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WIND CHARACTERISTICS IN THE WAKE OF A NON-ROTATING 
WIND TURBINE CLOSE TO A HILL 

Summary 

Hilly terrain may considerably influence energy yield and structural loading of wind 
turbines. Wind energy developers are therefore required to accurately predict wind 
characteristics at the wind farm site already in the designing phase. It is necessary to 
determine how particular hill shape and size affect wind characteristics at the location of wind 
turbines operating in the wake of a hill. In order to address this complex issue, small-scale 
laboratory experiments were carried out in a boundary layer wind tunnel (BLWT). The focus 
was on characteristics of the flow at the same position downstream of the hill and the wind 
turbine models studied on various sizes and shapes of the hill model. Three hill models (a 
small and a large hill with laterally uniform heights and a hill with a bay) were exposed to the 
thermally neutrally stratified atmospheric boundary layer (ABL) simulation. In each 
experiment, there was only one hill model in the BLWT test section. The configuration 
without the hill, i.e. the flat terrain model, was tested as a reference case. Downstream of the 
hill model, there was a single (alone-standing) wind turbine model. Flow characteristics were 
studied downstream (behind) the wind turbine model. The wind turbine model was in the 
parking position in order to study wind characteristics in the situation with a strong wind 
when there is no rotation of rotor blades. The experimental results indicate a velocity decrease 
and stronger turbulence in the wind turbine wake in the presence of a hill, which trend is more 
pronounced in the case of larger hills. Strong velocity gradients are observed around the hub 
height in the large hill configuration, while this velocity deficit is the smallest in the hill with 
a bay configuration due to flow channeling. The velocity power spectra reveal the 
characteristic peak due to the vortex shedding from the hill ridge. The obtained results 
provide a new insight into the turbulent wake characteristics of a single wind turbine placed 
downstream of a hill with a potential to serve as a validation tool for computational studies. 

Key words: wind energy, wind turbine, hilly terrain, aerodynamic characteristics, wind 
tunnel experiments. 

1. Introduction 

The ability of wind turbines built in the orographically complex, hilly terrain to extract 
kinetic energy from the flow decreases due to wind characteristics significantly different from 
the ‘classical’ atmospheric boundary layer (ABL) flow developing above a flat terrain that 
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wind turbines are originally designed for. In addition, unsteady wind loading of wind energy 
structures in those areas can likely reveal additional, unknown features. While there is a lot of 
information on wind turbine aerodynamics relating to the flat terrain type, further work is still 
required with respect to wind characteristics in the hilly terrain that is essential if the lifetime 
of wind turbines is to be extended and energy production maximized. 

This project builds upon the findings of previous relevant studies on wind turbine 
aerodynamics exposed to the ABL flow developing above a flat terrain. In particular, an 
overview and analysis of different wake modelling methods is reported in Crespo et al. [1], 
while the wake interacting with the free stream wind and the local terrain influences the total 
energy resource at a particular wind farm site, Whale et al. [2]. As the turbulence in the wake 
may affect the fatigue loading of downwind turbines within the wind farm, e.g. Kozmar et al. 
[3], this issue needs to be carefully investigated when designing a wind farm layout. 

The wind turbine wake is commonly divided into a near and a far wake, Vermeer et al. 
[4]. The near wake is the region from the wind turbine to approximately one rotor diameter 
downwind of the turbine. It is characterized by a number of rotor blades and their 
aerodynamics. In this range, helical tip vortices develop due to the rotating blades and 
considerably determine the behaviour of the turbulent wake flow structures behind a wind 
turbine. In particular, Zhang et al. [5] identified localized regions of strong vorticity and 
swirling strength, while Hu et al. [6] characterized the dynamic wind loads and evolution of 
the unsteady vortex and turbulent flow structures. Chamorro and Porté-Agel [7] found an 
axisymmetric shape of the velocity deficit, where the turbulence intensity distribution is non-
axisymmetric and the velocity power spectra show a signature of blade tip vortices. The tip 
vortices are also a source of noise and blade vibration, Massouh and Dobrev [8]. 

The far wake is the region beyond the near wake, where the rotor design and 
performance become less important and wake interference with the surrounding terrain and 
structures starts to dominate the wake physics. An extensive knowledge on turbulent vortex 
flows in the wind turbine far wake is crucial for the optimal designing of wind turbines in 
order to improve energy yield and reduce structural fatigue of the wind turbines placed 
downwind within a farm as those wind turbines are directly exposed to turbulent wakes of the 
wind turbines placed upstream. 

Small-scale experiments have commonly served as a valuable tool in studying wind 
turbine wakes, e.g. Alfredsson and Dahlberg [9], Ebert and Wood [10], Grant and Parkin [11], 
Whale et al. [12], Simms et al. [13], Vermeer [14], Medici and Alfredsson [15], Snel et al. 
[16], Dobrev et al. [17], Sørensen [18]. However, most previous laboratory studies were 
carried out assuming uniform wind conditions, e.g. Vermeer et al. [4], which are not fully 
representative of the highly turbulent atmospheric airflows that wind turbines are commonly 
subjected to. Hence, some recent wind tunnel studies were carried out to further elucidate the 
effects of the ABL on the wake characteristics, e.g. Chamorro and Porté-Agel [7], [19], [20], 
Markfort et al. [21], Zhang et al. [22]. 

