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Abstract. We present the local convergence analysis of two-step iterative methods free of
derivatives for solving equations and systems of equations under similar hypotheses based
on Lipschitz-type conditions. The methods are in particular useful for solving equations or
systems involving non-differentiable terms. A comparison is also provided using suitable
numerical examples.
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1. Introduction

Numerous problems in mathematics, computational sciences, engineering and related
sciences using mathematical modeling [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 11, 12, 13, 16,
15, 17] can be reduced to locating a solution * of the nonlinear equation in the form

F(z)=0,

where X, Y are Banach spaces, D is nonempty, open, convex, and F: D C X — Y
is Fréchet-differentiable.

Analytic solutions or closed form solutions are hard or impossible to find in gen-
eral. That explains why researchers utilize iterative methods to generate a sequence
approximating x*.

In this study, we present the local convergence of two-step secant method (TSSM)
and the two-step Kurchatov-type method (TSKM) defined, respectively, for each
n=20,1,2,... by

Tnt+1 = Tn — [fn»yn;F]ilF(xn) (1)
Ynt1 = Tnt = [Tnt1, Yn; F]TF (@041)

Tyl = Tn — [2Yn — xn,yn;F]_lF(mn) (2)
Yn+1 = Tn+1 — [2yn - xmxn;F]F($n+1)a
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where zg,yo € D are initial points and [., ;F] : D x D — L(X,Y) is a divided
difference of order one [16, 15] for F' on D satisfying

[z,y; Fl(x —y) = F(x) — F(y) for each x,y with © # y,

and F'(z) = [z, x; F], if F is Fréchet-differentiable. TSSM uses two inverses and
three function evaluations per complete step, whereas TSKM uses one inverse and
four function evaluations.

The rest of the paper is structured as follows: Section 2 and Section 3 contain
the local convergence of TSSM and TSKM, respectively, under similar Lipschitz-type
hypotheses. The numerical examples in Section 4 conclude this paper.

2. Local convergence 1

We present the local convergence analysis of TSSM based on scalar parameters and
functions. Let o > 0,5 > 0 and b > 0 with o + 8 # 0. Define parameters pg, p1 and
functions f and hy on the interval [0, pg) by

1 _ 1
Ut R Fo
bt
f(t>:<b+ﬁ+ﬁ)t

and

hp(t) = f(t) — 1.
We have that h(0) = —1 and hy(t) — 400 as t — p; . The intermediate value
theorem assures that equation h(t) = 0 has solutions on the interval (0, pg). Denote
by p* the smallest such solution. Notice that ht(p1) =0, so p* < p1. Then, we have
that for each t € [0, p*)

bt
< ——«1
“1—(a+pB)t
and
0< f(t) < L.

Let U(z,)\) and U(z,\) denote the open and closed balls in X, respectively, where
z € X is the center and A > 0 is the radius. The local convergence analysis of TSSM
is also based on the hypotheses (H):

(h1) F:D C X — Y is a continuously Fréchet differentiable operator and [.,.; F] :
D x D — L(X,Y) is a divided difference of order one.

(hg) There exist parameters a > 0,8 > 0 with a + 8 # 0, * € D such that
F(z*) =0, F'(z*)"! € L(Y, X)
and for each z,y € D
1F" (2) 7 ([, 3 F) = F' (@) ]| < aflz — 27| + Blly — 27|

Set Do = DNU(x*, po), where py was defined previously.
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(h3) There exists b > 0 such that for each x,y € Dq

1F"(2) 7 ([, 3 F) = [, 2™ F]) || < blly — 27,

(hy) U(x*,p*) C D, where p* was defined previously.
(hs) There exists R* > p* such that
1

R* <
B

, B#0.

Set D; = DNU(z*, R").

Theorem 1. Suppose that the hypotheses (H) hold. Then, sequences {Tn}, {yn}
starting from xo,yo € U(a*, p*) — {z*} and generated by TSSM are well defined in
U(z*, p*) for eachn =0,1,2..., remain in U(x*, p*) and converge to x*. Moreover,
the following estimates hold for each n =0,1,2,...

bllyn — = ||
aljzn — z*[| + Bllyn — z*|)

lonsn =2l < 7= [ — ™| < flzn — 2% < p* (3)

and .
bllyn — =¥

allzper =z + Bllyn — 2|

Furthermore, the limit point x* is the only solution to equation F(x) = 0 in Dy,
where Dy is defined in (hs).

e s — 2. (4)
1= )

Proof. Let z,y € U(x*, p*). Using (h2), we have in turn that
1" (2*) " [z, 3 F) = F'(2")]| < allz — 27| + Blly — 27|
<(a+ ) <1. (5)

