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Abstract. In the present article, we give a Bézier variant of Paltdnea operators, which
involves Gould-Hopper polynomials. First, we investigate the rate of convergence by using
Ditzian-Totik modulus of smoothness, weighted modulus of continuity and also for a class
of Lipschitz function. Furthermore, we obtain the quantitative Voronovskaja type theorem
in terms of Ditzian-Totik modulus of smoothness. In the last section, we study the rate of
point-wise convergence for the functions having a derivative of bounded variation.
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1. Introduction

In approximation by positive linear operators, Szasz operators play a significant
role. Several authors have investigated many amusing properties of these opera-
tors. In order to approximate integrable functions, Durrmeyer and Kantorovich
type amendments have been explored as well. Jakimovski and Leviatan general-
ized Szdsz operators in [10] by using Appell polynomials. Afterwards, Ismail [9]
presented another generalization of Szdsz operators by means of Sheffer polyno-
mials. A link between positive linear operator and orthogonal polynomials was
introduced by Varma et al. in 2012. In [24], they formulated Sz&sz operators con-
cerning Brenke polynomials and demonstrated that these polynomials incorporate
Appell polynomials and Gould-Hopper polynomials. Later on, many adaptations
of Szasz operators have been recognized by using different orthogonal polynomials.
Sucu [21] generalized the Szész operators by utilizing Boas-Buck type polynomials.
Varma and Tagdelen [25] determined a link between Szdsz operators and Charlier
polynomials and established approximation and convergence results. Also, Varma
gave another generalization of Szdsz operators by means of multiple Appell poly-
nomials in [26]. Tagdelen et al. [23] introduced a Kantorovich type modification of
Szasz operators based on Brenke type polynomials and examined the rate of con-
vergence. Mursaleen et al. considered Cholodowsky type modifications of Szdsz
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operators involving Brenke polynomials [15] and Durremeyer-Jakimovski-Leviatan
operators [17] and studied their approximation properties. They also gave another
generalization of Szész operators involving (p, ¢)-integers, g-Appell polynomials and
multiple Appell polynomials in [16], [18] and [1], respectively. Mishra and Gandhi
[13, 14] presented a summation integral type modification of Szdsz operators and
studied simultaneous approximation and convergence properties of these operators.

It is well known that Bézier curves are the mathematically defined curves succes-
sively used in computer-aided geometric design (CAGD), image processing and curve
fitting. The miscellaneous Bézier variant of operators is crucial subject matter in
approximation theory. In 1983, Chang [3] pioneered the Bernstein-Bézier operators.
Afterwards, several researchers established the Bézier variant of various operators
[7, 8, 12].

For « > 0, p > 0 and # € R = [0,00), Paltanea [20] recognized the two
parameter summation-integral type modification of Szdsz operators as

L(fi2) = 3 sam(@) / 07, (u) f(u)du + e~ £(0), (1)
m=1
where
sem(x) = e~ (ani)!m’
O () = iy € (o)™

and f is an integrable function for which formula (1) is well defined for every x > 0.
Recently, in [6], the authors acknowledged the Jakimovski-Leviatan-Paltanea-
Bézier operators and presented some direct approximation theorems and the rate
of convergence for the functions having a derivative of bounded variation. Moti-
vated by this, we introduce the Bézier-Paltanea operators based on Gould-Hopper
polynomials and study further in this direction.
A generating function of the Gould-Hopper polynomials is given by (see [5])

a1 e tk
eht et = Zéﬁf“(% h)yv (2)
k=0
where
(] 5l
d+1 h) = . Be k—(d+1)s
g (@, 1) ; sl(k — (d+1)s)! * ’

h >0 and [.] denotes the integer part.