Hancock and Pascheke [23] investigated wake characteristics influenced by the thermal 
stratification, while Cal et al. [24] indicated that the fluxes of kinetic energy associated with 
the Reynolds shear stress are of the same order of magnitude as the power extracted by wind 
turbines thus indicating the importance of vertical transport in the boundary layer; these issues 
are expected to additionally gain on complexity in the marine wind environment, e.g. Hadžić 
et al. [25]. 

While previous studies highlight the necessity of considering the effects of boundary 
layer flows on the wind turbine wake, up-to-date the studies on effects of strong topographical 
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disturbance (for example a hill) on wind turbine wake characteristics are quite rare, whereas 
such strong topographical features are likely to substantially influence the unsteady wake 
physics and wind turbine loads, e.g. Botta et al. [26]. Hence, it is of great interest to learn 
more about the wind turbine aerodynamic characteristics in a hilly terrain. This will result in 
an effective design of wind turbines in those areas with respect to the energy yield, structural 
loading and fatigue. 

There are generally two important issues when designing wind turbines in complex 
terrain, i.e. the first one is the flow development downstream of a hill to determine a distance 
where the turbulent atmospheric flow assumes the original undisturbed characteristics 
comparable to those upstream of a hill. At this distance, wind turbines will experience similar 
wind loads and they will yield the amount of energy comparable to that generated by the wind 
turbines situated upstream of a hill. This issue was previously analyzed in Kozmar et al. [27], 
where the results of a development of the mean velocity and turbulence intensity in the wake 
of different hill types were provided in the form of design curves. Also, this information may 
be important for design purposes in order to allow for calculating projected structural loads 
and wind energy yield in the hill far wake. 

Another important issue, which is the focus of the present study, are flow characteristics 
at a fixed position downstream of the hill and the wind turbine studied on various sizes and 
shapes of the hill. It is particularly important to address this issue because there are many 
regions around the world where wind turbines are placed immediately downstream of a hill, 
i.e. there is no enough flat terrain downstream of a hill to allow for the flow to recover from a 
disturbance caused by the hill and due to that fact the wind turbines are designed in the hill 
near wake. In this case, it is required to exactly know the wind characteristics at the fixed 
position in the hill wake caused by the hills of various sizes and shapes as various hill types 
yield substantially different flow characteristics at the same position in the hill wake. 

2. Experimental setup 

The experiments were carried out in the CRIACIV boundary layer wind tunnel, which 
is described in Augusti et al. [28]. The standard wind tunnel procedures (Simiu and Scanlan 
[29], Dyrbye and Hansen [30], Holmes [31], Mattuella et al. [32]) were adopted for this 
purpose. The experimental setup was described in Kozmar et al. [27]; however, for the sake of 
the completeness of the present study, it is also provided here in a modified form. 

This wind tunnel is designed as an open-return (Eiffel) suction-type wind tunnel with a 
closed test section. Flow velocity through the test section can be regulated between 0 m/s and 
30 m/s by both adjusting the pitch blade angle and regulating the speed of the fan powered by 
a 160 kW engine, where the fan is placed at the outlet of the test section. The total length of 
the wind tunnel test section is approximately 22 m. The test section is 1.6 m high and 2.2 m 
wide at the outlet of the nozzle, i.e. at the inlet of the test section. Due to diverging sidewalls 
in the longitudinal direction whose purpose is to avoid pressure gradients, the test section 
width at the centre of the turntable is 2.4 m. 

In this wind tunnel, it is possible to simulate the ABL flow and turbulence along the 
first 11 m of the test section (8 m long fetch and 3 m at the turntable). At the turntable, the 
horizontal flow incidence angle on structural models can be varied. The ABL simulation 
upstream of the hill model was created by applying the Counihan [33] technique. The flow 
conditioning devices encompass three Counihan 1.53 m high quarter-elliptic constant-wedge-
angle spires, a castellated barrier wall and a fetch of surface roughness elements, Fig. 1. 
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a) 

b) 

Fig. 1  Experimental setup for the wind tunnel ABL simulation including the castellated barrier wall, three 
Counihan vortex generators and surface roughness elements: a) schematic side view, b) photograph 

The castellated barrier wall used in this study is presented in Fig. 2, while the surface 
roughness consisted of 0.05 m high, 0.05 wide and 0.05 m long wooden cubes placed in a 
staggered pattern with a lateral distance between the cubes of 0.145 m in the lateral and 0.110 
m in the longitudinal direction. 

