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Ryser’s conjecture under eigenvalue conditions
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Abstract. We prove the nonexistence of a circulant Hadamard matrix H of order n, under
technical conditions on the eigenvalues of H, when n has only two odd prime divisors and
in the general case.
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1. Introduction

A matrix of order n is a square matrix with n rows. A circulant matrix A :=
circ(a1, . . . , an) of order n is a matrix of order n of first row [a1, . . . , an], in which
each row after the first is obtained by a cyclic shift of its predecessor by one position.
For example, the second row of A is [an, a1, . . . , an−1]. A Hadamard matrix H of
order n is a matrix of order n with entries in {−1, 1} such that K := H√

n
is an or-

thogonal matrix. A circulant Hadamard matrix of order n is a circulant matrix that
is Hadamard. The 10 known circulant Hadamard matrices are: H1 := circ(1),H2 :=
−H1,H3 := circ(1,−1,−1,−1),H4 := −H3,H5 := circ(−1, 1,−1,−1),H6 := −H5,
H7 := circ(−1,−1, 1,−1),H8 := −H7,H9 := circ(−1,−1,−1, 1), and H10 := −H9.

If H = circ(h1, . . . , hn), is a circulant Hadamard matrix of order n, then its
representer polynomial is the polynomial R(x) := h1 + h2x+ · · ·+ hnx

n−1.
Despite several deep computations (see [3]) no one has been able to discover any

other circulant Hadamard matrix. In 1963, Ryser proposed (see [19], [6, p. 97]) the
conjecture of the non-existence of these matrices when n > 4. Previous work on the
conjecture includes [7, 8, 9, 10, 12, 13, 14, 15, 17, 20, 22].

Ryser’s conjecture (there are no circulant Hadamard matrices of order> 4) has
been studied by several different methods. The first special case done (by Brualdi [4]
in 1965) assumed that all eigenvalues ofH := circ(h1, . . . , hn), a circulant Hadamard
matrix of order n > 4, were real; i.e., that H is symmetric. Below, ω(k) counts the
number of distinct prime divisors of the positive integer k.

Besides Brualdi’s result, all other known results are only partial results for par-
ticular n’s obtained by deep methods. For example, the known case ω(n) = 2 is
a consequence of some results of Turyn [22]. More precisely, Turyn proved that if
n > 4, then n = 4h2 with odd h and h must have more than two distinct prime
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factors, so that n must have the following form n = 4p2a1
1 p2a2

2 · · · p2as
s with s ≥ 2,

and, say, p1 < p2 two odd prime numbers. In particular, n cannot be a power of 2,
n cannot be a power of 3, and n cannot be a product of powers of 2 by powers of 3.
This latter result was also reproved by Schmidt and Smith [20] as a special case of
their more general results.

Moreover, when ω(n) = 3, i.e., when n = 4p2a1
1 p2a2

2 as before with s = 2, it
is known that the odd prime divisors p1, p2 of n must be Wieferich’s pairs, i.e,
pp2−1
1 ≡ 1 (mod p22) and pp1−1

2 ≡ 1 (mod p21). These results allowed some computer
calculations, from which the result essentially follows for increasing numerical values
of n. However, these methods seems to be unable to produce general proofs (say, a
proof of the conjecture for an infinity of n’s with ω(n) ≥ 3).

It is worth reporting that Schmidt and Leung (see, e.g., [13, 15]) obtained the
best known results about this problem. Their approach uses sophisticated technical
results about group rings, characters and cyclotomic fields. Their main results might
be roughly described as: (a) results that reduce the number of cases to consider in
order to prove the full conjecture, and (b) results that can be used further to practical
important things as to exclude specific numerical values of n as possible candidates
to be the order of a possible circulant Hadamard matrix H. The reason why (b) is
possible is that in the above results the possible prime divisors of n play an important
role.

The present paper is much more modest; our results are obtained by using ele-
mentary methods, and we are (unfortunately) not specialists in this subject, so that
we are only able to contribute to part (a) of the above discussion. More precisely,
we believe that our results in the present paper may be useful to reduce the number
of cases to consider in order to advance to the proof of the full conjecture. However,
our results cannot contribute to the second, more concrete and important, part (b).
Besides perhaps in Lemma 1, that might be an interesting more general contribu-
tion, the exact reason of the lack of results of type (b) is as follows: Condition 1 does
not depend only on the prime divisors of n , so that our first two theorems cannot
contribute to (b). Moreover, our latter theorem cannot contribute to (b) since in
both hypothesis in Theorem 3 the prime divisors of h are not used.