ForneN, p>0, 6 >1 and all real-valued continuous and bounded functions f
on Rar, we propose Bézier-Paltanea operators based on Gould-Hopper polynomials
as

G (fa) = 30X () / 07 () f(w)du+ X2 ()f0),  (3)
k=1
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where
Xﬁ:i,m) = (G @) = (G @),
4 il Zlnh] =0,1,2,3,...,
18 () =e o h 7gz+1ij,h) (4)
and
o) x(u) = Zl:p) SeT"PY (npu)RPTL, (5)

(ff’h)k(x) satisfies the following important properties:
L. C’r(ll,h,k(x) - C’r(ll,h,k+1(x) = l'(rihh,k(m% k= Oa 17 27 37 L)
2. Cg,h,O(I) > Cg,h,l(x) > > Cg,h’k(x) > Cg’h,k+1(l') > Va € Rg—

Also, the operators Gi’ﬁl’ o have the integral representation

GM0(fra) = /0 KM (o, u) f(u)du, (6)

where Kﬁ i (z,u) is the kernal defined by

szik (2)00 1 (u) + X2 o (2)d(u), (7)

0(w) is the Dirac-delta function.

If we take =1, then operator (3) reduces to operators GZ }l i) = Gfl7h7p(f; x)
given by

Gl (f:2) Zznhk / 07, (u) f(w)du + 12, o(2) £(0), (®)

where lg,th(m) and O}, ; (u) are defined as in (4) and (5), respectively.

The main objective of this article is to study the rate of convergence of our
constructed operators (3) by using Ditzian-Totik modulus of smoothness, weighted
modulus of continuity and for functions having a derivative of bounded variation.
Furthermore, we have also established the quantitative Voronovskaja type theorem.

2. Auxiliary results

Lemma 1. Let G¢

w.h.p be the operators defined by (8). Then, we have
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G (i) = D,
2
Gt =%0) = (14 )+ M D a4 i+ 1 +1),
3

32 2 1 T
d 4, _ 2 2 3
Gonp((u—z)h ) <1+p+p2> +n3<6h (d+4 1) —4h(d + 1)
+ 14h(d 4+ 1)? + 4hd*(d +1) + 1+ - (6h(h +1)(d+1)?
1 1
+18h(d+1)+6)+p2(14h(d+1)+11)+p3>
1 4/13 2 6h 3
+ M@+ 1)+ 6h +7h+1)—|—?(d+1)
9 11h , 6

Proof. From the generating function for Gould-Hopper polynomials and by using
the properties of the gamma function and linearity of operators, we get the above
result. O

Throughout this article, let Cz(R7) denote the space of all functions f on R
which are bounded and continuous according to the norm

IFIl = sup |£(z)]

a:e]R
Lemma 2. For f € Cp(Ry), we have

G o f I < NI
Remark 1. We have

) = X [ 0w X o)

oo 0
= nhk (Zlnhk )

G

k=0
=1)=1
Lemma 3. Let Gii  be the operator defined by (3); then
1)
h(d+1)
0
GZ h p((u - x)? ‘T) g 977

n
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9 T hid+1
Gfl’%p((u—x) jx) < a{np(l +p) + (n;;)(P(CH‘ D(h+1)+ 1)}7

3x 2 1 T
Gt ((u— )" yw{n (L+ + >+Vﬁ<wﬁu+1ﬁ—4md+n3
1
+ 14h(d + 1)? + 4hd*(d + 1) + 1+ —(6h(h + 1)(d + 1)?
P
1 1
+18h(d + 1) 4 6) + ?(14h(d +1)+11) + p3>
1 4013 2 6h 3
+F h(d+ 1)*(h® + 6h +7h+1)+?(d+1)
) 11h , 6
Proof. From equation (3), we have

G2:) = X [ O 0 X010

:Z([ghk( )}9_ nhk+1 / @

Using the well-known inequality |c® — d?| < B|c —d| with 0 < ¢,d <1, B> 1 and
property (1) of Cff nx (), we have

h Hfia) < 9{ Zln hi(T / Op 1 (u) f(u)du + Zz,h,o(l’)f(o)},

< 9Gn,h,p(f;$)-
In view of Lemma 1, we get all inequalities. O
Remark 2. We have the following inequalities:
1) ForCy>1, p>0, 0> 1, z € (0,+00) and sufficiently large n