 

 

Fig. 2  Castellated barrier wall used in this study (all measures in mm) 

Three different hill models were used as well as a smooth surface representing a flat 
terrain (FT), Fig. 3. The hill models were designed to closely represent realistic terrain 
conditions that commonly appear in the full-scale, e.g. Lepri et al. [34], [35], rather than some 
generic shape. 
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a) Flat terrain (FT) 

b) Small hill (SH) and large hill (LH) 

c) Hill with a bay (BAY) 

Fig. 3  Measures of the hill models (lengths in mm): a) flat terrain (FT); b) small hill (SH) and large hill (LH), 
where SH measures are provided first, LH measures are provided in brackets, while lateral length (1000 mm) 

and lateral slope (45o) are the same for SH and LH; the slopes (both windward and leeward) are 18o for SH and 
34o for LH; c) hill with a bay (BAY), where the measures not indicated are the same as for LH 

Each hill model is 600 mm long in the main flow direction (along the wind tunnel test 
section) and 1000 mm wide (lateral to the main flow direction). The small hill (SH) model is 
100 mm uniformly high, the large hill (LH) model is 200 mm uniformly high, while the hill 
with a bay (BAY) is 200 mm high, whereas the height decreases to 100 mm height in the 
lateral centre of the hill. 

The geometry of the hill models was selected to achieve the wind tunnel blockage 
below the commonly accepted critical value of 5%, e.g. Simiu and Scanlan [29]. At the same 
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time, LH twice as high as SH, and BAY having a larger height equal to LH and the smaller 
height equal to SH allow for resolving the dominant flow phenomena due to the height and 
the shape of the hill model. The surface of the hill models is quite smooth with a very low 
surface roughness, while the minor irregularities in the hilly terrains, which were 
manufactured in order to make the hill models look more realistic, were not expected to have 
any appreciable influence on the flow in the wake of the hill models. 

The leading edge of all terrain types was placed 5.3 m (3.5) downstream of the vortex 
generators’ trailing edge thus allowing for the ABL simulation to fully develop along the 
fetch prior to reaching the hill model. Here,  is the vortex generators’ height and the 
approximate thickness of the ABL simulation. This is in agreement with the original 
Counihan [33] method, where it was indicated that the ABL simulation became fully 
developed and uniform three to four ABL simulation heights  downstream of the trailing 
edge of the vortex generators. Downstream of the trailing edge of the hill, the test section 
surface was smooth representing flat terrain. 

The wind turbine model was placed 50 mm downstream of the trailing edge of the hill 
model in the lateral centre of the hill model and the wind tunnel test section. The wind turbine 
model was placed close to the hill model to allow for a clear resolving of the hill effects on 
the flow characteristics because at this position the effects of the hills are substantially 
stronger than further downstream. 

The cylindrical wind turbine tower with a diameter of 12 mm is 240 mm high. The 
diameter of the 28 mm long cylindrical nacelle is 16 mm. Three 160 mm long turbine blades 
designed similar to DOWEC-NREL 5MW and EU 56.1400-2 blades were fixed in a parking 
position (no rotation). Non-rotating case comparable to strong wind situations (wind velocity 
higher than 25 m/s) is important, particularly for structural engineers, as this configuration 
needs to be carefully investigated with respect to dynamic loading and response of wind 
energy structures. Nevertheless, the effects of a complex terrain on the wind turbine wake 
would need to be further addressed for rotating blades as well as previous studies, e.g. Zhang 
et al. [5], Hu et al. [6], Whale et al. [12], indicated a considerable influence of rotating blades 
on highly turbulent and three-dimensional wake flow. The adopted rotor blade length to wind 
turbine hub height ratio corresponds to a common wind turbine design, e.g. Siemens 6.0 MW 
Sapiens. The ratios between the wind turbine hub height and the height of different hills are 
reported in Table 1. 

Table 1  Ratios of the height of different hills to the wind turbine hub height. *The hill with a bay model is 
200 mm high with a slope to the 100 mm height in the lateral centre of the hill. Hence, there are two 
different ratios of the hill height to the wind turbine hub height; 0.833 at the lateral edges of the hill, 
0.417 in the lateral centre of the hill 

 FT SH LH BAY 
Hill height/Hub height 0 0.417 0.833 0.833; 0.417*

 
In all experiments, the blockage of the wind tunnel test section was below 5%. As an 

example, one arrangement of the castellated barrier wall, vortex generators, surface roughness 
elements along with the hill and the wind turbine models is presented in Fig. 4. 
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a) b) 

Fig. 4  Experimental setup in the wind tunnel test section: a) castellated barrier wall, vortex generators, surface 
roughness and the hill with a bay model, b) wind turbine model placed 50 mm downstream of the trailing edge 

of the large hill model 

The measurement technique includes a conventional Aeroprobe Cobra sensor and a 
Prandtl-Pitot tube for velocity measurements and pressure and temperature sensors. The 
Cobra sensor is a conventional one with five holes and a maximum sampling frequency of 50 
Hz. It is calibrated within the calibration cone of 60o and generally not that suitable for 
measurements in the reversed flow that can likely occur downstream of the hill models. 
Hence, the percentage of data recorded inside the calibration cone with respect to the total 
number of data samples was estimated for each measuring configuration using the standard 
Aeroprobe software. 

