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Preliminary note

Iva Kodrnja, Maja Baniček, Krešimir Fresl

Line geometry and 3D graphic statics

The mathematical basis for the line geometry, with the line as its basic element, is presented 
in the paper because the forces that act on a body in space - whether we are interested in 
conditions of movement or immobility (balance) of that body - are vectorial values related 
to specific lines of action, so that the system of forces can be linked to the set of lines in 
space. The application of line geometry has proven the known claim that the system of 
forces in space, provided the forces are in a general position, can be reduced to two forces 
on reciprocal lines. The visualisation of this claim via the 3D graphic statics is also presented.
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Prethodno priopćenje

Iva Kodrnja, Maja Baniček, Krešimir Fresl

Pravčasta geometrija i prostorna grafostatika

Budući da su sile koje djeluju na tijelo u prostoru, bilo da nas zanimaju uvjeti kretanja ili 
mirovanja (ravnoteže) toga tijela, vektorske veličine vezane za određene pravce djelovanja, 
tako da se sustav sila može povezati sa skupom pravaca u prostoru, u radu je ukratko 
prikazana matematička osnova pravčaste geometrije koja kao osnovni element uzima 
pravac. Primjenom pravčaste geometrije dokazana je poznata tvrdnja da se sustav sila u 
prostoru, ako su one u općemu položaju, može svesti na dvije sile na recipročnim pravcima. 
Prikazana je i vizualizacija te tvrdnje metodom prostorne grafostatike. 

Ključne riječi:

prošireni euklidski prostor, polaritet, ništični sustav, pravčasti prostor, Plückerove koordinate, linearni 

kompleks 

Vorherige Mitteilung

Iva Kodrnja, Maja Baniček, Krešimir Fresl

Projektive Geometrie und räumliche Graphostatik

Da die Kräfte, die auf einen Körper im Raum einwirken, unabhängig davon, ob wir an den 
Bedingungen der Bewegung oder der Ruhe (Gleichgewicht) dieses Körpers interessiert 
sind, Vektorgrößen sind, die auf bestimmte Wirkrichtungen bezogen sind, so dass das 
Kräftesystem auf eine Reihe von Richtungen im Raum bezogen werden kann, wird 
in dieser Arbeit in kurzen Zügen die mathematische Basis der projektiven Geometrie 
dargestellt, die als Grundelement die Richtung annimmt. Es ist allgemein bekannt, dass das 
Kräftesystem im Raum, wenn die Kräfte sich in einer allgemeinen Position befinden, unter 
Anwendung der projektiven Geometrie auf zwei Kräfte in wechselseitigen Richtungen 
reduziert werden kann. Die Visualisierung dieser Behauptung durch die Methode der 
räumlichen Graphostatik wird ebenfalls dargestellt.
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erweiterter euklidischer Raum, Polarität, Nullsystem, projektiver Raum, Plücker-Koordinaten, linearer Komplex
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1. Introduction

Line geometry is a type of geometry where line is a basic 
element and its main objects of study are line formations 
such as line complexes, congruences and ruled surfaces, all 
containing infinitely many lines. Line geometry emerged from 
the study of statics and kinematics of rigid bodies, since forces 
acting along different parallel lines have different effects and 
the rotations about parallel but different axes bring the body 
into different positions. 
A. F. Möbius, in his paper [1] from 1833, showed that a general 
system of forces in space can be replaced by two forces acting 
on conjugate lines of a null polarity. Null polarity is a type of 
polarity, a transformation of the projective plane which was first 
defined via conics using synthetic method in 16th century by G. 
Desargues, and polarities in the projective space defined using 
quadrics were studied in the 18th century by G. Monge and his 
student J. V. Poncelet, who is considered to be the founder of 
projective geometry, in the 19th century.
Möbius had an analytical geometrical approach, but all the 
terminology that is used to describe his results, which is also 
commonly used in this field of research still today, comes from J. 
Plücker (Figure 1, right) and his paper [3] from 1865. This paper 
is the conception of line geometry.
Nevertheless, such novelty could not come to life without the 
work of H. Grassmann (Figure 1, left), who first showed that 
other figures in space, beside points, which were until then 
only defined as loci of points given by an equation, can be given 
coordinates and we shall see this applied to lines. His book [4] 
from 1848 is considered to be the foundation of geometrical 
(and linear) algebra. Independently, definition of a line with six 
coordinates was introduced by A. Cayley in his paper [5] from 
1860.

Figure 1.  Hermann Grassmann (1809. - 1877.) (left) and Julius Plücker 
(1801. - 1868.)(right) [6, 7]

Plücker was a mathematician but also a physicist, as were most 
of the mathematicians in those days; his theory of line space 
was inspired by mechanics, as can be seen in his paper [8] from 
1866 where he connects system of forces to line complexes. 
We must mention F. Klein, one of the greatest mathematicians 

