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Abstract. In this paper, we present a complete symmetry analysis for the time fractional
nonlinear Poisson equation. A minimal symmetry algebra for any arbitrary function f(u) is
obtained. A group classification is then carried out by investigating for f(u) that give larger
symmetry algebras. Symmetries are obtained and some exact solutions are constructed.
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1. Introduction

Fractional differential equation models are well known in the fields of science and
engineering. They are broadly used in applied mechanical and electrical engineering
to analyse the properties of materials. In geology, it is applied to obtain rheolog-
ical properties of rocks as well as a neuron model in biology [21, 20]. In recent
years, many methods have been developed to analyse and find analytical solutions
to fractional differential equations like Laplace transforms, Fourier transforms and
the decomposition method [32, 31, 16, 18, 19, 17, 33]. A Poisson equation belongs
to the class of well-known elliptic partial differential equations that have several
applications in both science and engineering domains. Physically, the Poisson equa-
tion describes how a function diffuses in space and is general form of the Laplace
differential equation. A function that satisfies the Laplace equation is called the
harmonic function and is vital in the fields of fluid dynamics, astronomy, complex
analysis and electromagnetism, among others [23, 15, 8].

A modern approach to the applications of Lie Symmetry theory remains a pow-
erful tool to study both deterministic and stochastic differential equations [27]-[34].
Recently, Lie group theory has been extended to the class of fractional differential
equations for the purposes of linearization, reduction in the number of independent
variables and finding analytical solutions, [36, 5, 40, 7, 2, 35, 24, 13, 11, 12, 10]. It
is worth noticing that the theory is still developing.
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The aim of this article is to use classical Lie symmetry theory to present a
complete group classification of the time fractional nonlinear Poisson equation with
the Riemann-Liouville derivative, i.e.,

∂αu

∂tα
+
∂2u

∂x2
= f(u), fuu ̸= 0, (1)

where ∂αu
∂tα = uα is the fractional derivative and u = u(t, x). To achieve this, we

begin by finding the Lie symmetry algebra for an arbitrary function f(u), and later
look for all possible functions f(u) for which larger symmetry algebras exist.

There is no unique definition of fractional derivatives [21, 20]. In this paper, we
use a Riemann-Liouville version given by

Dα
t u(t, x) =


∂nu
∂tn , α = n ∈ N

1
Γ(n−α)

∂n

∂tn

∫ t
0

u(µ,x)
(t−µ)α+1−n dµ, n− 1 < α < n, n ∈ N,

(2)

where Γ is a gamma function, and Dα
t satisfies the following properties [21, 20, 38]:

Dαtς =
Γ(ς + 1)

Γ(ς + 1− α)
tς−α, α > 0, t > 0,

Dα1 =
t−α

Γ(1− α)
, α ≥ 0, t > 0,

and
Dα
t g(h(t)) = (Dα

g g(h))h=h(t)(D
1
t h(t))

α.

The fractional Riemann-Liouville integral of order α > 0 of a function [20, 6]

f(t) : (0,∞) → R

is defined by

Iα (f(t)) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ.

The fractional Riemann-Liouville integral has the following properties [20, 6]:

(I) For α > 0, t > 0,
Dα (Iα (f(t))) = f(t),

that is, the Riemann-Liouville fractional derivative is the left inverse of the
Riemann-Liouville fractional integral of the same order.

(II) If the fractional derivative of a function of order α is integrable, then

Dα (Iα (f(t))) = f(t)−
j=1∑
n

[
Dα−jf(t)

]
t=0

tα−j

Γ(α− j + 1)
,

where n = [α] + 1 and if m < 0, Dmf(t) is defined as Dmf(t) = I−m (f(t)) .
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2. Lie point symmetry analysis

We consider a one-parameter Lie group of infinitesimal transformations in (t, x, u)
given by:

x∗ = x+ ϵξ(t, x, u) +O(ϵ)

t∗ = t+ ϵτ(t, x, u) +O(ϵ)

u∗ = u+ ϵϕ(t, x, u) +O(ϵ),

(3)

where ϵ is the group parameter with the corresponding infinitesimal generator of the
Lie algebra of the form

X = ξ(t, x, u)
∂

∂x
+ τ(t, x, u)

∂

∂t
+ ϕ(t, x, u)

∂

∂u
.