In the case of FT and SH the flow is not reversed, as some 99% of data samples were 
recorded inside the calibration cone in all of those configurations. Immediately downstream 
of the BAY model at the position of the wind turbine model and in the near wake at one rotor 
diameter D downstream of the wind turbine tower (x/D = 1) and close to the ground surface 
up to 0.5zhub, there are some indications of a reversed flow even if at least 90% of data 
samples were recorded inside the calibration cone in those configurations. In other BAY 
configurations, the number of data samples inside the calibration cone is 98% and more. The 
strongest reversal of the flow was observed in the case of the LH model, particularly 
immediately downstream of the hill model (wind turbine position and x/D = 1) and close to 
the ground up to 0.85zhub. In this range, the percentage of data samples recorded inside the 
calibration cone was between 70% and 80%, while in the remaining LH configurations it was 
97% and more. 

In the streamlined, smooth flow, the measurement uncertainty for both the Prandtl-Pitot 
tube and the Aeroprobe Cobra sensor is about 1%. This analysis indicates that the obtained 
data can be well adopted with respect to the studied physical phenomena, while it would be 
beneficial to further confirm the recordings in the immediate wake of the LH and BAY 
models close to the ground surface by using some experimental technique even more 
appropriate for measurements in the reversed flow, e.g. Particle-Image-Velocimetry (PIV). 

The flow and the turbulence were analyzed with respect to the mean velocity, 
turbulence intensity, Reynolds stress, integral length scales of turbulence, and power spectral 
density of velocity fluctuations, as this set of ABL parameters allows for a comprehensive 
analysis of ABL characteristics, e.g. [36], [37], [38], [39], [40]. The ABL velocity profiles 
without the hill model were normalized using the reference velocity uref = 10.2 m/s at the 
reference height zref = 0.216 m. The zref = 0.216 m is selected as one of the measuring points 
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in the lower ABL (above the displacement height), as this way of normalization is common 
when studying ABL wind tunnel simulations. The wind profiles downstream of the hill were 
evaluated using the free stream mean velocity u  = 15 m/s measured in the undisturbed free 
stream flow at the height of 930 mm and 1000 mm upstream of the leading edge of the hill in 
order to highlight the velocity reduction behind the hill as compared to the free stream flow. 
This analysis can be particularly interesting when making projections about the wind energy 
yield. 

The ABL profiles were created based on the measurements obtained at 15 different 
heights (in vertical direction only), i.e. at the heights of 75, 90, 107, 128, 152, 182, 216, 258, 
308, 366, 437, 521, 621, 741, 884 mm. The near-surface velocity measurements at heights 
lower than 75 mm were not taken as they do not considerably change the shape of the 
investigated profiles, while the focus of this study was on the entire height range between the 
ground surface and the top tip height of the wind turbine. Downstream of the hill and the flat 
terrain models, the flow characteristics were determined based on the velocity measurements 
made both in the vertical and the lateral direction. In particular, the vertical profiles were 
made out of the measurement results in ten points, while the lateral profiles were built based 
on the results in five points. For both profile types, the spacing between the neighbouring 
measuring points was zhub/6, where zhub is the wind turbine hub height. For the vertical profile, 
the measuring points extend from the ground surface up to the top tip height, while for the 
lateral profile they were placed from the hub laterally toward the rotor radius, as reported in 
Fig. 5. The preliminary tests carried out with a larger number of more densely spaced 
measurement points indicated that the finally selected and further applied raster of points 
provided a satisfactory resolution for creating the profiles necessary for the analyses. 

 
Fig. 5  Positions of the measuring points; vertical profiles made out of measurement results in ten points; lateral 

profiles built based on results in five points; measuring point at the hub height was used for both profiles 

The initial velocity measurements were carried out to determine characteristics of the 
ABL simulation as well as to investigate the effects of the time record length on the ABL 
simulation. Hence, these initial tests were performed in the time record durations of 30 s, 60 s, 
90 s, and 120 s. As the obtained results differed insignificantly for the time records longer 
than 60 s, the results of the ABL simulation are reported for the time record length of 120 s, 
while further experiments when analyzing the wind turbine wake characteristics were carried 
out and reported for the time record length of 60 s. The sampling rate was 500 Hz in all tests. 
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3. Results and discussion 

3.1 Wind turbine wake characteristics 
The results of the created ABL simulation upstream of a hill model in the undisturbed 

flow were previously reported in [27]; however, for brevity, the important details are provided 
here as well as in the Appendix to complement the results for the flow characteristics at the 
fixed position downstream of the hill and the wind turbine studied on various sizes and shapes 
of the hill, which is the focus of the present study. 

The ABL simulation length scale factor (300) was calculated as suggested by Cook [41] 
using the aerodynamic surface roughness length z0 and the longitudinal integral length scale 
of turbulence Lu,x. In the wind tunnel test section without a hill model in place, the following 
parameters of the ABL simulation were estimated using the fitting procedure: aerodynamic 
surface roughness length z0 is 6 mm, displacement height d is 50 mm, power law exponent for 
the mean velocity u profile in the main (x) flow direction  is 0.26, friction velocity u is 1.2 
m/s, all indicating an urban-type ABL simulation with the Prandtl constant-flux layer clearly 
exhibited in the lower part of the ABL simulation. The experiments were performed assuming 
a neutral thermal stratification of the ABL. The roughness Reynolds number  0R zuRe   
is 476 (  is air viscosity), which is larger than 5 recommended as the minimum value for 
ABL wind tunnel simulations, Plate [42]. 

