 40% is slower, but it is still possible 
within the number of 60 potassium tests, which is 
the daily average in our laboratory.

Also, using validation charts, it was possible to de-
finitively choose between two candidate proce-
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Figure 2. Influence of truncation limits on moving average curves for sodium. 2a) Moving average (MA) curves for sodium at differ-
ent sizes of the batches for simple MA, without truncation limits. 2b) Curves of the same MA procedures for sodium after the intro-
duction of an upper truncation limit (≤ 145 mmol/L). 2c) Curves of the same MA procedures for sodium, with lower and upper trunca-
tion limits (130 mmol/L ≤ Na ≤ 145 mmol/L). 2d) MA curves for sodium at different weighting factors for EWMA, without truncation 
limits. 2e) Curves of the same EWMA procedures for sodium after the introduction of an upper truncation limit (≤ 145 mmol/L). 2f) 
Curves of the same EWMA procedures for sodium, with lower and upper truncation limits (130 mmol/L ≤ Na ≤ 145 mmol/L). EWMA - 
exponentially weighted moving average.
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Figure 3. Moving average curves characteristics for creatinine. Various colours show moving average (MA) procedures with different 
sizes of the batch (5, 10, 25, 50 and 100 results) for calculating a simple MA without a truncation limit (3a) or with different weighting 
factors (0.2, 0.1, 0.05 and 0.02) for calculating EWMA without truncation limits (3b). Influence of different truncation limits (no limit, 
values ≤ 400 μmol/L, 300 μmol/L, 200 μmol/L and 150 μmol/L) on MA procedures for creatinine (EWMA algorithm, weighting factor 
0.1) (3c). Influence of different weighting factors on MA procedure (EWMA algorithm, upper truncation limit 150 μmol/L) (3d). EWMA 
- exponentially weighted moving average.

dures with very similar bias detection curves, as 
shown for sodium in Figure 6.

Selection of optimal MA procedures

Taking into account all of the foregoing, one opti-
mal MA procedure for each of the four examined 
analytes was selected. The characteristics of these 
optimal MA procedures are shown in Table 2.

Based on the reading from MA validation charts, 
we have established MA procedures with which 
we will be able to detect a clinically significant bias 

in one fifth to one quarter of the daily potassium 
production, in one fifth to one third of the daily so-
dium results, and within the daily production of al-
bumin, despite the very low ordering frequency of 
this test. For creatinine, a negative clinically signifi-
cant bias will certainly be detected in one third of 
the daily production, while positive bias detection 
within two-thirds of the daily number of results is 
certain in about 50% of cases. Ability of selected 
MA procedures to detect a clinically significant 
bias is shown in Table 3.

100

90

80

70

60

50

40

30

20

10

0 0 20 40-20-40
% bias

Re
su

lts
 n

ee
de

d 
fo

r b
ia

s 
de

te
ct

io
n

5
10
25
50
100

no limit
< 400
< 300
< 200
< 150

100

90

80

70

60

50

40

30

20

10

0 0 20 40-20-40
% bias

Re
su

lts
 n

ee
de

d 
fo

r b
ia

s 
de

te
ct

io
n

100

90

80

70

60

50

40

30

20

10

0 0 20 40-20-40
% bias

Re
su

lts
 n

ee
de

d 
fo

r b
ia

s 
de

te
ct

io
n

0.2
0.1
0.05
0.02

100

90

80

70

60

50

40

30

20

10

0 0 20 40-20-40
% bias

Re
su

lts
 n

ee
de

d 
fo

r b
ia

s 
de

te
ct

io
n

 Creatinine (Simple MA)

Creatinine (EWMA, λ 0.1)

Creatinine  (EWMA)

Creatinine ≤ 150 (EWMA)

3a) 3b)

3c) 3d)

0.2
0.1
0.05
0.02



Lukić V, Ignjatović S.	 Moving average procedures in small-volume laboratory

Biochem Med (Zagreb) 2019;29(3):030710		  https://doi.org/10.11613/BM.2019.030710 

8

Figure 4. Bias detection curves for moving average procedures for potassium. Numbers in the figure legends represent the batch 
size for simple MA (4a, 4b), weighting factors for EWMA (4c, 4d) and truncation limit (4e). Truncation limit for potassium is expressed 
in mmol/L. EWMA - exponentially weighted moving average.
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Figure 5.  Moving average validation charts for selected optimal MA procedures for creatinine, potassium, sodium and albumin. For 
each size of the bias, the median, minimum and maximum number of results required for bias detection can be read. Bars represent 
median and error bars minimum and maximum numbers. Truncation limits for creatinine and potassium are expressed in mmol/L.