We prolong the infinitesimal generator X to Xα to define how uα and uxx are
transformed [22, 11, 12], i.e.,

Xα = X + ηxx
∂2

∂x2
+ ηα

∂

∂uα
, (4)

where ηxx and ηα are the prolonged infinitesimals of order 2 and α, respectively,
defined as:

ηxx =ϕxx + (2ϕux − ξxx)ux − τxxut + (ϕuu − 2ξux)u
2
x − 2τuxuxut − ξuuu

3
x

− τuuu
2
xut + (ϕu − 2ξx)uxx − 2τxuxt − 3ξuuxxux − τuuxxut − 2τuuxtux,

and

ηα = Dα
t (ϕ) + ξDα

t (ux)−Dα
t (ξux) +Dα

t (Dt(τ)u)−Dα+1
t (τu) + τDα+1

t (u).

The α-th prolonged infinitesimal can be rewritten as

ηα =
∂αϕ

∂tα
+ (ϕu − αDt(τ))

∂αu

∂tα
− u

∂αϕu
∂tα

+ β,

where

β =

+∞∑
n=1

[(
α
n

)
∂nϕu
∂tn

−
(

α
n+ 1

)
Dn+1
t (τ)

]
Dα−n
t (u)−

+∞∑
n=1

(
α
n

)
Dn
t (ξ)D

α−n
t (ux)

+
+∞∑
n=2

n∑
m=2

m∑
k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1

k!

× tn−α

Γ(n+ 1− α)
[−u]r ∂

m

∂tm
(uk−r)

∂n−m+kϕ

∂tn−m∂uk
.

The one-parameter Lie group of transformation (3) is admitted by (1) if the invari-
ance criterion

Xα

(
∂αu

∂tα
+
∂βu

∂xβ
− f(u, v)

) ∣∣∣
(3)

= 0 (5)
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is satisfied for every solution of (1). Evaluating equation (5), we have

ηα + ηxx − ϕfu

∣∣∣uα=f(u)−uxx
= 0. (6)

By substituting ηα, ηxx in (6) and equating to zero, the coefficients of various deriva-
tives of u, i.e., ux, uxx, ut, uxt,... and Dα−n

t u, Dα−n
t ux... for n = 1, 2..., we obtain

a simplified system of determining equations as follows:

ξu = τx = τu = ϕuu = ξt = 0, (7)

2ϕux − ξxx = 0, (8)(
α
n

)
∂nϕu
∂tn

−
(

α
n+ 1

)
Dn+1
t (τ) = 0, ∀n ∈ N, (9)

2ξx − ατt = 0 (10)

and
∂αϕ

∂tα
+ ϕuf − αfτt − u

∂αϕu
∂tα

+ ϕxx − ϕfu = 0. (11)

Next, we solve the above system (7)–(11) to obtain the minimal symmetry algebra
for any nonlinear function f(u) as follows.

From equations (8) and (10)

ξxx = ϕux = 0, (12)

using (7) and (12), we obtain the following spatial infinitesimal:

ξ = c1x+ c2. (13)

Similarly, equations (10) and (13) lead to a temporal infinitesimal given by

τ =
2c1
α
t+ c3. (14)

From (7), (9) and (12), we have

ϕ = ru+ h(t, x). (15)

Differentiating (11) with respect to u gives

ϕfuu + ατtfu = 0. (16)

Differentiating (16) with respect to u, leads to

ϕufuu + ϕfuuu + ατtfuu = 0 (17)

Eliminating ϕ by using (16) and (17), we have

ϕuf
2
uu + ατt

(
f2uu − fufuuu

)
= 0. (18)

Finally, differentiating (18) with respect to u we obtain

2ϕufuufuuu + ατt (fuufuuu − fufuuuu) = 0, (19)
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and using (18) and (19) to eliminate ϕu, we have:

α
(
f2uufuuu − 2fuf

2
uuu + fufuufuuuu

)
τt = 0. (20)

To avoid any restrictions on f(u), we consider τt = 0, and it then follows from
(16), (13) and (14), respectively, that

ϕ = 0, ξ = c2, τ = c3 (21)

for any arbitrary function f(u). The lower limit of the integral in the definition of
the fractional derivative (2) is fixed, it requires that the manifold t = 0 is invariant,
i.e.,

τ(t, x)
∣∣∣
t=0

= 0. (22)

Hence, equation (21) reduces to

ϕ = 0, ξ = c2, τ = 0.