The results indicate that the created ABL simulation upstream of the hill model 
corresponds well to the full-scale ABL developing above the flat urban-type terrain. This 
ABL simulation developing above a flat terrain impinged the hill model and contributed to 
creating altered flow and turbulence characteristics downstream of the hill model. In 
particular, the power law exponent  = 0.26 with displacement height d = 15 m (full-scale 
dimensions scaled-up from the wind tunnel to full-scale using the adopted 1:300 simulation 
length scale) along with the aerodynamic surface roughness length z0 = 1.8 m (full-scale 
dimensions scaled-up using the adopted 1:300 simulation length scale) represent urban areas 
or very hilly or hilly areas well, e.g. Dyrbye and Hansen [30]. The characteristic full-scale 
measures of the hills and the wind turbine calculated by using the adopted 1:300 simulation 
length scale are reported in Tables 2 and 3, respectively. 

Table 2  Full-scale heights of the hills calculated by using the adopted 1:300 simulation length scale. The hill 
with a bay model is 60 m high with a slope to 30 m in height in the lateral centre of the hill 

 FT SH LH BAY 
Height (z-direction), m 0 30 60 60; 30 

Table 3  Full-scale lengths of the wind turbine calculated by using the adopted 1:300 simulation length scale 

 Tower 
diameter 

Hub 
height 

Nacelle 
diameter 

Nacelle 
length 

Blade 
length 

Full-scale lengths, m 3.6 72 4.8 8.4 48 

In addition, in the case of the flat terrain and all the studied hills, the full-scale length in 
the longitudinal (x) direction is 180 m, while the hills are 300 m wide in the lateral (y) 
direction. 

Vertical and lateral profiles of the mean flow velocity at the position of the wind turbine 
(without the wind turbine in place) as well as at different streamwise positions downstream of 
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the wind turbine (the wind turbine in place) are presented in Figs. 6 and 7, respectively, for 
three different shapes of the hill, as well as for the flat terrain configuration (without the hill). 
While the aerodynamic drag force acting on the wind turbine is proportional to the square of 
the velocity, the wind turbine energy yield is proportional to the cube of the velocity. Higher 
velocity indicates stronger aerodynamic loads acting on the wind turbine as well as more wind 
energy harvested by the wind turbine, e.g. Hu et al. [6]. 

While from the point of view of structural loading it is both interesting to learn about 
the shape of the profiles and the velocity value, the mean flow velocity at the hub height has 
been commonly used to calculate the wind energy yield, e.g. Manwell et al. [43]. The mean 
velocities recorded at the hub height are therefore additionally tabulated in Fig. 6e, as those 
velocity deficits with respect to the undisturbed free stream flow can be particularly useful 
when calculating the projected wind energy yield. 

 
a) Wind turbine position b) Wake at x/D = 1 c) Wake at x/D = 3 d) Wake at x/D = 5 

e) Normalized mean flow velocity at the hub height ( u/uhub ) 

 FT SH LH BAY 
Wind turbine position 0.71 0.71 0.53 0.74 

Wake at x/D = 1 0.69 0.66 0.34 0.63 
Wake at x/D = 3 0.71 0.70 0.41 0.61 
Wake at x/D = 5 0.74 0.72 0.55 0.64 

Fig. 6  a) – d) Vertical (z) profiles of the longitudinal (u) flow velocity at the position of the wind turbine 
(without wind turbine in place), as well as at different streamwise positions downstream of the wind turbine 

(wind turbine in place) for different terrain types: black solid line is flat terrain (without a hill), black dotted line 
is small hill, solid grey line is large hill, dotted grey line is hill with a bay; e) mean flow velocity at the hub 

height normalized using the free stream velocity; x/D is nondimensionalized downstream distance of the wind 
turbine, D is the wind turbine rotor diameter, u∞, u  and zhub are mean flow velocity in the undisturbed free 

stream flow, mean flow velocity at the hub height and wind turbine hub height, respectively. 

There are several important issues to be noted with respect to the vertical profiles of the 
mean velocity and velocity deficits as compared to the undisturbed, free stream flow. The 
velocity profiles are considerably altered by the presence of the complex orography as they 
are very different from the ABL velocity profile upstream of the hill, which is particularly 
pronounced in the case of the large hill. In particular, the large hill shadows the wind turbine 
to the largest extent as exhibited through the largest velocity deficit with respect to other 
terrains. This shadowing effect weakens further downstream of the hill, as the differences in 
the velocities observed for different terrains are small in the far wake at x/D = 5. 
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At the wind turbine position immediately downstream of the hill, in the case of the large 
hill the range of rather small velocities extends from the ground surface up to 70% of the hub 
height, when the velocities start to recover and reach the values observed for other terrains at 
1.2zhub. While the mean velocity profiles are rather smooth along the height for all profiles 
further downstream, i.e. at x/D = 3 and 5, strong velocity gradients are observed around the 
hub height for the large hill when the wind turbine is placed immediately behind the hill, i.e. 
at the wind turbine position at x/D = 1. While rather small velocities along the lower part of 
the tower of the wind turbine placed immediately downstream of the large hill at first may 
seem favourable with respect to the wind loading, this scenario may alter bending moments 
due to strong winds acting on the higher part of the wind turbine only. In addition, due to 
considerably different velocities in the lower and higher parts of the tower, the vortex 
shedding phenomena largely determining the unsteady wind loading of the wind turbine tower 
may exhibit significantly different features for different parts of the structure resulting in a 
deteriorated overall structural stability. 