Figure 6. 6a) Candidate curves for the optimal moving average (MA) procedure for sodium: simple MA with a batch size of 25 and 
EWMA with a weighting factor 0.1. 6b) MA validation chart for simple MA for sodium with batch size 25. 6c) MA validation chart for 
the EWMA with a weighting factor 0.1. EWMA - exponentially weighted moving average.
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Discussion

The novelty of our study is that it showed, for the 
first time in available literature, that optimization 
of MA procedures is possible in laboratories with 
low daily testing volume. Also, we found out that 
by using MA procedures, clinically significant bias 
can be detected even on less frequent tests.

Our study highlighted the advantages of applying 
MA procedures in a primary healthcare laboratory. 
The characteristics of our patient population have 
resolved some difficulties other researchers have 
encountered. Firstly, there was no need to sepa-
rate the results of outpatients and inpatients (2). 

Also, there is a noticeable difference in the medi-
an, as well as in the minimum and maximum val-
ues of the analysed datasets in our work, com-
pared to other researchers, because the values in 
the population which our laboratory works with 
are homogeneous (10). In addition, there was no 
adverse effect of the weekend on the MA proce-
dure such as in a hospital setting, where extreme 
values mostly appear on the weekends (4,8). All 
these reasons are in agreement with other au-
thors’ observations that in primary care laborato-
ries, MA procedures may exhibit better perfor-
mances than in hospitals (9).

Analyte Average daily
number of results TEa (%) Median Minimum Maximum

Creatinine 121
- 15 20 6 44

+ 15 86 27 360

Potassium 60
- 18 8 4 13

+ 18 9 5 18

Sodium 55
- 4 14 11 18

+ 4 7 4 10

Albumin 20
- 10 7 6 13

+ 10 7 5 19

TEa – allowable total error. Clinical Laboratory Improvement Amendments data for TEa were used.

Calculation algorithm Truncation limit Control limit

lower upper lower upper

Creatinine EWMA
Weighting factor: 0.1 / 150 62 90

Potassium EWMA
Weighting factor: 0.1 / 6.0 3.9 4.8

Sodium Simple MA
Batch size: 25 / / 137 142

Albumin Simple MA
Batch size: 10 / / 40 46

MA - moving average. EWMA - exponentially weighted moving average. The values are expressed in 
μmol/L for creatinine, in mmol/L for potassium and sodium and in g/L for albumin.

Table 2. Number of results (median, minimum and maximum) needed to detect a bias equal to the allowable total error by selected 
MA procedure for each of the four tested tests

Table 3. Calculation algorithm, truncation limits and control limits of MA procedures selected as optimal for each of the 4 analytes 
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When choosing the parameters of a calculation al-
gorithm, our most important findings were related 
to weighting factors or batch size and truncation 
limits. We have shown that neither low weighting 
factors in EWMA, nor large series in the simple MA, 
are always the best option, as indicated by power 
function analysis. It is true that a calculating algo-
rithm with a small weighting factor improves the 
rapid detection of small biases, but then more re-
sults are required to detect large biases (10). For 
both tests in which we selected the EWMA proce-
dure (creatinine and potassium), the optimal factor 
was 0.1, the second largest of the four tested. Also, 
although in the case of simple MA batch sizes up 
to 100 samples were examined; series of 10 sam-
ples for albumin and 25 for sodium were optimal. 
We confirmed that constant batch size cannot be 
defined as a universal model (8). Given the low bi-
ological variation of sodium and albumin, it is ex-
pected that smaller batches will be shown as opti-
mal, while biomarkers with higher biological varia-
tion, such as iron or bilirubin, would probably re-
quire a higher number of results in the series (12).

When it comes to inclusion criteria, unlike the 
power function analysis and in agreement with 
Van Rossum’s results, we have found that setting a 
truncation limit can delay the detection of large 
biases – an upper limit the detection of large posi-
tive, and a lower limit the detection of large nega-
tive biases – due to the exclusion of a certain num-
ber of results from MA calculations (8,9). In our 
case, in a population that does not have a lot of 
extreme values; the best bias detection is achieved 
with the widest limits. But, in hospital settings, un-
like us, Van Rossum and associates obtained an 
optimal MA procedure for albumin with a lower in-
clusion criterion of 20 g/L, and for sodium with a 
lower inclusion criterion of 125 mmol/L and an up-
per limit of 150 mmol/L. However, in each popula-
tion, as well as in the general population coming 
to laboratories at the primary healthcare level, like 
ours, there are some outliers. Due to their pres-
ence, setting a truncation limit gives better perfor-
mance for some tests, and so, as we have shown, 
optimal procedures for creatinine and potassium 
are those with truncation limits (8).