of 19th century, and his commentary [9] on Plücker’s papers 
from 1871, where he clarified certain perplexities and further 
connected line space geometry with rigid body mechanics.
Although mechanics was the starting point for line geometry, 
development of the geometry brought it further from 
mechanics and its results were no longer applied to practical 
problems. At the same time, unrelated to line geometry, graphic 
statics developed through papers by W. J. M. Rankinea [10], J. C. 
Maxwella [11, 12], C. Culmanna [13] and L. Cremone [14], after it 
first appeared at the end of 16th century in the work of S. Stevin 
(parallelogram and triangle of forces, the concept of funicular 
polygon) and P. Verignon (funicular polygon) in the 17th century. 
Maxwell and Cremona proved the validity of the construction 
of reciprocal figures (form diagram/funicular polygon and force 
diagram) by treating these plane figures as projections of dual 
polyhedra (such that vertices of one lie on the sides of the other 
and vice versa, (pair of dual tetrahedrons was discovered by 
Möbius [1]) but otherwise, all the procedures of graphical statics 
were planar. Regardless of this limitation, graphic statics was a 
very popular tool for engineers in the last third of 19th century 
and the first third of 20th century. 
There are three possible reason why graphic statics then, except 
in rare occasions [15, 16], wasn’t developed for space. Graphical 
procedures in space are much more complex, since they have to 
be done using (at least two) plane projections of spatial systems 
and visualizations of real spatial relations („return“ from drawing 
to space) can be very difficult, for some even impossible, task. 
Furthermore, if we exclude the problem of finding equilibrium, a 
system of forces in plane can be replaced either by one resultant 
force or by one resulting moment (force couple) whereas in 
space there is a third possibility: resulting force and resulting 
moment (with respect to a chosen point); only if the resulting 
moment is orthogonal to the resulting force can the system be 
replaced by a resultant.
Development of computers, computer graphics tools and 3D 
computer modelling brought forward the revival of graphic 
statics and the possibility for its application in spatial situations. 
Many papers were written on the extension of graphic statics 
to space and two main approaches emerged, polyhedral and 
vector. In the polyhedral approach, each force is represented by 
the side of a polyhedron orthogonal to the force’s line of action 
such that the intensity of the force equals the area of the side, 
[17, 18]. The vector approach is the direct extension of planar 
graphic statics to space: the forces are represented with vectors 
[19]. This way, the main property of graphic statics is preserved 
– perception of spatial relations. Namely, the aim of the “new” 
computer graphic statics is, for the most part, to create free-
form but equilibrating constructions [20]. The theoretical basics 
for construction of reciprocal diagrams, which rely heavily on 
projective geometry, are given in [21]. 
Line geometry provides the third possible approach to spatial 
graphic statics. As was shown in papers by Möbius, Plücker and 
Cayley, line geometry gives the theoretical background to the 
constructive geometric procedures for dealing with forces and 
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on the other hand, with the use of Grassmann algebra, these 
procedures can be translated to algebraic expressions and then 
into program code. 
Geometry of line space is presented in the third section, and the 
basics of projective geometry, necessary for its introduction, 
are briefly presented in the second section. As an example of 
application of line geometry in statics, we prove the known claim 
that a general system of forces in space can be replaced by two 
forces in the fourth section using line geometry based argument 
and show the solution to this problem via graphic statics.

2. Projective extension of Euclidean space

From the beginning of our education, we deal with Euclidean 
geometry – we learn the basic planar constructions using ruler 
and compass and later solve more complex planar and spatial 
problems using analytical method. We study such notions as 
distance, angle, parallelism and orthogonality. But there exist 
a variety of different types of geometries, and the one we will 
introduce and use in this paper doesn’t care about these notions 
and the only tool necessary for constructions is the ruler.
Projective geometry had a gradual development starting from the 
15th century, being the central topic for many mathematicians. 
Motivation for this type of geometry comes from renaissance 
fine arts, from geometric rules of central projection (perspective 
drawing) which is incorporated in the style of many renaissance 
paintings. In Da Vinci’s masterpiece The Last Supper (Figure 2) we 
can notice the main characteristic of this projection – parallel 
lines in space meet at a finite point in the drawing. 

2.1. Projective space

Historically, and still in the literature today, projective plane 
is studied in great detail and then the theory is extended to 
n dimensions [22, 24]. In this paper we deal exclusively with 
three-dimensional projective space. Therefore, we will omit the 
adjective “three-dimensional”. 

Basic elements of projective space are same as in the Euclidean 
space, namely, points, lines and planes. On the set of all basic 
elements we define the incidence relation, relation of belonging. 
For instance, the point A is incident to the line p if the point 
A belongs, lies on the line p, and symmetrically, the line p is 
incident with the point A if the line p passes through the point A. 
Beside the basic elements and the incidence relation, certain 
axioms are given to secure we have “enough” basic elements 
and to formally describe the incidence relation [24]. Such 
structure is called projective space. As an example, axiom A6 [24] 
guarantees the existence of elements outside one plane:
Axiom A6: If A, B and C are three non-collinear points (not all three 
incident to the same line), then there must exist a point D outside 
the plane determined by A, B and C (not all four incident to the 
same plane). 
The most important notion of projective geometry is duality, 
discovered simultaneously by J. V. Poncelet and J. D. Gergonne 
in the 19th century. Its statement in the projective space is as 
follows. 
Principle of duality in projective space: In every true statement 
of the projective geometry of space we can replace the notion of 
point with the dual notion of plane and vice versa, while the notions 
of line and incidence remain the same. The new statement will 
remain a true statement of projective geometry of space. Such two 
statements are called dual statements. 
As an example, the statement dual to axiom A6 states: If α, 
β and γ are three planes that do not contain a same line (not all 
three incident to the same line), then at least one plane δ exists 
that does not contain the common point of intersection of planes 

α, β and γ (not all four incident to the same 
point).

2.2. Extended Euclidean space

When we have at hand an abstract 
structure, as we currently have the 
projective space defined with axioms, we 
desire to find a geometric realization, a 
model of this structure. 
From the beginning of projective 
geometry, mathematicians wanted 
to find a model of projective space 
connected to the usual Euclidean space. 
We will now present the historical 
construction of extension of Euclidean 
space into projective space [24], which is 
still in use today, especially in the field of 

descriptive geometry [25]. We denote by E3 the real Euclidean 
space.
To every line of E3 we add, extend it by, one ideal point (point at 
infinity). For every line, its ideal point is its point of intersection 
with every line parallel to it. 
To every plane of E3 we add, extend it by, one ideal line (line at 
infinity). This ideal line of a plane contains all ideal points of all 

Figure 2. Leonardo da Vinci: The Last Supper, (1495-1498) [23]
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lines in that plane and it is the intersection line of that plane 
with all planes parallel to it.
Finally, to the space E3 we add, extend it by, one ideal plane (plane 
at infinity). This ideal plane contains all ideal lines of all planes in 
the space E3 and all ideal points of all lines in the space E3. 
It can be proven that this extension satisfies all axioms of the 
projective plane; this model is called the extended Euclidean space 
and we will denote it by P3(ℝ). In P3(ℝ)) there is no distinction 
between ideal and non-ideal elements.