In view of (5) and the Banach lemma on invertible operators [5, 6, 7, 13], [z, y; F]~! €
L(Y,X) and

1 g 1
[y F) 7 F' (%) <

S T (alz =T+ Bly =) ©)

In particular, [xg,yo; F]~! € L(Y, X), since xg,yo € U(x*, p*). By the first substep
of TSSM, we can write

x1—a" =3 — 2" — |30, y0: F] 7' F(x0)
[z0, y0; F] ™ ([z0, yo; F] — [0, 2™ F]) (o — 7). (7)

By (hs), (6) for = xg,y = yo and (7), we get in turn

ey — 2|l < o, yos F1~F/ @)1 F' (™)~ (2o, yos F] — [0, 2"; Fl)(@o — a*)]
bllyo — *|

1 (allzo — a* [+ Bllyo — 1)

o — 2| < ",

[0 — 27|

IN
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so (3) holds for n = 0 and z; € U(z*, p*) and [z1,y0; F]~* € L(Y, X). We also have
by (6) that

1
z1,y0; F] 7 F (27)|| < :
vy F1F @Ol < T = 5 Ble — =)

Moreover, by the second substep of TSSM, we can write that
y1—x* = a1 — 2" — [z1,y0; F] 7 F (1)
= [z1,50; F] 7 ([21, yo; F] — [z1, 2% F)) (21 — %),
SO

bllyo — " [|l|z1 — ]|

yl_aj* S * *
b ="l < T e =21 = Blwo — =)
bp*
< —n——— 2y — 2| < p,
eyl Ll

which shows (4) for n = 0 and y; € U(z*, p*). The induction for (3) and (4) is
completed analogously if g, yo,x1,y1 are replaced by Xy, Ym, Tm+1,Ym+1 in the
preceding estimates, respectively. Then, from the estimates

[zms1 — 2% < pallzm — 2™ < p*
and
[Ymi1 — 2| < pallwmir — 27| < p,
where 1 = % €[0,1) and pe = f(p*) € ]0,1), we deduce that lim,, oo Trm,
= limyy—y 400 Ym = %, Tmy1 € U(z*, p*) and yme1 € U(x*, p*). The uniqueness
part is shown by letting T = [z*,y*; F] for some y* € D; with F(y*) = 0. Using
(ha) and (hs), we obtain in turn that
1F" (27 ([2", y*s F] = F' ("))l < Blly" — 2" < BR <1,
so T~1 € L(Y, X). Finally, from the identity
0=F(z") = F(y") = [a" v Fl(@" —y"),

we conclude that * = y*. O

3. Local convergence 11

In this section, the local convergence of TSKM is presented in the way analogous
to that shown in Section 2 for TSSM. Let a > 0,61 > 0,p > 0,g > 0,a +b; # 0
and ¢ > 0 be given parameters. Define parameters rg, 1, functions g; and hg, on
interval [0,79) by

2 2
Ty = ————, 1 =
0 a++Va?+ 16¢ ' a+bl+/(x+b)?+ 32
by + 4ct
gi(t) = —

1—(a+4ct)t
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and
hg, (1) = g1 (t) — 1.

Notice that hg, (r1) = 0 and 7 is the only solution to equation hg, (t) = 0 in (0, ro).
Moreover, define functions go and h,, of the interval [0, 7o) by

LS +1)+ 0+ 1

1 — (a+4det)t

92(t) =

and
hg, (t) = g2(t) — 1.

We get hg,(0) = —1 < 0 and hg, (t) — 400 as t — r . Denote by 7o the smallest
solution to equation hg,(t) =0 in (0,71).
Define the radius of convergence r* by

r* = min{ry,r}. (8)
Then, we have that for each t € [0,7*),
0<gi(t)<1,i=1,2.
The local convergence analysis of TSKM is based on hypotheses (A):
1. (a1 )=(h1)

(a2 ) There exist a > 0,¢ > 0,2* € D such that F(z*) = 0, F'(z*)~! € L(Y, X) for
each z,y € D
1" (") 7 (F () = F'(2"))|] < allz — 27

and
IF (")~ ([2y — @, 25 F] — F'(y))|| < clly — ||

Set Dy = DN U(x*,70), where 7o was defined previously.
(as ) There exists b > 0,p > 0,¢q > 0 such that for each z,y € Dy
1F" ()" (2,9 F] = [, 2% F])|| < blly — 27|

and
IF'(z*) " ([z, 2" F] = F'(y)ll < pllz — yll + qlly — 2"