In the configuration without the hill, slight differences can be observed among velocity 
profiles recorded at various downstream distances. This is due to a roughness change between 
the rough floor with roughness elements (where the ABL simulation is developed) and the 
smooth surface without roughness elements representing the flat terrain. With respect to the 
velocity at the hub height, a considerable deficit is observed for all terrain types in 
comparison to the free stream velocity indicating a reduced wind energy yield in the presence 
of the hill. Immediately downstream of the leading edge of the various hills and the flat 
terrain, the velocity deficit is approximately 30% for the flat terrain, the small hill, and the hill 
with a bay, while it is as large as 47% for the large hill. For each terrain type this already 
considerable velocity deficit is enhanced immediately behind the wind turbine at x/D = 1, as 
the wake flow is additionally retarded by the presence of the wind turbine nacelle. 

Further downstream the flow recovers in the case of the flat terrain and the small hill 
with velocities observed at x/D = 5 slightly exceeding the values recorded immediately 
downstream of the hill and remaining within the ±4% margin within all distances investigated 
behind the hill. While in the case of the large hill the velocity at x/D = 5 reaches (end even 
exceeds) the values observed at the wind turbine position, a maximum velocity deficit of all 
tests is observed at x/D = 1 downstream of the large hill. Here, the flow is retarded both due to 
the large hill as well as due to the wind turbine nacelle as the velocity deficit is 66% with 
respect to the undisturbed, free stream flow. Due to flow channeling, the velocity deficit at the 
wind turbine position immediately downstream of the hill is the smallest in the case of the hill 
with a bay (26%). On the other hand, this is the only case studied where the velocity deficit 
did not recover until reaching x/D = 5 as it remains lower (36%) than immediately behind the 
hill (26%), likely due to more complex orographic wave breaking phenomena as compared to 
the hills with a height uniform in the lateral direction. These trends are expected to be even 
more pronounced in the case of rotating wind turbine blades, e.g. Ainslie [44]. 

At the wind turbine hub height, velocities remain nearly constant in the lateral direction, 
as reported in Fig. 7. The results are reported at z/zhub = 1 in one lateral direction only (y/R 
values are always positive) as the preliminary tests indicated that this profile is symmetrical 
on both sides in the lateral direction from the wind turbine tower. 
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a) Wake at x/D = 1 

 

b) Wake at x/D = 3 

 

c) Wake at x/D = 5 

 

Fig. 7  a) – c) Lateral (y) profiles of the longitudinal (u) flow velocity at different streamwise positions 
downstream of the wind turbine (wind turbine in place) for different terrain types: black solid line is flat terrain 
(without a hill), black dotted line is small hill, solid grey line is large hill, dotted grey line is hill with a bay; x/D 

is nondimensionalized downstream distance of the wind turbine, D is the wind turbine rotor diameter, u∞ and zhub 
are mean flow velocity in the undisturbed, free stream flow and the wind turbine hub height, respectively. 

As for the vertical profiles of the mean velocity in the longitudinal direction (u), the 
velocity deficit of the mean u velocity in the lateral profiles at all x/D positions is the largest 
in the case of the large hill and decreasing when moving further downstream of the hill. 
Namely, the observed velocity deficits for different terrains decrease when moving further 
downstream of the hill, eventually becoming the same at a sufficient distance from the hill. 
Furthermore, the wind loading component with respect to the mean flow velocity is expected 
to remain nearly the same in the lateral direction along the wind turbine rotor blade due to 
nearly constant mean flow velocities. 

Hu et al. [6] and Churchfield et al. [45] indicated the importance of taking the dynamic 
structural loads induced by atmospheric turbulence into account when designing wind 
turbines in order to extend their lifetime with respect to structural fatigue. While historically 
the time-averaged wind loads were used to calculate the mechanical design of wind turbines, 
the effects of the atmospheric turbulence and respective dynamic wind loads have been 
receiving an increasing attention in recent years. In particular, the instantaneous wind loads 
acting on a wind turbine operating in a turbulent atmospheric boundary layer wind could be 
two to three times greater in comparison to the time-averaged values, Hu et al. [6]. Hence, a 
particular focus of this study is on integral atmospheric turbulence parameters, i.e. the 
turbulence intensity in all three directions and the dominant u’w’ turbulent Reynolds stress 
component as well as their vertical and lateral profiles reported in Figs. 8 to 11. 
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Wind turbine position Wake at x/D = 1 Wake at x/D = 3 Wake at x/D = 5 

  

  

  
 