2.3. Analytical model; homogenous coordinates

The axiomatic approach is limited to ruler constructions and for 
more complex needs we require more powerful tools. For this 
reason we introduce coordinates in P3(ℝ) [24]. 
The standard Cartesian coordinate system in E3 consists of the 
origin point O(0, 0, 0) and three pair-wise orthogonal coordinate 
axes (abscissa or axis x1, ordinate or axis x2 and applicate or axis 
x3) with prescribed unit lengths. Every point in E3  is represented 
with three coordinates (x1, x2, x3) which are precisely its 
projections to the coordinate axes. These coordinates are called 
affine coordinates of a point. 
Points in the extended Euclidean space P3(ℝ) have, beside 
the three mentioned, another coordinate, usually placed in 
the first place, so that the point in P3(ℝ) is represented with 4 
coordinates x0, x1, x2, x3,  such that not all x1 ∈ R are 0 and:

λ (x0:x1:x2:x3) = (λx0: λx1: λx2: λx3) = (x0:x1:x2:x3), λ≠0, λ ∈ ℝ  (1)

Thus, the point is represented by a class of ordered four-
tuples of real numbers (x0:x1:x2:x3) that are called homogenous 
coordinates of a point.
Ideal points are characterized by x0 = 0 and using (1) we write 
their coordinates in the form , which shows they must 
lie in one plane since they make a two-parameter set of points. 
Non-ideal points must have xo≠0 and it is common to put x0=1. 
They are in bijective correspondence with points of E3, from 
the homogenous coordinates (1:x1:x2:x3) of a point in P3(ℝ) we 
can read out the affine coordinates (x1,x2,x3) of the same point 
observed as a point in space E3.
In the analytic, point based geometry of E3, the plane is given as 
the loci of points given by the equation:

Ax1+Bx2+Cx3 = D  (2)

From this equation we read that a plane intersects the 
coordinate axes at points with affine coordinates ,  
and , and following the definition of point coordinates we 
may try to use the triplet   as plane coordinates until we 
realize that all planes through the origin point would be 
represented by the same triplet (0, 0, 0).
On the other hand, in the extended Euclidean space P3(ℝ) a 
plane is dual to a point and we can introduce coordinates for 
planes in the following way; every plane is represented as a 

class of ordered four-tuples of real numbers ( 0: 1: 2: 3) such 
that not all i ∈ ℝ are 0 and:

λ ( 0: 1: 2: 3) = (λ 0: λ 1: λ 2: λ 3) = ( 0: 1: 2: 3), λ≠0, λ ∈ ℝ (3)

A point x = (x0:x1:x2:x3) and a plane  = ( 0: 1: 2: 3),  both given 
by their homogenous coordinates, are incident if and only if:

x0 0 + x1 1 + x2 2 + x3 3 = 0 (4)

and the symmetry of the equation (4) reflects the duality in the 
projective space. 
Equation (4) also shows that the ideal plane has the coordinates in 
the form ( 0:0:0:0) with 0 ≠ 0, while all other planes are uniquely 
determined by their homogenous coordinates; the triple ( 1, 2, 3) 
represents the normal line of the plane and the coordinates of 
planes through the origin point are characterized by 0 = 0. 

2.4. Algebraic geometry of the projective space

From the definition of homogenous coordinates (1) of the points 
in P3(ℝ) we see that the mapping:

(x1, x2, x3) → (1:x1:x2:x3) (5)

is an embedding of three-dimensional vector space ℝ3 into 
P3(ℝ).
To define the action of a polynomial f at a point of the projective 
space given by homogenous coordinates as in (1), the following 
must hold:

f(λx0: λx1: λx2: λx3) = λ4f(x0:x1:x2:x3), λ≠0, λ ∈ ℝ (6)

Polynomials in four variables that satisfy the condition (6) are 
called homogenous polynomials of degree 4, and a point x = 
(x0:x1:x2:x3) is a root of the homogenous polynomial f if f(x0, x1, 
x2, x3) = 0.
Sets consisting of roots in P3(ℝ) of one or more homogenous 
polynomials are called algebraic sets [26]. Those algebraic sets 
that can be defined by one equation are called algebraic surfaces  
[25]. 

2.5.  Polarities and null systems in the extended 
Euclidean space 

There are two main types of transformations in the 
projective space [24]. First, the automorphisms of the 
space – bijective transformations that preserve the 
incidence relation; every point is transformed into another 
point such that collinear points have collinear images. Such 
transformations are called projective collineations. Their 
action on the set of points determines their action on the 
sets of lines and planes since a line can be determined by 
two and a plane by three points and the preservation of 
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incidence relation guarantees that the image of a line is a 
line and the image of a plane is a plane. 
All projective collineations of the extended Euclidean space 
P3(ℝ) form a group (an algebraic structure on a set with 
one defined operation; the inverse and the composition of 
collineations will again be a collineation) and this group is 
isomorphic to the group of regular 4×4 real matrices, precisely 
to its quotient by the group of real diagonal 4×4 matrices, 
since every such diagonal matrix will correspond to the identity 
collineation. Therefore, the group of projective collineations of 
P3(ℝ) is the projective linear group PGL4(ℝ) = GL4(ℝ) ∕ λℝ4. 
Duality between points and planes in the projective space brings 
forth the other type of transformations of projective space and 
these are the bijective transformations from the set of points to 
the set of planes which preserve incidence relation. These type of 
transformations are called projective correlations. Line, determined 
by two points, is transformed by a correlation to the intersection 
line of the planes that are the images of the two defining points. 
The inverse transformation of a correlation is again a correlation 
while the composition of two correlations is a collineation.
We call the points lying in a plane which is the image of some 
point A conjugate to the point A, and those points lying in their 
own image plane are called self-conjugate. Pairs of associated 
lines are called conjugate lines. 
Those correlations that are involutions, transformations that 
composed to themselves give identity map, are called polarities  
[24, 27, 28].