(ag ) U(x*,3r*) C D, where r* was defined previously.
(a5 ) There exists R} > R* such that
2
R < —,a#0.
a

Set D3 = D NU(a*, R}).
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Theorem 2. Suppose that the hypotheses (A) hold. Then, sequences {x,},{yn}
starting from xg,yo € U(x*,r*) — {z*} and generated by TSKM are well defined
in U(z*,r*) for each n = 0,1,2,..., remain in U(z*,r*), and converges to x*.
Moreover, the following estimates hold for each n =0,1,2...

bllyn — 2*[| + cllyn — zn?
= (allzn = 2| + cllyn — 2n|?)

lznts =27 < 5 [2n — 2" < flan — 2™ <™ (9)

and

PllTnt1 — Ynll + qllyn — || + cllyn — xn||2
1= (allzn — 2*|| + cllyn — zal[?)

[ynt1 — 2" < |Zpir — 2. (10)

Furthermore, the limit point =* is the only solution to equation F(x) =0 in Ds.
Proof. Let z,y € U(z*,7*) and set Q = [2y — z, x; F]. Using (as ) and (8), we have
in turn that
1F" (") 7 (F (%) = Q)

= | F'(@*) " (F' (a") = F'(y) + (F'(y) — [2y =z, 2 F)) |

< |[F/(@*)THE (y) = F/ @)+ 1 (25) 7 2y — 2,25 F] = F'(y))]

< ally —a*|| +clly - |?

<ar” +e(lly — " + 2" — 2f))?

<ar* +4c(r*)? < 1,
s0 Q7' € L(Y, X),

1

(ally —z*[| + cllz — ylI?)

Q™ F' (@)l < — (11)

and [2yg — xo,z0; F]™! € L(Y, X) for x = x¢ and y = yo. Hence, 71 and y; are well
defined by the first and the second substep of TSKM. Notice that condition (a4 )
guarantees that for x,y € U(z*,r*) we have 2y —x € U(z*,7*) C D. By (as ) and
(ag ), we get in turn the estimate

1F"(z*)~H(Q — [wo, 25 F])|
< [|F' (@)~ ((lyo, 2™ F] = F'(y0)) + (F'(y0) — [2y0 — 0, z0; F]))]|
< 1F" (@) ([yo, #*3 F] = F, (o))l + | F' (") " (F" (o) — [290 — w0, zo; F]) |
< bllyo — @*|| + cllyo — wol|*. (12)
In view of the first substep of TSKM, (8), (11) and (12), we obtain in turn from
T — o =x9— 2% — Q1 F(xp)
= Q7 H(Q — [wo, 2" F))(wo — =),
S0
21 = zoll < psllzo — 27|

< lwo — 2| <,
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* 2
where p3 = 1_?‘('}%;;%5!5%322HQ) € [0,1), which shows (9) for n = 0 and z; €

U(z*,r*). Similarly, from the second substep of TSKM, we can also write
y—2*t = —a* — Q' F(x)
= Q™' (([2y0 — o, w03 F] = F'(y0)) + (F'(yo) — [x1, ™5 F])) (21 — 2¥),

SO

llyr—a”||
1" () "1 (1240 — @0, @03 F] — F'(yo))I| + [|1F"(«*) " (F" (yo) — [x1, 2™ F]) |

<
- 1= (allzo — 2| + cllyo — @ol|*)

x [l = 27|
_pllzr = woll + gllyo — =] + cllyo — zo|?
= 1= (allwo — 27|l + cllyo — zo]]?)
<g2(llwo — "Dz — 27| < ey — 27| <o,

[y =2

which shows (10) for n = 0 and y; € U(z*,7*). Then, from the estimates
[2mir — 27| < psllen — 27| <",

and

lYnt1 — 2| < pallemyr — 2| <77,

where pg = go(||lxzo — 2*||) € [0,1), we obtain lim,, 1 o0 Ty = limy, 4 oo Ym = &*
and Tpm41,Ymt+1 € U(z*,7*). As in Theorem 1, but using (az) and (as) for P =

fol F'(z* + 0(y* — x*))df, we obtain
1
| ol — o jae
0

a * * a *
5”?/ -z < §R1 <1,

1F" (2*) = (P = F'(z7))|

IN

so P71 € L(Y, X). Then, from the identity
0=F(y") - F(z%) = P(y" — %),
we derive that z* = y*. O

Remark 1. Condition (as) can be weakened if replaced by
(as)’ U(z*,7*) C D and for each x,y € D

2 —x € D. (13)

Condition (13) certainly holds if D = X (see also [1, 2, 3, 4, 5, 6, 7]).
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4. Numerical examples