We describe now our results. Our general approach is (a) to assume that a
possible circulant Hadamard matrix H of order n exists, (b) to consider cases in
which some conditions on the eigenvalues of H matrix imply contradictions.

The first part of our results is about the case ω(n) = 3. The second part is about
the general case ω(n) ≥ 2.

The technical condition required in the case ω(n) = 3 reads:

Condition 1. Let H be a circulant Hadamard matrix of order n = 4p2aq2b, where
p ̸= q are odd prime numbers, and a, b are positive integers. Let R(x) be the repre-
senter polynomial of H. One has

d < φ(n)/2,

where d = deg(R(x) (mod Φn(x))), Φn(x) is the n-th cyclotomic polynomial and φ
is Euler’s function.
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Our first result comes from known properties of the cyclotomic polynomial Φn(x),
when n has only two distinct odd prime divisors [21], together with a variant of our
argument used in [7]:

Theorem 1. There is no circulant Hadamard matrix that satisfies Condition 1 when
a, b are large enough. Large enough means that a, b satisfy

paqb > (p+ q − 1)(pq)! exp(pq) + 1.

Remark 1. Lemma 5 that gives the crucial upper bound for the proof of Theorem 1
does not depend on Condition 1; thus, besides being new, it might have an interest
in itself.

It appears that our method above cannot deal with small exponents. Thus,
besides Condition 1, more conditions are expected in the smallest case a = 1 and
b = 1:

Theorem 2. There is no circulant Hadamard matrix H that satisfies Condition 1
when a = b = 1, provided that

{R(ωt) : 1 ≤ t ≤ n, R(ωt) ̸∈ R} = {R(ωk) : 1 ≤ k ≤ n, gcd(k, n) = 1} (1)

if H has some non-real eigenvalue.

We checked by a simple computation that 4 of the 8 circulant Hadamard 4 × 4
matrices, namely, H5,H6,H9 and H10, all satisfy Condition (1).

More generally, for any possible n, not just for an n with ω(n) = 3, some condi-
tions on the eigenvalues of H guarantee the non-existence.

Theorem 3. There is no circulant Hadamard matrix H of order n = 4h2, where
h > 1 is an odd number, provided both conditions below hold:

(a) Tr(H2) = 0, where Tr means the trace.

(b) A := H+H∗

2 is positive-semidefinite, where H∗ is the transpose conjugate
(transpose here) of H.

We checked by a computation that for 2 of the 8 circulant Hadamard matrices
with n = 4, namely, for H6 and for H10, both conditions on Theorem 3 hold.

The main tools necessary for the proofs are given in Section 2. The proofs
of Theorem 1, Theorem 2, and Theorem 3 are given in Section 3, Section 4, and
Section 5, respectively.

2. Tools

The following result attributed to Migotti (in 1883) in [21] is important for our work.

Lemma 1. The cyclotomic polynomial Φmn(x) has all its coefficients in {−1, 0, 1}.

A special useful case we require is
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Lemma 2. Let h = pr11 pr12 be a positive integer with two distinct odd prime factors
p1 ̸= p2. Then

Φ4h2(t) = Φp1p2(−t2p1
2r1−1p2

2r2−1

).

Thus from Lemmas 1 and 2 one has:

Lemma 3. The cyclotomic polynomial Φ4p2aq2b(x) has all its coefficients in
{−1, 0, 1}, where p ̸= q are two odd prime numbers.

The following lemma of Agou [1, 2] is crucial.

Lemma 4. Let R be a ring with 1. Let S = xn − s1x
n−1 − · · · − sn ∈ R[x] be a

polynomial of degree n > 0. Let k > 0 be a positive integer. Let T =
∑n−1

j=0 tk,jx
j be

the remainder of the Euclidean division (long division) of the monomial M = xk+n−1

by the polynomial S in R[x]. Then for j = 0, . . . , n− 1 one has

tk,j =
∑

u1+2u2+···+nun=k+n−j−1,
ui≥0,i=1,...,n

(
(u1 + · · ·+ un − 1)!

u1! · · ·un!

j∑
t=0

un−t

)
su1
1 · · · sun

n .