2.5.1 Analytic approach

We represent a point x = (x0:x1:x2:x3) by a vector x = (x0, x1, x2, x3)
T a plane  = ( 0: 1: 2: 3) by a vector = ( 0: 1: 2: 3)T and 
rewrite the condition of incidence (4) in the matrix form as:

xT  = 0 ili Tx = 0 (7)

Let ϱ be a correlation of the extended Euclidean space P3(ℝ). 
The restriction of this transformation to the set of points (which 
will be denoted as v’ to emphasize that the codomain is the set 
of planes) can be represented by a regular real 4×4 matrix [28]:

ϱ... ’ = Ax,  det(A) ≠0 (8)

The same is true for the restriction of ϱ to the set of planes, we 
again have a 4×4 regular matrix such that:

ϱ’...x’ = B ,  det(B) ≠0 (9)

Since the incidence relation must be preserved, (7), (8) and (9) 
imply:

(Ax)TB  = 0 /T

 (10)
T(BTA)x = 0.

and it follows that B = A-T, if the matrix A represents the 
restriction of the correlation to the set of points, then A-T will 
be the matrix corresponding to the restriction of the same 
correlation to the set of planes.
If ϱ is a polarity, an involuntary correlation, then ϱ’∘ ϱ = π, where 
π is the identity collineation, from (7), (8) and (9) we read π…x’=A-

TAx and the property of homogenity of coordinates implies A-TA 
= λId, therefore, λ = ±1. If λ = 1, then the matrix A is symmetric, 
i.e. A=AT, while in the case λ = -1 it is skew-symmetric, i.e. A = AT. 
Polarities defined by symmetric matrices can be of three types 
[28], with respect to the existence of self-conjugate points. 
Given a point x, all points  conjugate to x must satisfy the 
equation:

yTAx = 0 (11)

Self-conjugate points are characterized by:

xTAx = 0 (12)

and equation (12) defines a quadric in P3(ℝ).

Polarities defined by skew-symmetric matrices are called null 
polarities (null systems). In the case of null polarity, all points 
are self-conjugate and we have the following terminology; a 
point is called a null point of its corresponding plane, and the 
plane is called the null plane of its corresponding point [29]. If 
a line is determined by two points, its corresponding line is the 
intersection line of their null planes. If a line lies in a null plane 
of any of its points, then the correlation maps it to itself and we 
call such lines null lines. 

3. Line space 

In subsection 2.3 we defined homogenous coordinates for 
points and planes in the extended Euclidean space P3(ℝ) so we 
can consider either of them to be “basic“ objects. On the other 
hand, lines are derived objects and can be observed as join of 
two points or dually as meet of two planes. In terms of projective 
geometry, a line is a carrier of its range of points, consisting of 
all points incident with the line or dually a line is a carrier of a 
pencil (sheaf) of planes, consisting of all planes incident with 
the line. If we want to have a geometric reinterpretation of the 
extended Euclidean space P3(R) such that lines become “basic” 
elements, then line geometry is the answer to our desire.
Skup svih pravaca proširenoga euklidskog prostora P3(ℝ), 
zajedno s relacijom incidencije, to jest geometrijskom 
strukturom naslijeđenom iz projektivnoga prostora P3(ℝ), 
nazivamo pravčastim prostorom.
The set of all lines of the extended Euclidean space P3(ℝ), 
together with the inherited incidence relation, is called line 
space. In the three-dimensional projective space P3(ℝ) both the 
set of points and the set of lines are three-parameter set, as 
can be seen from their coordinatizations, and we say that P3(ℝ) 
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contains  points and  planes. But the set of lines is bigger! A 
pencil of lines through a point i.e. all the lines that are incident 
with one point, has ∞2 lines. Since every line lies in ∞ pencils, 
because it carries a range of points, we count that there are ∞3 

· ∞2/∞1 = ∞4 lines in P3(ℝ). 
Objects of interest in the extended Euclidean space P3(ℝ) are 
continuously connected sets of points, namely, curves (sets 
of ∞1 continously connected points, i.e. one-parameter sets 
of points) and surfaces (sets of ∞2 continously connected 
points, i.e. two-parameter sets of points). In line space, we are 
interested in similar types of formations [28, 29]:

 - ruled surface: set of ∞1 continuously connected lines, i.e. 
one-parameter set

 - congruence: set of ∞2 continuously connected lines, i.e. two-
parameter set 

 - complex: set of ∞3 continuously connected lines, i.e. three-
parameter set.

Ruled surfaces are surfaces in the common meaning, sets of 
points, and they were studied long before line space came to be. 
On the other hand, congruences and complexes never had such 
attention. One reason is the complexity of their structure, given 
that as sets of points they are equal to the whole space which 
makes their visualisation extremely complicated. 
They appeared as objects of interest in Plücker’s paper [3] from 
19th century where he first considered lines as basic object 
in space, following Grassmann’s idea on coordinatization of 
linear r-dimensional subspaces of vector spaces of dimension 
n, r < n, and by studying linear and quadratic equations in line 
coordinates he defined line congruences and complexes. 

3.1. Plücker coordinates of a line

Choosing a coordinate system for the extended Euclidean 
space P3(ℝ) is equivalent to choosing a basis for the vector 
space ℝ4. Let e0, .., e3 be a basis for ℝ4. The outer product is an 
operation which takes two vectors and assign to them a new 
vector in another vector space which we denote by Λ2ℝ4, and 
the resulting vector of the two vectors x, y ∈ ℝ4, their outer 
product, will be denoted by x ᴧ y. This operation must satisfy 
the following two properties for all vectors  x, y, z ∈ ℝ and all 
real numbers α, β:

x ᴧ (αy+ βz) = αx ᴧ y+x ᴧ βz i (αx+ βy) ᴧ z = ᴧ αx ᴧ z+ βy ᴧ z (13)

property called bilinearity, meaning the operation is linear in 
both arguments, and

x ᴧ y = -y ᴧ x (14)

property called skew-commutativity [4]. 