1+p)

d,0 . a(
G (u—2)%2) < C10% v

n,h,p
2) ForCy>1, p>0, 0 >1, 2 € (0,400) and sufficiently large n

np

G ((u—a)h2) < G 0(
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Lemma 4. Let f € Cp(R{); then

IG5 £II < 011

Proof. In view of equation (3), we have
G4l = | X 4(0) [ 08wt X2 ()1(0)

k=1

< (Lt [T et X0 ) 1]
k=1

<0Gy h,(L2)lIFIl =011,

which completes the proof. O

3. Direct approximation

In this part, initially we recall the definition of the well-known Ditizian-Totik mod-
ulus of smoothness wy-(.;.) and Peetre’s K —functional [4].
Let ¢(x) = /7 and f € Cg(R{). For 0 < 7 < 1, define

(e e 2)|

wer (fit) = sup sup
0<h<t T+ ’“1’;("3) 6R0+

and the K —functional

Korl5:0) = ing {17 = all+ el 1},

f
1%

where
W.={g: g€ACu; [¢7d|| < oo}

and g € AC),. means that g is an absolutely continuous function on every finite
subinterval of R{. Also,

wor (1) ~ Ko (f51),

which means that there exists a constant C' > 0 such that
C™lwgr (f3) < Kgr (f31) < Cwgr (f51). (10)

Lemma 5. Let ¢(z) = +/x and 0 < 7 < 1. Then for f € W, and y,x > 0, we have

‘ /I " P(w)du

Proof. For a proof, see [6, Lemma 5]. O

<27z E |y —alll¢” f]-
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Theorem 1. For f € Cp(Ry), we have

|Giip(f§$)—f(:1c)| < Cwyr (f;(b :/;Ex))

where wyr s given by (9) and C is a constant free from the choice of n and x.

Proof. Let g € W,. Using Lemma 4, we have

GL8 (fi2) = f(@)] < |GLS (f — go)| + |f(2) — g(@)| + |GZ5 (g52) — g()]
< @O+ DIf — gl +1G2% (g:2) — g(x)]- (11)

Since g(y) + /¥ ¢'(u)du and Gd o ,(Liz) =1, we obtain
d,0 v,
628 (550 st = |Gth, ([ oyt )|
T
By Lemma 5, we get

d,0 ) _z d,0 )
G (g5 ) — g(@)| < 2722|197 ¢G5, (ly — =]5 ). (12)

Applying the Cauchy-Schwarz inequality and using Remark 2, we have

nhp'y_x| \/Gnhplx\/Gnhp .13)
1
< 01(933( +p). (13)
np
Combining (11)-(13), we get
a0 (r . @ (@)
IGon,(fiz) = f(@)] < (1+0)|f — gl + Csllo 9/HT~
Taking infimum over all g € W, we have
¢1 T(r
G4, 50) - 1) < Cattr (521,
Using (10), we get
¢177' T
G24,(f:0) = ()] < Cue (122,
which is the required result. O

Remark 3. Taking 7 = 0, we get error estimation in terms of the classical modulus
of continuity, i.e.,
x

GH (fio) — f (x)ISCw(f; )

n
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Now, we give the following local approximation result for the function belonging
to Lipschitz-type space:

For a > 0, b > 0 to be fixed, the class of two parameteric Lipschitz type
functions ([19]) is defined as

u—a|’

Lip‘;\/’fb(ﬂ){fGCB(RS'):f(u)f(xﬂgM 7 and :z:,ué((),oo)}, (14)

(utax?+bx)

where M is any positive constant and 0 < § < 1. For a = 0 and b = 1, space
Lip5; (B) is the space Lip},(8) given by O. Szisz [22].