Since there is no precise definition of an optimal 
MA procedure, we have done optimization with 
the intention of using the MA as an additional tool 
for continuous quality control that would allow 
monitoring of the analytical process between two 
measurements of control samples (10). Therefore, 
the first criterion for us was to establish an MA pro-
cedure for each analyte that would be capable of 
detecting a clinically significant bias within the 
daily number of tests, which would otherwise not 
be detected till the next morning, or until the next 
measurement of the control sample. Establishing 
such procedures should allow us to develop a 
quality control plan that will not require additional 
measurements of commercial control samples, 
even in the case of tests with low sigma values (13). 
We considered allowable total error (TEa) as clini-
cally significant bias. The second criterion we man-
aged in the optimization was that the MA proce-
dure was capable of detecting all biases greater 
than the TEa, since all of them, of course, are clini-
cally significant (13,14). By combining these two 
criteria, we made individual compromises for each 
analyte. If two procedures were approximately 
equally good in detecting bias the size of the TEa, 
but one dramatically lost the ability to detect larg-
er biases, we would quit it. On the other hand, 
where it was possible to find an MA procedure 
that would quickly detect bias the size of the TEa 
and smaller, while the detection of larger biases, 
although delayed, remained possible within the 
daily production of our laboratory, such a proce-
dure was given advantage. A key tool in determin-
ing these details about the ability of MA proce-
dures to detect certain biases were the MA valida-
tion charts offering statistically clear data. This 
practice differs from the “simulated annealing” 
method, which uses an average number of patient 
samples affected until error detection (ANPed pa-
rameter) based on the mean, not the median (2). In 
order for continuous MA control to make sense, 
the number of patient results needed to detect a 
clinically significant bias should not be greater 
than the number of samples to be analysed be-
tween two QC measurements (1). This issue is par-
ticularly important for less frequent tests, as albu-
min in our study. From all of the above, it is clear 
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that the selection of MA procedures for each test 
requires much fine tuning and cannot in any way 
be a general rule (8). 

One more important thing shown in our study is 
the necessity of using a MA method for whose op-
timization and validation dedicated software is 
available. In the past decades, visual evaluation 
and power function analysis were used to opti-
mize and validate MA procedures (7,8). Recently, 
Sampson et al. have described CUSUM logistic re-
gression to establish control procedures based on 
patient results (1). Ng et al. have presented the 
“simulated annealing algorithm” that introduces 
the concept of ANPed (2). But among all these 
methods, we decided to use the bias detection 
simulation method described by Van Rossum for 
two reasons (9,10). The first is that it provides easily 
understandable graphical presentation of the abil-
ity of an MA procedure to detect the overall bias. 
The other reason is the availability of dedicated 
software (MA Generator). This software enabled us 
to quickly and easily perform calculations with a 
large number of variations of the formula, batch 
size, weighting factor, truncation limits, number of 
simulations, size of the bias, place where the bias is 
introduced (15). 

In addition, we wanted to repeat in our laboratory, 
in an almost identical manner, an MA experiment 
already published by another author, bearing in 
mind that the crisis of reproducibility in medical 
research is increasingly being discussed today, 
even related to the analytical performance of rou-
tine laboratory tests (16). Believing that for re-
search advancement and for the practical applica-
tion of research results in routine laboratory work, 
it is necessary to be convinced of the reproducibil-
ity of the research, we decided to repeat the ex-
periment on the same tests and method described 
by the Dutch authors but in our laboratory setting 
(9,10,17).

Regarding the limitations of our work, the first one 
is the fact that software simulation and optimiza-

tion of MA procedures have been performed on a 
historical set of laboratory results. Their value has 
not been verified in real time, and their contribu-
tion to the overall quality control assurance in our 
laboratory has yet to be shown. The other limita-
tion to be mentioned is the definition of TEa as a 
clinically significant bias. Information on the TEa 
can be obtained from multiple sources. To date, 
there has been no standardization or harmoniza-
tion of these different sources, and there is no con-
sensus on what goals to use (18). Believing that 
each laboratory should select objectives that are 
practical and achievable for each test, for the pur-
poses of this study, we used the CLIA data for TEa 
(11,19). One more limitation to be declared is the 
fact that we didn’t use filters when extracting po-
tassium results from LIS, such as increased hae-
molysis index or high platelet count. Preanalytical 
quality procedures in our laboratory include rejec-
tion of results based on the haemolysis index and 
we will take into consideration defining additional 
filters in LIS in our future MA studies.

In conclusion, we have successfully applied the 
bias detection simulation method to find the opti-
mal MA procedure in a laboratory with a small dai-
ly testing volume using bias detection curves and 
validation charts, previously described by Van Ros-
sum et al. (9,10). We showed that it is possible to 
define MA procedures that are optimal for detect-
ing a clinically significant bias. Further research 
should be directed to the implementation of opti-
mized MA procedures in LIS and examination of 
their characteristics as continuous quality control 
in real time.
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