The two properties (13) and (14) guarantee that the space Λ2ℝ4 
is six-dimensional ([28], lemma 2.1.1), and the following six 
vectors make a basis:

e0 ᴧ e1, e0 ᴧ e2, e0 ᴧ e3, e2 ᴧ e3, e3 ᴧ e1, e1 ᴧ e2 (15)

If a point in P3(ℝ) is represented as an ordered four-tuple of real 
numbers, or equivalently as a vector x = (x0, x1, x2, x3), then its 
basis representation in ℝ4 is ,. Basis representation of 
the outer product of two points x and y if the basis is given as in 
(15), is as follows:

x ᴧ y = (x0y1-x1y0) e0 ᴧ e1 + (x0y2-x2y0) e0 ᴧ e2 + (x0y3-x3y0)e0 ᴧ e3 

+ (x2y3-x3y2) e2 ᴧ e3 + (x3y1-x1y3) e3 ᴧ e1+ (x1y2-x2y1) e1 ᴧ e2    (16)

Coefficients appearing in (16) can be interpreted as 2×2 sub-
determinants of 2×4 matrix

 (17)

If coefficients in (16) are denoted by lij, meaning they correspond 
to the basis vector ei ᴧ ej, then an element of the form

L = (l01, l02, l03, l23, l31, l12) ∈ Λ2ℝ4 (18)

will correspond to a line in P3(ℝ) if and only if ([28], lemma 
2.1.2):

l01l23 + l02l31 + l03l12 = 0 (19)

The relation (19) is called Plücker identity.

If a line is defined as a join of two points, then the coefficients of 
the vector x ᴧ y in (16) are called Plücker line coordinates. Should 
we choose a different pair of points in the span determined by 
the line, then the new coordinates will differ from the previous 
ones by the same scalar factor ([28], lemma 2.1.2.). Hence, we 
denote the Plücker line coordinates in the homogenous form

(l01 : l02 : l03 : l23 : l31 : l12) = ( ) (20)

With l = (l01, l02, l03) and  = (l23, l31, l12). 

If a line L is given as a meet of two planes with homogenous 
coordinates as in (3), or in vector form as u = (u0, u1, u2, u3) and v 
= (v0, v1, v2, v3) in ℝ4, then, like in (16), we can define their outer 
product u ᴧ v,  and this vector is denoted by

(l*01, l*02, l*03, l*23, l*31, l*12) = u ᴧ v (21)

Dual Plücker line coordinates of the line L (axial coordinates) are 
given by (l*01, l*02, l*03, l*23, l*31, l*12)  and the following identity 
holds ([28], lemma 2.1.4):

(l*01, l*02, l*03, l*23, l*31, l*12) = (l*23, l*31, l*12, l*01, l*02, l*03) = ( , l)  (22)

With (l, ) being Plücker line coordinates of the line L as in (20).
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3.2. Klein model

In the former subsection 3.1 we attached to each line in P3(ℝ) 
an ordered homogenous six-tuple of numbers (20), but from all 
possible six-tuples, only those that satisfy (19) correspond to 
lines of P3(ℝ). That way, a mapping can be defined from the 
set of lines to the five-dimensional projective space P5(ℝ)
such that a line is mapped to a point of P5(ℝ) defined by line’s 
homogenous coordinates. First person who was aware of this 
map was Felix Klein, hence the mapping has the name the Klein 
mapping. 
The relation (19) can be viewed as a quadratic equation in 
Plücker coordinates and it defines a quadric in P5(ℝ) which is 
called the Klein quadric and we denote it by M2

4. The following 
theorem holds ([28], Theorem 2.1.6):
Set of lines of the extended Euclidean space P3(ℝ) is in bijective 
correspondence, via the Klein mapping, to the set of points in the 
Klein quadric M2

4 ⊂ P5(ℝ).
Thus we have a point model of line space.

3.3. Linear complexes and null systems 

In subsection 2.5.1. we defined a null polarity as a polarity where 
all points are self-conjugate and we introduced the terminology 
of null points, null lines and null planes. Using analytical method, 
null polarity is defined by a skew-symmetric 4x4 real matrix. A 
skew-symmetric matrix A = (aij)0≤i, j≤3  is such that ii = 0 and aij = 
-aji hence it is defined by six parameters a01, a02, a03, a23, a31, a12. 
We introduce the following notation:

ā = (a01, a02, a03) i a = (a23, a31, a12) (23)

A null line is a self-conjugate line, an invariant line. Such lines lie 
in the null plane of one of its points. A line is a null line if and only 
if the line is a join of two conjugate points, since it must be the 
intersection line of their null planes and these two planes must 
contain the original two points. 
Every point in space carries a pencil of null lines consisting of all 
lines incident with the point’s null plane. We see that there is ∞3 
null lines in space and they form a linear complex [29]. We will 
prove the existence of this complex via the analytical method. 
We can characterize null lines using their homogenous 
coordinates L = (l, ) defined in (20):
If a null system is given by a skew-symmetric matrix A = (aij)0≤i, j≤3 , 
then a line L is a null line if and only if

ā ·l + a·  = 0 (24)

The proof of the former claim is strictly computational; we look 
at a null line as a join of two conjugate points and the claim 
follows from the condition for point conjugacy (13) and the 
definition of line’s homogenous coordinates as outer product of 
the two points (16) ([28], lemma 3.1.2.).

The image L’ = (l’, Ī’) of the line L by a null system defined with a 
skew-symmetric matrix A = (aij)0≤i, j≤3 is given by

(l’, ’) = (a · ā) (l, ) - ( ā · l + a · )(a, ā)  (25)

and the associated pair of lines L and L’ is called reciprocal pair.