Turbulence intensity Iu at the hub height, % 
 FT SH LH BAY 

Wind turbine position 17 18 47 18 
Wake at x/D = 1 18 21 67 29 
Wake at x/D = 3 17 19 45 28 
Wake at x/D = 5 16 17 27 24 

Fig. 8  Vertical profiles of the turbulence intensity at the position of the wind turbine (without wind turbine in 
place) as well as at different streamwise positions downstream of the wind turbine (wind turbine in place) for 

different terrain types: black solid line is flat terrain (without a hill), black dotted line is small hill, solid grey line 
is large hill, dotted grey line is hill with a bay; all turbulence intensity values normalized locally with a 

respective mean flow velocity in the main (x) flow direction at the measurement point height; turbulence 
intensity Iu at the hub height is tabulated below diagrams. 

Clear trends in vertical profiles of turbulence intensity in all three directions can be seen 
in Fig. 8. The magnitude of turbulence intensity is generally observed to be considerably 
greater than commonly recorded in the ABL, which is due to a strong flow pulsation and 
recirculation downstream of the hill and the wind turbine along with a strong reduction in the 
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mean flow velocity. Longitudinal and lateral turbulence intensity profiles are particularly 
important to be considered with respect to tower vibrations, while the vertical turbulence 
intensity can influence rotor blades and their unsteady aerodynamics during rotation. 

Immediately downstream of the hill at the wind turbine position, the large hill induces 
the highest turbulence intensity followed by the hill with a bay, while the small hill exhibits 
low turbulence intensity similar to the flat terrain. Those differences are considerable in the 
lower part of the wind turbine up to approximately 0.7zhub as they die out with a further 
increase in the height, and the turbulence intensity above the hub height is nearly the same for 
all hill types. The trends observed are similar in all turbulence intensity components Iu, Iv, and 
Iw. Along with moving further downstream of the hill, turbulence intensity in all three 
directions decreases, which trend is particularly pronounced in the case of the large hill and 
the hill with a bay, and between x/D = 3 and 5. It is interesting to observe that at x/D = 5 the 
vertical profiles of the turbulence intensity did not start to recover their shape yet in order to 
regain profile features similar to the ABL upstream of the hill. In particular, in the ABL 
simulation upstream of the hill there is a strong decrease in turbulence intensity with an 
increase in the height, while at x/D = 5 in the wind turbine wake, the turbulence intensity 
remains fairly constant as the height increases. This means that the effect of a hill on 
atmospheric turbulence is still considerable at that position. In general, the hill can be 
observed to cause stronger disturbance of turbulence intensity rather than of flow velocity. 
Due to a stronger turbulence close to the ground surface, the structural fatigue of wind turbine 
towers is expected to be greater closer to the hill as well as in the case of larger hills. 

Lateral profiles of the turbulence intensity in all three directions confirm an increase in 
turbulence with an increase in the hill height, which is particularly pronounced closer to the 
hill at x/D = 1, Fig. 9. 

Wake at x/D = 1 Wake at x/D = 3 Wake at x/D = 5 

 

 

 
Fig. 9  Lateral profiles of the turbulence intensity at the position of the wind turbine (without wind turbine in 
place) as well as at different streamwise positions downstream of the wind turbine (wind turbine in place) for 

different terrain types: black solid line is flat terrain (without a hill), black dotted line is small hill, solid grey line 
is large hill, dotted grey line is hill with a bay; all turbulence intensity values normalized locally with a 

respective mean flow velocity in the main (x) flow direction at the measurement point height. 
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Further downstream the effects of the large hill and the hill with a bay on the lateral 
turbulence intensity diminish and these differences are minimal at x/D = 5. An interesting 
feature is the constant turbulence intensity in the lateral direction for both the flat terrain and 
the small hill configurations independently from the distance from the hill. In the case of the 
large hill the turbulence is at its peak close to the wind turbine nacelle, while the hill with a 
bay shows a unique trend of slightly increasing the turbulence intensity when the profile 
approaches the blade tip position at x/D = 1. The rotor blades are generally expected to 
receive the same amount of turbulence intensity along the rotor in the lateral direction, 
particularly in the case of smaller hills and the flat terrain. As large hills cause strong 
disturbances to the flow, this will create nonuniformities in the lateral profiles of the 
turbulence intensity when closer to the hill, Fig. 9. 

Another integral turbulence parameter considered in this study is the turbulent Reynolds 
shear stress, i.e. its dominant u’w’ component, as presented in Figs. 10 and 11. While perhaps 
not that important for wind turbine tower loads, the Reynolds shear stress is considered to be 
a significant issue when analyzing unsteady wind loading of rotor blades. 

Wind turbine position Wake at x/D = 1 Wake at x/D = 3 Wake at x/D = 5 

  
Fig. 10  Vertical profiles of the Reynolds shear stress (normalized using the undisturbed free stream velocity) at 

the position of the wind turbine (without wind turbine in place) as well as at different streamwise positions 
downstream of the wind turbine (wind turbine in place) for different terrain types: black solid line is flat terrain 

(without a hill), black dotted line is small hill, solid grey line is large hill, dotted grey line is hill with a bay. 