Let X =Y = R¥ k be a positive integer equipped with the standard difference [13],
and for

ym = W2y u),
there exists i = 1,2,...,k such that 3:5,? = yr(fl). Then, we cannot use TSSM or

TSKM in the form (1) and (2). Assuming that xéi) + y(()i),y(()i) % mgi) for each
i=1,2,...,k [20,v0; F]~! and [z1,y0; F]~! € L(Y, X), we can use a mehod similar
to the TSSM method defined for each n =10,1,2,..., by

Tn+l = Tp — [UjaijF]_lF(xn)

Ynt1 = Tni1 — [2j+1, 055 F] 7 F(2p41), (14)

where j = 0,1,2,...,n is the smallest index for which vj(»i) #+ wj(»i) and 23(21 #+
w]@. Then, method (14) is always well defined and can be used to solve equations
containing non-differentiable terms. Similarly, assume that [2yo — xo, zo; F]~! and
221 — yo,v0; F]7t € L(Y,X),x(()i) #+ y(()i) and y(()i) #+ xgi) for each i = 1,2,...,k.
Then, the method corresponding to TSKM is defined by

Tpi1 = Ty — [2wj — vj,v5; F] 7 F(2,)
Yn+1 = Tn4+1 — [211}] - Ujvvj;F]ilF(‘rn-Fl)‘ (15)

Clearly, methods (14) and (15) generalize methods (1) and (2) since they coincide
with those for j = n, respectively.

Next, we shall show the convergence of method (14) under similar conditions.
Let us consider hypotheses (H’):

L. (hy)=(1)
2. (hy)= (h2)
(h5) There exists v > 0,5 > 0 such that for each x,y,z € Dy

1F" (@) ([, g3 F] = 2,2 FD| < vl — 2 + 6lly — 27]].

(hﬁl) U(x*,ﬁ*) C D, where ﬁ* = m

(hL) There exists R* > p* such that
1

R* <
B

, BF#0.

Let Ds = DN U(z*, R*).
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Theorem 3. Suppose that the hypotheses (H’) hold. Then, sequences {x,},{yn}
starting from xg,yo € U(z*,p*) — {x*} and generated by method (14) are well de-
fined in U(z*, p*), remain in U(x*, p*) for each n =0,1,2,..., and converge to x*.
Moreover, the following estimates hold:

oy = @l + 0f|w; — 2]
— (v = 2| + Bllw; — =)
A(lvg = 2| + ll2n — 2*[]) + Of|w; — 2

lzns1 =™ < ¢ [ — 2|

<
B 1= (allv; — || + Bllw; — z*|)

— |z, — 27| < ||z, — 27| < 16
S @t | <l [ <p (16)

and

Mzjtr = Tl + 8w — =]
— (allzj41 — z*|| + Bllw; — =*||
Az = 2l + s = 21) + 3w, = 2]

Y+ = 27| < 7 e =27l

< E—
1= (allzye1 — 2 + Bllw; — 2]
———|Tpa1 — < \xnt1 — <p. 17
< Tota g e = a1 < lenan =l < 7 (a7)

Furthermore, the limit point x* is the only solution to equation F(x) =0 in Ds.
Proof. Use the proof of Theorem 1, the identities

Tng1 — 2% = ([vj,w;; F]7'F/ (z*))
X (F'(2*) " ([vj, wy; F] = [n, 2% F])) (2 — 2%)

and
Yn+1 = 2" = ([zj41,055 F] 7 F'(27))
X (F' (") (241, w5 F] = o1, 2™ F])) (@41 — 2¥)
to arrive at estimates (16) and (17), respectively. O

The hypotheses (A’) are:
L. (a})=(a1)
2. (ah)= (h2)
3. (a3)= (hs)

(ail) U(x*,F*) C D7 Where 77* = m

(a) There exists R} > 7 such that
1
B

R} <

, B#0.