For j = 0 we get

tk,0 = sn

 ∑
u1+2u2+···+nun=k−1,

ui≥0,i=1,...,n

(u1 + · · ·+ un)!

u1! · · ·un!
su1
1 · · · sun

n


if k ≥ 1 and

tk,0 = 0

if −n+ 1 ≤ k − 1 < 0 (provided n > 1) and assuming that 00 = 1.

We proceed then to prove the following lemma that is key to the proof of Theo-
rem 1.

Lemma 5. Let H be a circulant Hadamard matrix of order n = 4p2aq2b, where p ̸= q
are prime numbers and a, b are non-negative integers. Let R(x) be the representer
polynomial of H. Let S(x) be the remainder of the Euclidean division of R(x) by the
cyclotomic polynomial Φn(x). Let d > 0 be a positive integer such that d ≤ deg(S).
Let C(d, S) be the coefficient of the monomial xd that appears in S(x). Then

|C(d, S)| ≤ 2(p+ q − 1)(pq)! exp(pq) + 2.

Proof. Let
l := n/(2pq). (2)

Write Φn(x) = xφ(n)−
∑φ(n)

j=1 cjx
φ(n)−j . By Lemma 2, Φn(x) = Φpq(−xl) so that

cj = 0 for all j not a multiple of l. More precisely,

cj = 0 for all j ̸= vl, where 0 ≤ v ≤ K := φ(pq) = (p− 1)(q − 1). (3)
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Let ω ∈ C be an n-th primitive root of 1. Since ωn/2 = −1, so that ωn/2+i = −ωi

one can write R(ω) = r0 + r1ω + · · ·+ rn/2−1ω
n/2−1, where each rj ∈ {−2, 0, 2} by

Lemma 3. Define then the reduced representer polynomial V (x) of H by V (x) :=∑n/2−1
j=0 rjx

j . Clearly, S(x) is also the remainder of the Euclidean division of V (x) by

Φn(x). Put Mk := xk+φ(n)−1, for each k ∈ {1, . . . , n/2− φ(n)}. Therefore, defining
V1(x) by

V (x) = r0 + r1x+ · · ·+ rφ(n)−1x
φ(n)−1 + V1(x)

one has

C(d, S) = rd +

n/2−φ(n)∑
k=1

rk+φ(n)−1tk,d,

where tk,d is the remainder of the Euclidean division of the monomial Mk of V1(x)
by Φn(x).

Since d > 0 and Kl = φ(n), from Lemma 4 and our discussion above (see (3))
one has

tk,d=
∑

lul+2lu2l+···+KluKl=k−1+φ(n)−d,
uil≥0,i=1,...,K

(
(ul + · · ·+ uKl − 1)!

ul! · · ·uKl!

d∑
t=0

uKl−t

)
cul

l · · · cuKl

Kl . (4)

Define then the integer X by

k + φ(n)− d− 1 = lX. (5)

Therefore, tk,d = 0 for all other possible k’s for which k+φ(n)−d−1 is not divisible
by l. In other words,

C(d, S) = rd +

Xmax∑
Xmin

rlX+d+1−φ(n)tk,d, (6)

where Xmin (respectively, Xmax ) is the minimum (respectively, the maximum) of
integers X’s that satisfy (5) when k goes from 1 to n/2− φ(n).

Observe that

Xmax −Xmin ≤ n/2− φ(n)

l
= pq − (p− 1)(q − 1) = p+ q − 1. (7)

and that from (5) and (4) we get

tk,d =
∑

ul+2u2l+···+KuKl=X,
uil≥0,i=1,...,K

(
(ul + · · ·+ uKl − 1)!

ul! · · ·uKl!

d∑
t=0

uKl−t

)
cul

l · · · cuKl

Kl . (8)

We want to bound above |tk,d|. In order to do that, observe first that for the whole
range v = 0, . . . ,K one has cvl ∈ {−1, 0, 1} by Lemma 3 so that |cul

l · · · cuKl

Kl | ≤ 1,

we also have
∑d

t=0 uKl−t ≤ ul + u2l + · · ·+ uKl so that

0 ≤

(
(ul + · · ·+ uKl − 1)!

ul! · · ·uKl!

d∑
t=0

uKl−t

)
≤ (ul + · · ·+ uKl)!

ul! · · ·uKl!
(9)
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Trivially, for the whole range of v one has uvl! ≥ 1 since uvl ≥ 0. Thus from (8)
and (9) we get

|tk,d| ≤
∑

ul+2u2l+···+KuKl=X,
uil≥0,i=1,...,K

(ul + · · ·+ uKl)! (10)