The equation (24) is a linear equation in Plücker line coordinates 
and the set of lines L that satisfy the equation is called a linear 
line complex. The vector (a,ā) is called the homogenous coordinate 
vector of the complex L. 
If the vector (a, ā)) corresponds to a line in P3(ℝ), which means 
it satisfies the Plücker identity (19), then we say that the linear 
complex L is a singular linear complex and it consists of all lines 
in P3(ℝ) that intersect the line (a, ā), which is then called axis of 
the singular linear complex. The matrix A = (aij)0≤i, j≤3 obtained as 
in (23) is in this case singular and it cannot define a null polarity 
because of (19).
If the vector (a, ā), defines a null polarity, then the linear complex 

 is called a regular linear complex.

3.3.1. Geometry of the null system

All lines belonging to a regular linear complex  are null lines of the 
attached null polarity. All remaining lines  in space, not belonging 
to the complex , have a reciprocal line L’ such that the null plane of 
every point incident with L contains the line L’ and vice versa, all 
planes incident to the line L have null points on the line L’. 
If a line in space has an ideal line as the reciprocal line, then 
we call it a diameter of the null polarity. Planes incident with a 
diameter have ideal points as their null points and such planes 
are called diameter planes. All diameters pass through the null 
point of the ideal plane, therefore, there are ∞2 diameters in 
every null polarity and they are all mutually parallel [29].
Let (a, ā) be the homogenous linear vector of a null polarity. If  
L = (l, ) is a diameter of that null polarity, then we must have 
l=a, since (23) and l’ = (0, 0, 0) imply

 (26)

Null plane of every point lying on a diameter must contain its 
ideal reciprocal line, therefore, we can attach to each diameter 
a pencil of mutually parallel planes. There exists one diameter 
orthogonal to its attached pencil of parallel planes and we call 
that diameter axis of null polarity. 
The following claim is true ([28], theorems 3.1.6. and 3.1.9.):
Plücker coordinates of the axis of null polarity are given by

(a, ā - (a· ā/a2)a) (27)

where (a, ā) is the homogenous linear vector of that null polarity. 
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4. Applications in statics

Geometric interpretation of Plücker coordinates of lines in P3(ℝ) 
can be grasped through the standard metric of the Euclidean 
space E3 and algebraic structure of the vector space ℝ3.
Ordered triplets l = (l01, l02, l03) and  = (l23, l31, l12)  corresponding 
to Plücker coordinates of line L = (l, ) can be interpreted as 
vectors in ℝ3 and then the identity (19), which can be rewritten 
in the vector form as l·  = 0, is precisely the condition of 
orthogonality of these two vectors.
Ideal point of the line L = (l, ) is the intersection point of that 
line and the ideal plane. Using Plücker line coordinates and 
homogenous coordinates of the ideal plane (1:0:0:0) we can 
compute that the homogenous coordinates of line’s ideal point 
are (0:l01:l02:l03). In the context of the vector space R3 we see 
that the direction of the line L is determined with the vector l, 
since line’s ideal point is the intersection point of that line with 
every line parallel to it.
If a line is given as a join of one (non-ideal) point x = (1:x1:x2:x3)  
and its ideal point (0:l01:l02:l03), we get the following vector 
equality in ℝ3:

 = x · l (28)

where x = (x1:x2:x3) ∈ ℝ3 is the vector of affine coordinates of 
the point x. Hence we have the following:
If S is a force acting along line  , with intensity  and placed at the 
point x, then the vector  is the moment vector of this force with 
respect to the origin point.
In other words, a force can be represented as 

S = (s, s̄) (29)

Where s is the force vector and s the moment vector relative to 
the origin. The representation (29) is called force coordinates of 
the force S. Force coordinates are not homogenous since the 
force is, beside the line of action, determined by its intensity and 
orientation, and on each line in space we have ∞1 forces. In total, 
there are ∞5 forces in space.

4.1. Statical equivalence and linear complexes

If a system of forces (si, s̄i) acting in space is given, then we say 
it is equivalent to another system (gj, ḡj) if:

∑si = ∑gj i ∑s̄i = ∑ḡj (30)

Let (si, s̄i), be a system of forces and let . We call (r, r̄) =(∑si, ∑s̄i) 
the principal system (relative to the origin).
We say that a system of forces is generic if:

r ≠ (0, 0, 0) i r·r̄ ≠ 0 (31)

A generic system of forces cannot be reduced to a single force 
(resultant force), since the second condition says that (r, r̄) is 

not a line, because it fails the Plücker identity (19), therefore, the 
principal system (relative to the origin) is composed of a principal 
force and a principal moment (relative to the origin). If the second 
condition is not satisfied, r·r̄ = 0, or, geometrically, if the force 
vector and the moment vector are mutually orthogonal, then 
the system can be reduced to one resultant force. If the system 
doesn’t satisfy neither of the two conditions, then we have two 
possibilities: if r̄ = (0, 0, 0) then the system is in equilibrium, and 
in the second case if r̄≠(0, 0, 0) the system can be reduced to a 
resultant couple with moment vector rr̄. 
The moment of the force S = (s, s̄)  relative to a point p given by 
affine coordinates p = (p1, p2, p3)  is computed as

s̄p = s̄ - p × s (32)