Therefore, the fractional Poisson equation (1) admits a one-dimensional minimal
symmetry algebra spanned by

X1 =
∂

∂x
.

3. Group classification

To search for a non linear function(s) f(u) that may give a larger symmetry algebra,
we assume τt ̸= 0. Using (14), (15), (18) and (20), we have

(2c1 + r)f2uu − 2c1fufuuu = 0 (23)

and
f2uufuuu − 2fuf

2
uuu + fufuufuuuu = 0. (24)

It can then be deduced from (15) and (16) that

ϕ = ru+ s, (25)

where r, s are arbitrary constants. Solving (23) by using symbolic software Maple
we have the following cases:

(i) if r = 0, we have an exponential function in the form:

f(u) = c0e
ku + c, k ̸= 0. (26)

(ii) if r = −2c1
m ̸= 0

f(u) =

{
(au+ b)m+1 + c if m ̸= −1, 0

log(au+b)
a + c if m = −1.

(27)
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Similarly, to solve equation (24), i.e.,

f2uufuuu − 2fuf
2
uuu + fufuufuuuu = 0,

we start by substituting H = fu in (24) to have

HHuHuuu − 2HH2
uu +H2

uHuu = 0. (28)

From (28), we consider the following cases:

• If Huu = 0, then equation (24) has a quadratic solution, that is,

f(u) = au2 + bu+ c.

• If Huu ̸= 0, dividing equation (28) by HHuHuu, gives

Huuu

Huu
− 2

Huu

Hu
+
Hu

H
= 0,

which can be integrated to have

log

∣∣∣∣HuuH

H2
u

∣∣∣∣ = k. (29)

From (29), we deduce that

Huu

Hu
− dHu

H
= 0. (30)

Integrating (30) leads to ln |Hu

Hd | = c4, implying that Hu

Hd = c5 and hence we
have the following cases:

– If d = 1, we get f(u) of the form

f(u) = c0e
ku + c, k ̸= 0.

– If d = 2 , then H is of the form H = (au+ b)−1, which implies

f(u) =
log |au+ b|

a
+ c, a ̸= 0.

– If d ̸= 1, 2, then H is of the form H = (au+ b)
1

1−c which gives

f(u) = (au+ b)n + c, n ̸= 0, 1, 2.

Remark 1. Clearly, these solutions are similar to the solutions to equation (23).
Therefore, to look for extra symmetries, it is sufficient to use (14), (27), (26) and
(25) in

ϕuf − αfτt − ϕfu = 0. (31)
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3.1. f(u) = c0e
ku + c, k ̸= 0

From (31), (26), (25), (14) and (22), we found out that a larger symmetry algebra
is possible if c = 0 and s = −2c1

k , i.e., for f(u) = c0e
−ku the fractional Poisson

equation (1) admits a two-dimensional algebra

X1 =
∂

∂x
, X2 = x

∂

∂x
+

2t

α

∂

∂t
− 2

k

∂

∂u

obtained from

ξ = c1x+ c2, τ =
2c1
α
t, ϕ = −2c1

k
.

The admitted symmetry algebra forms a Lie algebra, the Lie bracket relations are
[X1, X2] = X1 and [X2, X1] = −X1.

3.2. f(u) = (au+ b)m+1 + c if m ̸= −1, 0

Similarly, using (31), (27), (25), (14) and (22), we obtained a larger symmetry
algebra if c = 0, r = − 2c1

m and s = −2c1b
am , and the infinitesimals are given as follows:

ξ = c1x+ c2, τ =
2c1
α
t, ϕ = −2c1

am
(au+ b) .

That is, for f(u) = (au + b)m+1, fractional Poisson equation (1) admits a two-
dimensional algebra

X1 =
∂

∂x
, X2 = x

∂

∂x
+

2t

α

∂

∂t
− 2

am
(au+ b)

∂

∂u
. (32)

The Lie bracket relations of the infinitesimal generators (32) are given as

[X1, X2] = X1, and [X2, X1] = −X1,

which clearly satisfy the Lie algebra properties.