Theorem 2. Let f € Lip?\;lb(ﬁ). Then for everyn € N, p >0, 6§ > 1 and
x € (0,400), we have

B
OGS hp((u — )% w)) ’

ax? + bx

G0 (fio) = fla)| < M <

where Gz7h7p((u —x)% ) is given in Lemma 1.

Proof. Consider f € Lip}l\f(ﬁ) and z € (0, +00); then

GES (fi2) = ()] = G2 (f(w) — f(z);2)]
< GY (1f(w) - f(@)];2)
<G (M u =l - ;m)
(u+ ax? + bx)2

M gas
= Vat o e

(lu —2z/%;2).

First of all, consider the case 8§ = 1. Applying the Cauchy-Schwarz inequality and

using the fact Go (I;z) = 1, we have

n,h,p
4,0 o M 4,0 2. W1
G (i) — f(z)] < \/ﬁ(Gn,h,p((u —x)%1))?

< \/ﬁ(an’h’p((u - :E)Q; z))
oy <9Gz,h,p<<u - ac>2;as>>é |

ax? + bx

Hence the result holds for 8 = 1. Now assume that 0 < 8 < 1. Applying Holder’s
inequality with p = % and g = ﬁ, we have

d,0 . M d.,0 RNV
|Gn,h7p(f;$) - f(fﬂ)| < m(Gn,hwﬂu — x|,x)) .
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Finally, by the Cauchy-Schwarz inequality, we get

G 0) = 1) < G s
< oy 00 a7
. <9Gi,h,p<§u : :c>2;x>> .
az? + bx
which is the desired result. O

We now evaluate the rate of convergence of operators (3) in the context of
suitable weighted function spaces. More precisely, let us consider the space

By(R{) = {f 2| f(x)] < My(1+2?), My is a constant connected with f}.

Introduce

Ca(RY) = {f € By(RY): fis continuous},

C;(Ra'){fECg(Ra'):EI lim f @)l <oo}.

z—oo 1 —|—;I,‘2

These spaces are endowed with the norm

/()]

xr2

[fll2 = sup
zGR:{ 1+

For f € C(RY) and 6 > 0 modulus of continuity w(f;§) has the property that
w(f;8) = 0 with § — 0 on [a,b] C RY, but in general this property does not hold
true on R{. So we use the following weighted modulus of continuity [27]:

sy [f(z+1t) = flz)|
W e T

(15)

Theorem 3. Let f € C3(R{) and Q(f;.) as in (15). Then for x € R{, p,6 >
0, 8 > 1 and for large enough n, we have

\/15> <1+010z(11;p”’)+ \/971<x(1p+p)>5
x <1+\/@$(1nﬂ;f’)>>,

where C1,Coy > 1 are constants free from the choice of © and n.

G5 o (fim) = flo)] <2(1 + :c2)9<f;
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Proof. Foru,x € Rg‘, 0 > 0 and by the definition of weighted modulus of continuity,
we have

10— f@)l <20+ A0+ -0 (1 25 o, a9

Applying Gn h,p 1O inequality (16) and then the Cauchy-Schwarz inequality in the
last term, we obtain

G0 (1f(u) — f(@)]:x) < 21+ 2)Q(f >(Giip<+<u—x>2;x>

( (1+ (u—2)?)|u—z| ))
v '@

)0
nh

<201+ 22/ >(Gi%p< 2+ G (a2 )
nhp<1+ w— ) |u—x|7m>)

<201+ 22)0(/; )( Giip« ~2)a)

Taking Remark 2 into account and choosing § = we get the required result. [J

\/77
4. Quantitative Voronovskaja-type asymptotic formula

In this section, we give the Voronovskaja-type asymptotic theorem for Gn’h’ o By
using Ditzian-Totik modulus of smoothness of first order, we will prove this theorem:

Theorem 4. Let f € Cp(Ry) such that f', f"" € Cg(R{). Then

n{ Gt i) = 10) = P0G, (0= a)i0) - 31" @G, (= a5
z(1+p) v ¢ (@)
<00t (15570
where C is a constant free from the choice of n and x.