Let Dg = DN U(z*, RY).
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Theorem 4. Suppose that the hypotheses (A’) hold. Then, sequences {x,},{yn}
starting from xg,yo € U(z*,7*) — {x*} and generated by method (15) are well de-
fined in U(x*,7*), remain in U(x*,7*) for each n =0,1,2,..., and converge to x*.
Moreover, the following estimates hold:

A12w; = v; = wal + Ollv; — a7
— (al2w; —v; — " + Bllv; — 1)
2@l — 2+ oy — 2| + wn — *11) + ollo; —
= T (@@lwy -2+ oy — 2 ) + Aoy — =*T)
(4y +0)7*
~ 1-Ba+p)r*

lZnts — 27| < 5 [2n — 2|

I*
Ui, — 2

[en —2%|| < [lan — 27| <77, (18)

and

V[2w; — vj — @pqa || +0v; — @]
1= (e 2w; — vj — @*[| + Bllv; — 2|
< 1Qw; — || + [[vj = 27| + [[Znt1 — a"[]) + vy —
- 1= (a(2llw; — =*|| + [Jv; — =*[|) + Bllv; — =*[])

= WH%H — | < flzppr — 2| <7 (19)

[Yn1 — 27| < )||xn+1 — a7

il )
[€nt1 — 27|

Furthermore, the limit point x* is the only solution to equation F(x) =0 in Dg.

Proof. Use the proof of Theorem 2, the identities

Tp1 — 2t = ([2w; — vy, wy; F]71F (2%))
X(F'(z*) " ([2wj — v, 053 F) = g, 2% F])) (20 — 2¥)

and
Ynt1 — 2" = ([2w; —vj, 05 F 7 F'(a%))
< (F' (@) 7N ([2w; — 5,05 F] = [wng1, 27 F])) (@01 — 27)
to arrive at estimates (18) and (19), respectively. O

Example 1. Let us consider the system for h = (hy, ho)”

fi(h) = 3h3hy + h3 — 14 |hy —1| =0
f2(h) = hi 4+ hihi — 1+ |ho| =0

which can be written as F(h) = 0, where F = (f1, f2)T. Using the divided difference,
(la,b; Fi)? j=1 € L(R?,R?) [13], for 1 = (1,0)", 20 = (5,5)", we obtain by (2)
Hence, the solution p is given by p = (0.894655373334687,0.3278626421746298)7".
Notice that mapping F is not differentiable, so the earlier results mentioned in the
introduction of this study cannot be used.
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-ngl) Z‘g) ||xn — xn—ln
5 ) )

1 0 5
0.909090909090909 0.363636363636364 | 3.0636E-01
0.894886945874111 0.329098638203090 | 3.453E-02
0.894655531991499 0.327827544745569 | 1.271E-03
0.894655373334793 0.327826521746906 | 1.022E-06
0.8946655373334687 | 0.327826521746298 | 6.089E-13
0.8946655373334687 | 0.327826421746298 | 2.710E-20

O A WY R O

Table 1:

Example 2. We consider the boundary problem appearing in many studies of applied
sciences [6] given by

P+ =0, Ae[0,1] (20)
©(0) = ¢(1) = 0.

Let h = %, where | is a positive integer and set s; = ih,i = 1,2,...,1 — 1. The
boundary conditions are then given by ¢y = @, = 0. We shall replace the second
derivative @' by the popular divided difference

S(t) ~ PEED) Qigt) et —h) (21)

Pit1 — 20 + Pi-1
" (s;) = & h; o i=1,2,...1—1.

Using (20) and (21), we obtain the system of equations defined by

201 — h2p1 T — h%p3 — 3 = 0
—pi1+ 20 — B2l — B2Q] — i1 = 0
—p1_2 + 2011 — WP = WP} = 0.

Define operator F : RI=1 — RI71 by

where
2 =10 ...0
-1 2 —-1...0
M= .
0 0 O 2
and

flo) =[P+ 0t 03 + oo, o0 + o]
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Then, the Fréchet-derivative F' of operator F is given by

000 01 00...
0 ¢30... 0 0 0.
F'(g) = M — (1+ \)h? : —on2| T
0 00...9", 0 00...

We shall use a special case of method (2) given by

PO = 1y, — F' (1) T F (1)
PP =) — F'(4,) T F ()

B = U - () )
d’n-ﬁ-l = wﬁk)

P1—1

(23)

Let A = %,k =3 and | = 10. In this way, we obtain a 9 X 9 system. A good initial
approzimation is 10sinmt since a solution to (20) vanishes at the end points and is

positive at the interior. This approximation gives the vector

[3.0901699423
5.877852523
8.090169944
9.510565163

£ = 10 ,

9.510565163

8.090169944

5.877852523

i 3.090169923 |

which by using (23) leads to

[ 2.396257294 |
4.698040582
6.677432200
8.038726637
8.526409945
8.038726637
6.6774432200
4.698040582

| 2.396257294 |

Yo =
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Using vector v as the initial vector in (23), we get the solution ¥* given by

[2.394640795
4.694882371
6.672977547
8.033409359
* =g = | 8.520791424
8.033409359
6.672977547
4.694882371
| 2.394640795

Notice that the operator F' given in (22) is not Lipschitz.
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