Basic principles of statics (see for instance [30]) tell us that 
computation of the principal moment of a system of forces (si, 
s̄i) relative to a point p can also be done using (32), as long as we 
replace (s, s̄) with (r, r̄). 
Principal moments relative to different points can only differ 
by a component orthogonal to the line of action of the principal 
force, as we see from (32). Vector product of parallel lines 
vanishes, therefore, principal moments relative to points lying 
on a line parallel to the line of action of the principal force will be 
the same but will differ for different parallel lines. 
Components of the principal moments parallel to the principal 
force are equal, therefore, principal moments parallel to the 
principal force must have the lowest intensity and these are 
the moments lacking a component orthogonal to the principal 
force. Also, the points relative to which these moments are 
taken must lie on a line parallel to the principal force (and also to 
the moments) and this line is called the central axis [30]. Unlike 
the force vectors which are “line bound”, moment vectors are 
free vectors, nevertheless, we visualize them as acting at the 
points relative to which they are taken. Thus visualized moment 
vector field is “governed by” a rotational symmetry about the 
central axis.
Principal moment relative to a point p lying in a plane orthogonal 
to the central axis (intersection point o of this plane and the 
central axis excluded) can be resolved into one component lying 
in the plane and another component orthogonal to the plane. 
The component in the plane is orthogonal to the central axis and 
also to the joining line of the intersection point o and the point 
p. As we mentioned, the components orthogonal to the plane 
are all equal. On the other hand, intensities of components 
lying in the plane increase proportionally as we go further from 
the intersection point, but are equal on a circle with centre o. 
Principal moments with respect to the points on this circle have 
the same slope (Figure 3.), which depends on the intensity of 
the principal force and principal moment (relative to the point 
o) and on the radius of the circle – the greater the radius, the 
smaller the slope. If we visualize these moments, we see that 
they lie on one system of rulings of a rotational hyperboloid 
whose central axis is the central axis of the system of forces 
while the smallest circle of latitude of the hyperboloid is the 
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circle defining the slope (Figure 4.) and plane components of 
moment vectors lie on tangents to the circle.

Figure 3.  Principal systems with respect to points lying in a plane 
orthogonal to the central axis

Figure 4.  Congruence of lines that carry the principal moments relative 
to the points in a plane if the moments are positioned in that 
points

When the plane is translated in the direction of the central 
axis, the figure remains the same (Figure 5). The lines carrying 
the principal moments relative to the points of the plane 
(if we place them at corresponding points) will form a line 
congruence which will contain all rulings from one system of 
rulings of a series of hyperboloids having the same central axis 
and concentric smallest circles of latitude (Figure 4), while the 
lines carrying principal moments with respect to all the points 
in space will form a line complex. (Program functions used for 
creation of figures 3, 4 and 5 are written in SageMath software 
[31]).
This line complex in not the regular linear complex R attached to 
the null polarity defined by the homogenous linear vector (r, r̄)  
in the sense of subsection 3.3 (it is not even linear). 
Magnitude of the moment of the force (s, s̄) about an oriented 
line (c, c̄) is defined by

 (33)

while the magnitude of the moment of the system of forces (si, 
s̄i) can be computed by the same expression if we replace (s, s̄)  
by the principal system (r, r̄). 
Condition for vanishing of the moment of the system of forces 
with the principal system (r, r̄) about an oriented line  is 

c· r̄+ c̄·r = 0 (34)

If we replace (r, r̄) by (a, ā) and (c, c̄) by (l, ) in the former 
expression, we see it is precisely the expression (24) used to 
characterize null lines of a null polarity, i.e. the lines of a regular 
linear complex. Therefore, the complex R consists of all lines in 
space, with given orientation, such that the moment of the 
system of forces (si, s̄i) vanishes, and this was the motivation 
for Möbius to give the term null lines to such lines in his paper 
[1]. The axis of the linear complex given by (27) is the central axis 
of the system of forces. 

Figure 5.  Principal moments relative to points of parallel planes 
orthogonal to the central axis

To visualize the complex ℛ, in the “point of application” of each 
principal moment (Figures 3, 4 and 5) we visualize a plane 
orthogonal to the moment. This plane is the null plane of the 
“point of application” and the “point of application” is the null 
point of the plane. Pencil of lines through the “point of application” 
lying in that plane is a pencil of null lines; these are the only null 
lines incident either to the point or to the plane. Null lines must lie 
in this plane and the reason is the following: principal moments 
can be replaced by a force couple in this plane; the moment of 
the couple about a line vanishes only if both forces of the couple 
intersect the line. Since the principle system contains both the 
principal moment and the principal force, moment about any line 
will vanish only if the principal force intersects this line.
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The following claim is also true ([28], Proposition 3.4.8.):
A generic system of forces with principal system (r,r) is statically 
equivalent to a system of two forces, such that the forces act along 
a pair of reciprocal lines of the regular linear complex R.
The proof goes as follows.
There are infinitely many lines in space not belonging to the 
complex R defined by the homogenous linear vector (r,r). Let L 
be a line not belonging to R such that its conjugate line in the 
attached null polarity is not ideal. Let L = (l, ) denote Plücker 
coordinates of this line. From (24) we see that θ = m̄·l+m· Ī ≠0. If 
we put φ = r· r then φ≠0. By applying (25) we can find the 
Plücker coordinates of the conjugate line to be (l’, ) = φ(l, Ī)- 
θ(r, r̄). 
Finally, the equivalence of the given system and the system of 
two forces lying on the reciprocal pair L and L’ follows from the 
equation:

 (35)

4.2. Applications of spatial constructive procedures

In the paper [32] we have described graphical procedures, based 
on geometrical constructions, for replacing a system of forces 
with an equivalent one, which can be regarded as partial three-
dimensional extensions of the construction of funicular polygon.
Geometric constructions used are based on the following two 
principles:
Principle 1: Single force can be resolved into two components along 
two given lines if and only if its line of action and the two given lines 
are concurrent and coplanar (Figure 6.). In this case, the system 
consisting of one force defines a singular linear complex that 
consists of all lines intersecting the force’s line of action.

Figure 6.  Resolving a force S into two components S1 and S2 using 
parallelogram rule

Principle 2: When constructing funicular polygon, each of two given 
forces is resolved into two components in such a way that one 
component of the first force and one component of the second force 

cancel each other (these two components lie on the same line and 
are equal in magnitude, but opposite in sense) (Figure 7.). 

Figure 7. Replacing a system of two forces

By the principle 1, the force and the resolving components lie in 
the same plane. On lines s1 and s2 lines of action of forces S1 and 
S2, we choose two points A1 and A2, one on each line. The force 
S1 is resolved by principle 1 in the point A1 into components S11 
and S12 lying in the plane σ1, determined by the point A2 and 
the line s1, whereas the force S2 is resolved in the point A2 into 
components S21 and S22 lying in the plane σ2, determined by the 
point A1 and the line s2, in such way that the components S12 
and S21, that must lie on the intersecting line of the two planes, 
cancel each other.