Proof. By Taylor’s formula, we write

u

F(u) = F(@) + (u—2)f' () + / (u - v) " (w)dv.

x

Thus,

) = 50— (u =)/ (@) = S =02 @) = [ (=) 0) — @), (13)
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operating Gn A p( x) to both sides of the above relation, we get
1
\Gi’i,pu; z) = f(@) = f'(@)G}), ,(u = x)iz) = S f" ()G ((u = 2)*; )
~ et ( [[w=oue - s )
<@t ). 19

Also, for g € W, we have
<|F" = gll(u—2)? +27¢7 7 ()97 g'|[|u — 2[*. (20)

[ =) - g ana

[ =@ - e

From (19), we have

Gt i) = () = T@GE (0= 2)0) = 310G (0 = 2%
<" = NG, — 2)2) + 276 @67 NG (fu — a2,

In view of Remark 2 and using the Cauchy-Schwarz inequality in the last term, we
obtain

\Giip<f;x>f< )= @G (- 2):w) — 2 @G (0 2)i)
<" = gllGES (u—2)%2) + 2707 (@) |67 g (GE5, ,(u—2)%;2))*
< (G0 ((u—2)*2))*

n,h,p

<5~ glow™ 2 4oy )||¢Tg’((] e(“’))
p np

(ea(ten)y
<cn™ED g e L 1}

Taking the infimum on the right-hand side of the above relations over g € W, we
get

{Gi%,xf;m) — F) — P @G~ 7)) — @G (- x>2;x>}\

]' " * 1=
o :p)KW(f e ﬁ(x))

Now using inequality (10), the theorem is proved. O
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5. Rate of convergence for functions of bounded variation

The rate of convergence for functions having a derivative of bounded variation is a
fascinating topic of research. Zeng and Piriou [28] established the rate of convergence
of Bernstein-Bezier operators for a function of bounded variation. Thereafter, many
researchers have studied the Bezier variant of different operators |2, 11 29, 30].
In this section, we would like to obtain the rate of convergence of Gn np(i-) for
functions having a derivative of bounded variation.

Let DBV (R{) be the space of functions on R having a derivative of bounded
variation on every finite subinterval of RJ. Since the domain of the function f is
unbounded, i.e. Ré‘ , we consider the space

D:BV(R}) ={f:Rf = R: fc DBV (R{) and |f(z)| < Ms(1 + 2?) for some
Mf > 0}.

Taking into consideration the fundamental theorem of calculus, we observe that the
function f € D,2 BV (RJ) possesses a representation

fa) = / " gw)du + £(0),

where g is a function of bounded variation on each finite subinterval of Ry .

Lemma 6. Let v € R} and let Kg:fl’p(a?,u) be the kernel defined by (7). Then for
C1 > 1 and for n large enough, we have

1) & (z,y) = foKde )du<wﬁ, 0<y<ua.

n,h p = np r—y

.6 9C
2) 1— gﬁp(x,z) = f;o Kmh,p(nu)du < 7”;1(;+p) (z—lm)z’ T <z < 00.

Proof. Using Lemma 3, we get

Y
€ (2,y) = / K™ (2, u)du

Y r—Uu 2 d.0
< K> d
/0 (w—y> (5 )

1
< WGZ’Z,p((U — )% )

np  (z—y)?*

Similarly, we can show the second part; hence the proof is omitted. O

Theorem 5. Let f € D,2BV(R{) and for every x € (0,+00) consider the function
12 defined by
() = f'(z7), if 0<u<ux,
fi(w) =4 0, if u=1, (21)
f(u) — f(a™), if ©<u<oo.
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d
Let us denote by \/ f. the total variation of f. on [c,d] C RS. Then, for every
c
€ (0,400) and large n,

G0 (i) — F(@)] < aflu'(m cop ooy (G0’

() - >|(C“”(”p));

np

L VI N RVE
0= Z(\/fx)+\/ﬁ(\/zfx)