3.3. f(u) = log |au+b|
a

+ c, a ̸= 0

From equation (31), using (27), (25) and (14), we note that no extra symmetry is
possible.

The results of the group classification are summarized in Theorem 1 below.

Theorem 1. The minimal symmetry algebra of the nonlinear space-time fractional
Poisson equation (1)

∂αu

∂tα
+
∂2u

∂x2
= f(u), fuu ̸= 0

is spanned by one-dimensional infinitesimal generators

X1 =
∂

∂x

for any arbitrary function f(u). The larger symmetry algebra is possible with the
functions in Table 1.
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f(u) Extra infinitesimal symmetry generators

f(u) = c0e
ku, k ̸= 0 X3 = x ∂

∂x + 2t
α
∂
∂t −

2
k
∂
∂u

f(u) = (au+ b)m+1, m ̸= −1, 0 X3 = x ∂
∂x + 2t

α
∂
∂t −

2
am (au+ b) ∂

∂u .

Table 1: Extra symmetry generators

4. Reductions and exact solutions

In this section, we use the admitted Lie symmetries of the nonlinear space-time
fractional Poisson equation to obtain symmetry reductions, thus constructing some
exact solutions where possible.

Definition 1. Given an infinitesimal generator

X = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ ϕ(t, x, u)

∂

∂u
, (33)

the characteristic equation associated with the differential operator (33) is

dt

τ
=
dx

ξ
=
du

ϕ
.

This can be integrated to obtain similarity variables that are invariant under the
symmetries generated by X [4, 14].

4.1. f(u) = (au+ b)m+1, m ̸= −1, 0

Example 1. Reduction and the exact solution to

Dα
t u+ uxx = aum+1.

Using the sub-algebra X1 we have the similarity variables as

z = t, u = ψ(t),

where ψ(t) is the solution to the reduced fractional ODE

Dα
t ψ(t) = aψm+1(t).

This can be solved to get [20, 22];

ψ(t) =
1

a

(
Γ(α+ 1)

Γ( (m+1)α
m + 1)

) 1
m

t−
α
m , m > −1, m ̸= 0.

Example 2. Consider the Poisson equation

Dα
t u+ uxx = (au)m+1, m ̸= −1, 0. (34)
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The characteristic equation corresponding to subalgebra X2 is

α
dt

2t
=
dx

x
= −mdu

2u
.

Solving the above equation leads to the following invariant solution:

z = xt−
α
2 , u = ψ(z)t−

α
m . (35)

Substituting transformation (35) into (34) leads to(
P

1−α− α
m ,α

2
α

ψ
)
(z) + ψzz(z) = (aψ(z))m+1,

where
(
P

1−α+ α
m ,α

2
α

ψ
)
(z) is the well-known Erdelyi-Kober fractional differential op-

erator [21, 20].

Proof. For 0 < α < 1, similarity transformation (39) can be written using the
definition of Riemann-Liouville fractional derivatives as follows:

∂αu

∂tα
=

1

Γ(1− α)

∂

∂t

∫ t

0

(t− s)−αs−
α
mψ(xs−

α
2 )ds. (36)

Let w = t
s ; then equation (36) can be transformed into

∂αu

∂tα
=

1

Γ(1− α)

∂

∂t

∫ ∞

1

(
t− t

w

)−α(
t

w

)− α
m

ψ(zw
α
2 )

t

w2
dw

=
1

Γ(1− α)

∂

∂t

[
t−α+1− α

m

∫ ∞

1

(w − 1)−αw
α
m−2+αψ(zw

α
2 )dw

]
=
[
t−α+1− α

m

(
K

1− α
m ,1−α

2
α

ψ
)
(z)
]

= t−α−
α
m

(
1− α

m
− α− zα

d

dz

)[(
K

1− α
m ,1−α

2
α

ψ
)
(z)
]

= t−( α
m+α)

(
P

1−α− α
m ,α

2
α

ψ
)
(z),

where
(
P 1−α,α

2
α

ψ
)
(z) is the well-known Erdelyi-Kober fractional differential opera-

tor defined in [21, 20]:(
P 1−α,α

2
α

ψ
)
(z) =

i−1∏
j=0

(
ζ + j − z

σ

d

dz

)(
Kζ+α,i−α
σ ψ

)
(z), z, ψ, α > 0

j =

{
[α] + 1 if α ̸= N
α if α = N,

with

(
Kζ,α
σ ψ

)
(z) =

{
1

Γ(α)