Since 0 ≤ ul+· · ·+uKl ≤ ul+2u2l+· · ·+KuKl = X, an upper bound of |ul+· · ·+uKl|
will be the maximal possible X, say X2 in the range of k, i.e., 1 ≤ k ≤ n/2− φ(n).
Thus from (5) one immediately has

lX2 ≤ (n/2− φ(n)) + φ(n)− d− 1 ≤ n/2. (11)

Since X ≤ X2, by rewriting (11) and using (2) one gets

X ≤ X2 ≤ n/(2l) = pq. (12)

Put Θ the number of terms in the sum in (10). The uml’s in the sum of the
right-hand side of (10) are non-negative integers such that

ul + 2u2l + · · ·+KuKl = X,

thus |ul| ≤ X, |u2l| ≤ X/2, . . . , |uKl| ≤ X/K. By using (12) it follows that

Θ ≤ XK/K! ≤ exp(X) ≤ exp(X2) ≤ exp(pq). (13)

Thus from (10), and (12), (13), it follows that

|tk,d| ≤ Θ ·X2! ≤ (pq)!exp(pq). (14)

We are ready to prove the result. Observing that for any j, |rj | ≤ 2, from (6),
(7), and (14) it follows that

|C(d, S)| ≤ 2 + 2(p+ q − 1)(pq)!exp(pq).

This finishes the proof of the lemma.

The following is well known. See, e.g., [11, p. 1193], [18, p. 234], [22, pp.
329-330] for the first lemma and [6, p. 73] for the second.

Lemma 6. Let H be a regular Hadamard matrix of order n ≥ 4, i.e., a Hadamard
matrix whose row and column sums are all equal. Then n = 4h2 for some positive
integer h. Moreover, the row and column sums are all equal to ±2h and each row
has 2h2 ± h positive and 2h2 ∓ h negative entries.

Lemma 7. Let H be a circulant Hadamard matrix of order n, let w = exp(2πi/n)
and let R(x) be its representer polynomial. Then the set of all eigenvalues of H
consists of the set of all R(v), where v ∈ {1, w, w2, . . . , wn−1}. Moreover, they satisfy

|R(v)| =
√
n.

More generally and for more details see [6].
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Lemma 8. Let C = circ(c1, . . . , cn) be a circulant matrix of order n > 0 with
representer polynomial P (t) = c1+c2t+ . . .+cnt

n−1. Let ω be the primitive complex
n-th root of unity with a smaller positive argument. C is diagonalizable and C =
F ∗∆F , where ∆ = diag(P (1), P (w), . . . , P (wn−1) is a diagonal matrix containing

the eigenvalues of C and F ∗ = (ω
(i−1)(j−1)

n1/2 ) is the conjugate of the Fourier matrix.
Moreover, F is unitary.

The next lemma is [16, Theorem 3], which also appeared as [5, Theorem 3.1]. It
was already used in [9].

Lemma 9. Let A be a circulant matrix of order n > 0 with entries in {0, 1}. Let m
be an even positive integer. Assume that Am ∈ ZI +ZJ. Then A ∈ {0, P, J, J − P},
where P is a permutation matrix of order n.

Using Lemma 6 and Lemma 9 Craigen and Kharaghani [5, Lemma 4] proved:

Lemma 10. Let H be a circulant Hadamard matrix of order n > 0 such that for
some positive number m

Hm = n
m
2 I.

Then n ≤ 4.

We can also write the case n > 1 of Lemma 10 as

Lemma 11. Let H be a circulant Hadamard matrix of order n > 1, and let
K := H/

√
n. Assume that for some positive number m the orthogonal matrix K

has multiplicative order m. Then n = 4.