— x
k=1 v

9+1

T—%

1 1

Fw) = g @) + 08 @) + folw) +
0—-1

(sl —a) + 1) 40,00 (£ - 307N + 1)) @2

where

d,0
Now since Gn hp

Gl (i) = fla) = Gl (f(u) — f(2);2)

(1;2) = 1, we have

From (22), we obtain

6t i) - 1) = [Tt ([ voren + o)

F5() = ) (seto - )+ 51 )
+6,0) (£ - 306N+ ) fao)u 2

From the definition of 0, (u), it is clear that

[ ri o [ (5@ 507 + s )a-o. @
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Now, consider

[T ([ e ore )

—)ailw D0£ @) [ R e - o

_0+1|f( )+ 0f (x |/ Kszpa:u|u—a:|du

Applying the Cauchy-Schwarz inequality and Remark 2 to adequately large n, we

have
]/ Kff?;,,xu(/ () 5 ) )du

§9+1|f( )+ 0f'(a |\/Gnhpu—:1: z)
90135(1+p)>2

< 1ty 400 >|(

9+1 np
< e oy (CHLEA) (29

Similarly, we obtain

[Tt ([ 30 - e (st -0+ 1 ) Jau

§9+1|f( o (2l
< 2 - f(x->|(0”"(j/fp))%. (26)
Considering (23)-(26), we obtain the following estimates
Gt (i)~ f@ < | [ w28 ([ i)
eflw >+t9f’<oc>|(C””§jp+’)))é
) - o (G

\Aiipu' 2+ B (f1:2)

f ™ le(1+p) %
+99T§1|f/<f+) ~f'x ﬂ(W) Lo
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Ai’%p( / (/ (v dv)ngp(x,u)du
Bzzp( iz / (/ fi(v dv)KﬁZp(x,u)du.

Now, we estimate the terms Aii H(foi7) and Bi i (fz3 7). Using the definition of

,917 ,(-,-) given in Lemma 6 and integrating by parts, we can write

where

and

Adﬁ

(] o)
/ Pl (o, w)du,

Thus,

‘AdG /.

nhp a:u)du

x

< / e et [ 10l

-

Since fI(z) =0 and Efb,p(x,u) <1, we get

/z
r—-Z

Vo

|2 (W)l€n , (z, w)dt = /7 ) = fr(@)l€ (@, u)du

o

[ (V)

T

\V £

r——z

v

IN

Sl

Now, considering fow_ﬁ | fr(w)[€f (¢, u)du and using Lemma 6, we have

x

J R e s 28
0

(z —u)?

Clzvler/ Vi | fa(w) = fo()|

(r —u)?

0113(1+p
<0 np / <\/f> (z —u)

du
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Assuming v = x — ¥, we have

np e
Wn] [«
< 901(1+/)) \/ fa/;
np k=1 \z—%
Therefore,
Wnl [ = P
Ci(1+p) x
d,0 1
A3 (f @) < 0— Vi+=|l V& (28)
P k=1 \z—¢ ‘L—%
Considering

|Bnhp(f ;

- (/u f;(v)dv) Kffzp(x,u)du ,

using integration by parts and applying Lemma 6 with z = = + %, we have

/ 1—np(a:u ))du| +
x

/:\:/ Clscler/ \/f;md“

x

T+ m
x Clacl—i—p _9
<= \!f; © VAo (29)

|Bd9 I

nhp 9,p<$,u))d’u,

x-i-fx

Putting u = z + ¥, we get

N
Clxl—i—p \/f (u— ) %du = 070(1—&-/))/ frdv
ac+f T np 0 T
[Vnlz+%
S SV A /)
e k=1 =z
Combining (29) and (30), we have
whm [vn] [=+%
T 01(1 + p)
B Iis ! 0———— . 1
1B p(fui ] < = \w/fx o= I; \m/fx (31)

Now, assembling estimates (27), (28) and (31), we get the required result. O
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