∫∞
0

(w − 1)α−1w−(ζ+α)ψ(zw
1
σ )dw if α > 0

ψ(z) if α = 0.
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4.2. f(u) = c0e
ku

Example 3. Consider equation (1) with f(u) = c0e
ku. The invariant solution

corresponding to the infinitesimal generator X1 is

u = ψ(t),

which reduces (4) to a nonlinear fractional ODE

Dα
t (ψ(t)) = c0e

kψ(t). (37)

Taking the fractional integral on both sides of equation (37) and assuming that 0 <
α < 1, we have

ψ(t) =
c0

Γ(α)

∫ t

0

(t− µ)α−1ekψ(µ)dµ. (38)

Every solution of (37) is also a solution to the integral equation (38) [20, 6].

Example 4. Solving a characteristic equation corresponding to X2:

α
dt

2t
=
dx

x
= −kdu

2
.

Solving αdt2t =
dx
x and dx

x = −k du2 , we have similarity transformations

u =
2(ψ(z)− ln(x))

k
, z = xt−

α
2 , (39)

where ψ(x) is the solution to the reduced nonlinear fractional differential equation(
P 1−α,α

2
α

ψ
)
(z) + ψzz(z) +

1

z2
=
kc0
2z2

eψ(z).

The Erdelyi-Kober fractional differential operator
(
P 1−α,α

2
α

ψ
)
(z) is defined in Ex-

ample 2.

Remark 2. Since for any arbitrary nonlinear function f(u) the minimal symme-
try algebra X1 is admitted, we consider a function f(u) = u2 + k4, which can be
transformed by using X1 to

Dα
t ψ(t) = ψ2(t) + k4. (40)

Fractional ODE (40) has the following solutions [20, 22, 40], where k4 is an arbitrary
constant:

u = ψ(t) =



√
k4 tan(

√
k4t, α) if k4 > 0

−
√
k4 cot(

√
k4t, α) if k4 > 0

−
√
−k4 tanh(−

√
−k4t, α) if k4 < 0

−
√
−k4 coth(−

√
−k4t, α) if k4 < 0

Γ(α+1)
Γ(2α+1) t

−α if k4 = 0.

(41)
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5. Conclusion

We presented a complete group classification of a nonlinear time fractional Poisson
equation via Lie group transformation techniques. For any arbitrary function f(u),
a two-dimensional algebra was obtained and we proved that a four-dimensional sym-
metry algebra is possible only for the cases of exponential and polynomial functions.
Furthermore, using the Lie symmetry analysis we were able to transform the non-
linear space-time fractional Poisson equation for some exponential and polynomial
functions to one independent variable equation and as a result, some exact solutions
were obtained. In Table 2, we summarize invariant solutions, reduced equations and
the corresponding exact solutions.

Representing
equations

Generator Invariants solu-
tions

Reduced equations Exact solution

Dαt u+ uxx
= c0eku

X1 u = ψ(t) Dαt (ψ(t)) = c0ekψ u(t) = ψ(t).

Dαt u+ uxx
= c0eku

X2 u =
2(ψ(z)−ln(x))

k
,

z = xt−
α
2

(
P 1−α,α

2
α

ψ

)
(z)

+ψzz(z) +
1
z2

= kc0
2z2

eψ(z)

u = ψ(z)

Dαt u+ uxx
= aum+1,
m > −1,
m ̸= 0

X1 u = ψ(t)
Dαt ψ(t)
= aψm+1(t)

u(t)

= 1
a

(
Γ(α+1)

Γ(
(m+1)α

m
+1)

) 1
m

×t−
α
m

Dαt u+ uxx
= (au)m+1,
m ̸= −1, 0

X2 z = xt−
α
2 ,

u = ψ(z)t−
α
m

(
P

1−α− α
m
,α

2
α

ψ

)
(z)

+ψzz(z)
= (aψ(z))m+1

u = ψ(z)

Table 2: Table of solutions
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driven by Poisson process, American Review of Mathematics and Statistics 4(2016),
17–30.

[30] A.M.Nass, E. Fredericks, W-symmetries of jump-diffusion Itô stochastic differen-
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