4.2.1.  Generic system of three forces with skew lines of 
action

A generic system of three forces lying on three skew lines will 
be replaced by a system of two forces lying on reciprocal lines. 
Geometric construction is as follows (Figure 8.):
Three given forces S1, S2, S3 act along lines s1, s2, s3. By the 
formerly described procedure we replace forces S1 and S2 with 
force S11 and force S22, which will be denoted by S23 for the sake 
of clarity. 
The intersection point of the third line s3 and the plane σ2 will 
be denoted by A3 and we resolve the force S3 acting at the point 
A3 in the plane σ3, determined by the line s3 and the point A2, 
by the first principle into components S32 and S33 in such way 
that, by the second principle, the components S23 and S32, lying 
on the intersection line of the two plane, cancel each other. 
We have replaced the system S1, S2, S3 with an equivalent 
system of two forces S11=R1 and S33=R2 that act along a pair of 
reciprocal lines of the null system defined by the given system 
of forces. 
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When a generic system consists of more than three forces, the 
“classical” procedure of constructing a planar funicular polygon 
cannot be used since neither one of lines of action of forces S11 or 
S33 will intersect the line of action of the fourth force. However, 

we can apply the previously described procedure to the system 
consisting of this fourth force and the two forces S11 and S33. 
Thus, every generic system of forces in space can be replaced 
by two forces such that their lines of action are reciprocal lines.

4.2.2.  Generic system of two 
forces 

Given any generic system of two forces, 
conditions (31) imply that forces’ lines 
of action must be skew and make a 
reciprocal pair in the attached null 
polarity. 
Such system can be replaced by an 
equivalent system such that certain 
elements of the system are fixed, given 
in advance. So far we have shown how 
a system of two forces can be replaced 
with another system of two forces such 
that one of the forces passes through a 
given point and the other lies in a given 
plane (the point mustn’t lie in the plane) 
and discussed the two special cases 
(case of an ideal point or ideal plane) or 
such that one force’s line of action is 
given [32].
If one line of action is given, we know that 
the other force acts along the reciprocal 
line, therefore, this particular procedure 
can be used as the geometrical procedure 
of finding the reciprocal line of a given 
line when a null polarity is given. Since 
this construction is on point regarding 
this paper, we will repeat it here (Figure 
9.):
Let s0 be the given line and S1, S2 given 
forces acting along lines s1, s2. We choose 
two points A1 and A2 , one on line s1 and 
the other on s2 and denote the line joining 
them by s12. We resolve S1 at the point A1 
by principle 1 into component S11 lying on 
the intersecting line s01 of the plane σ0, 
determined by the point A1 and a line s0, 
and the plane σ1, determined by lines s1 
and s12, and the component S12 on the line 
s12. By the same principle, we resolve the 
force S2 at the point A2 into components 
S21 and S22 in such a way that S12 and S21  
cancel each other by principle 2, which 
determines the component S22. Thus, we 
have replaced the system S1, S2 with the 
system S11, S22.
We denote by A0 the intersection point 
of the given line s0 with the line s01. The 

Figure 8.  Graphical procedure for replacing three forces with two forces lying on conjugate 
lines

Figure 9.  Replacing two forces with a force R1 lying on a given line and its reciprocal force R2 
[32]
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lines s0, s01 and the line s03 the intersecting line of the planes σ0, 
determined by lines s0 and s01, and σ3, determined by the points 
A0 and s22, line of action of the force S22, are coplanar (all lie in 
the plane σ0) therefore, we can define the force R1 lying on the 
line s0 by its two components R11, lying on the line s01 and equal 
to S11, and R12, acting on a line s03. 
The force R2 is determined by application of parallelogram rule 
from forces R22 equal to force S22, and component R21. Line s03 is 
the intersecting line of planes σ0 and σ3 that contain forces R1 
and R2 as well as their resolving components, hence, by principle 
2, R21 and R12 are equal in magnitude, but opposite in sense.
Two forces R1 and R2 which determine a system equivalent to 
the system S1, S2 are lying on a pair of reciprocal lines, i.e. the line 
of action of R2 is conjugate to the given line s0. 
As we have mentioned earlier, by means of Grassmann algebra 
we can directly translate geometrical construction procedures 
into algebraic expressions and finally into program code. All 
examples in Figures 7, 8 and 9 are produced using a computer 
program developed with computer graphic tools Rhinoceros3D 
[33], its plug-in Grasshopper, a visual programming tool [34], 
and GHPhyton, a Grasshopper plug-in and Python interpreter 
[35].
We can use numerical input data from these examples and 
produce analytical description of the null polarity, in a way 
presented in subsection 3.3 and 4.1, to numerically verify that 

lines of action of resulting forces are conjugate, i.e. are acting 
along a reciprocal pair of lines. 

5. Conclusion

In this paper we deal with line geometry using a combination 
of synthetic, analytic and algebraic methods. We defined 
the notion of projective space and work in its model, the 
extended Euclidean space, where we introduced homogenous 
coordinates for both points and planes, following the duality 
principle of the projective space. We analytically defined 
projective transformation of the space, projective collineations 
and projective correlations. 
We have then defined the line space as the set of lines of the 
extended Euclidean space, introduced coordinates on this 
set following Grassmann’s idea of outer product and showed 
that the line space has a point model in five-dimensional 
projective space. We analytically studied linear complexes and 
their connection to null polarities, correlations of the extended 
Euclidean space that are involutions.
In the final section we showed the connection of generic systems 
of forces (systems that cannot be reduced to a single force) and 
regular linear complexes, i.e. null polarities. We presented how 
tools of line geometry can be utilized in solving static problems 
of replacing systems of forces with equivalent simpler systems.
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