3. Proof of Theorem 1

Proof. Assume the existence of a circulant Hadamard matrix H that satisfies the
hypothesis. By Brualdi’s result in the introduction (see [4]) we can take H to be
nonsymmetrical. This implies that

some eigenvalue of H is non-real. (15)

In our special case n = 4p2aq2b with odd prime numbers, say, p < q. Write the
Euclidean division (long division) of the representer polynomial R(x) of H by the
cyclotomic polynomial Φn(x) as

R(x) = Q(x)Φn(x) + S(x), (16)

with, say, S(x) = sdx
d+ sd−1x

d−1+ · · ·+ s1x+ s0 so that d = deg(S(x)). Let ω ∈ C
be an n-th primitive root of 1. Since by (16) one has R(ω) = S(ω), (15) implies that
we have d > 0. From Lemma 7 one has R(ω)R(ω) = 1, thus

S(ω)S∗(ω) = nωd, (17)

where S∗(x) is the reciprocal polynomial of S(x). From Condition 1 and (17) we get
easily s0 = s1 = · · · = sd−1 = 0 and s2d = n. Therefore S(ω) = sdω

d. Now, from
Lemma 5 we get

paqb = |sd/2| ≤ (p+ q − 1)(pq)! exp(pq) + 1, (18)

But, (18) contradicts to hypothesis. This finishes the proof of the theorem.
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4. Proof of Theorem 2

Proof. Assume the existence of a circulant Hadamard matrix H that satisfies the
hypothesis. In particular, by Brualdi’s result above (see again [4]) we can assume
that H has some non-real eigenvalue. In our special case n = 4p2q2 with odd prime
numbers, say, p < q. Using the same notation as in Section 3, from Condition 1
and (17) we get as before sj = 0 for j = 0, . . . , d− 1 and s2d = 4p2q2 so that, up to
switching q and −q, from (17) we obtain

S(ω) = 2qpωd, and S∗(ω) = 2qp.

From (16) this implies
R(ω) = 2qpωd. (19)

From (19) and Lemma 7 it follows that vd, where v is any n-th primitive root of
1, are eigenvalues of the orthogonal matrix M := H/2qp. Any other eigenvalue λ
of M has the form λ = R(ωt)/2qp with 1 ≤ t ≤ n. If λ is real, then it equals 1 or
−1 so that it has order at most equal to 2; if λ is non-real, then by the hypothesis
λ = R(ωk)/2qp for some k coprime with n. This means that λ = vd for the n-th
primitive root of 1, v = ωk. Therefore each eigenvalue of M has finite order. In other
words, the diagonalizable matrix M (see Lemma 8) has finite multiplicative order.
By Lemma 11 this implies the contradiction n = 4. This proves the theorem.

5. Proof of Theorem 3

Proof. Assume the existence of a circulant Hadamard matrix H that satisfies the
hypothesis. In particular,

n > 4. (20)

We can take H of the form H = circ(1, h2, . . . , hn) with hj ∈ {−1, 1}. Let
B = A∗ = A. Then

Tr(AB) = Tr(AA∗) =
∑
i,j

a2ij .

In each row of the circulant matrix A of order n there are, say, t zeros, and thus
n− t, 1’s or −1’s. Since aij ̸= 0 implies a2ij = 1, we get

Tr(AB) = n(n− t). (21)

But AB = AA∗ = A2 = 1
4 (H

2 +H∗2 + 2HH∗). Since H is Hadamard, then we

obtain AB = 1
4 (H

2 +H∗2 + 2nI), where I is the identity matrix of order n. Taking
traces on both sides of the latter equality we get Tr(AB) = 1

4 (2Tr(H
2) + 2n2) so

that using hypothesis (a) we obtain

Tr(AB) =
n2

2
. (22)

From (21) and (22) it follows that

t =
n

2
. (23)
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By Lemma 7 the eigenvalues µ of H are of the form µ =
√
n exp(iθ). It follows

then by (b) that the eigenvalues λ =
√
n cos(θ) of A have arguments θ in between

−π/2 and π/2.
Thus cos(θ) ≥ 0 for each eigenvalue of A. We compute Tr(AB) now by using the

eigenvalues of A. One has Tr(AB) = Tr(AA∗) = Tr(A2) =
∑

λ λ
2 = n

∑
θ cos(θ)

2.
Therefore ∑

θ

cos(θ)2 =
Tr(AB)

n
. (24)

Since 1 ≥ cos(θ) ≥ 0, one has
∑

θ cos(θ)
2 ≤

∑
θ cos(θ) =

Tr(A)√
n

. Thus by (24) and

since A = circ(1, . . .)
Tr(AB)

n
≤ Tr(A)√

n
=

√
n. (25)

Directly by (22), or alternatively by ((21) and (23)) from (25) we get

n

2
≤

√
n. (26)

Thus, in (26) we obtain

n ≤ 4.

This contradicts (20), thereby finishing the proof of the theorem.
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