Wake at x/D = 1 Wake at x/D = 3 Wake at x/D = 5 

 
Fig. 11  Lateral profiles of the Reynolds shear stress (normalized using the undisturbed free stream velocity) at 

the position of the wind turbine (without wind turbine in place) as well as at different streamwise positions 
downstream of the wind turbine (wind turbine in place) for different terrain types: black solid line is flat terrain 

(without a hill), black dotted line is small hill, solid grey line is large hill, dotted grey line is hill with a bay. 

The Reynolds stress remains nearly constant in the vertical direction in the case of the 
flat terrain and the small hill. On the other hand, in the large hill scenario strong gradients can 
be observed in the upper part of the vertical profile when close to the hill (i.e. from the wind 
turbine position to x/D = 3), which is due to a free shear layer that separates from the hill 
ridge. In the case of the hill with a bay, strong gradients appear closer to the ground surface 
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due to the complex aerodynamics developing because of the flow through the hill pass. 
Further downstream of the hill (at x/D = 5), the effects of the complex terrain diminish as the 
vertical profiles remain nearly uniform with the height increasing in the case of all terrain 
types. In the lateral direction, the Reynolds stress remains nearly constant with nearly the 
same values at all downstream distances in the case of the flat terrain and the small hill. In the 
case of the large hill, the laterally uniform Reynolds stress is larger in comparison to other 
terrains, while it decreases when moving further away from the hill, indicating a dominant 
effect of the hill height on the Reynolds stress. 

Strong gradients are observed close to the wind turbine nacelle in the case of the hill 
with a bay model. This is due to a particularly complex aerodynamics in this configuration. 
Therefore, the rotor blades are expected to experience greater unsteady wind loads when the 
wind turbine is placed close to large hills of a complex topography than in the case of smaller 
hills of a uniform height. In order to mitigate such an adverse effect of a hill on wind loading 
of rotor blades it is necessary to place the wind turbine further away from the hill as the 
Reynolds shear stress strongly decreases further downstream of the hill. For example, in the 
large hill configuration the Reynolds stress at the hub height at the distance x/D = 5 is less 
than a half of the Reynolds stress recorded at the wind turbine position immediately 
downstream of the hill along with negligible gradients in both the vertical and the lateral 
direction. 

3.2 Spectral analysis of the wind turbine wake 

While the integral turbulence parameters provide valuable information when calculating 
unsteady aerodynamic loads on wind turbines, it is particularly important to learn about the 
frequency content of the flow pulsations, also for the purpose of identifying the dominant 
frequencies of the atmospheric wind. In general, the spectrum of wind pulsations is 
considered more important than the peak loading in the context of wind-induced dynamic 
loading of engineering infrastructure (Barnard [46]) as the ultimate goal (particularly) when 
designing slender engineering structures is to avoid the overlapping of natural frequencies of 
the structure with dominant frequencies of the wind. Therefore, the power spectral density of 
longitudinal velocity fluctuations at the position of the wind turbine (without a wind turbine in 
place) was analyzed for different hills as well as the modifications to the power spectra at the 
hub height at different positions downstream of the hill, as reported in Figs. 12 and 13, 
respectively. In Fig. 12, the power spectra of flow velocity fluctuations are observed 
immediately downstream of the hill along the wind turbine tower height and are used to 
analyze which parts of the tower will be particularly sensitive to changes in the topography. 
As the atmospheric turbulence generally deteriorates the wind turbine energy yield, the wind 
spectral content at the hub height at different distances downstream of the hill is reported in 
Fig. 13. 
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a) 

 

f) 

 

b) 

 

g) 

 

c) 

 

h) 

 

d) 

 

i) 

 

e) 

 

j) 

 
Fig. 12  Power spectral density of longitudinal velocity fluctuations at the position of the wind turbine (without 
wind turbine in place) for different terrain types: black solid line is flat terrain (without a hill), black dotted line 
is small hill, solid grey line is large hill, dotted grey line is hill with a bay; x-axis is nondimensionalized (reduced) 
frequency hubf z / u , y-axis is Su( f ) in m2/s, f is frequency in Hz, zhub is wind turbine hub height, u  is free 

stream velocity. 
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a) 

b) 

c) 

d) 

Fig. 13  Power spectral density of longitudinal velocity fluctuations at the hub height at different streamwise 
positions downstream of the wind turbine (wind turbine in place) for different terrain types: black solid line is 

flat terrain (without a hill), black dotted line is small hill, solid grey line is large hill, dotted grey line is hill with 
a bay; x-axis is nondimensionalized (reduced) frequency hubf z / u , y-axis is Su(f) in m2/s, f is frequency in Hz, 

zhub is wind turbine hub height, u  is free stream velocity. 

The peak values in the reported power spectra due to the periodic vortex shedding from 
the hill are in good agreement with previous atmospheric measurements, wind tunnel 
experiments and computational modelling, e.g. Trischka [47], Atkinson [48], Schär and Smith 
[49]. In particular, in the uniform, not stratified flow in the wind tunnel for simple cones and 
cylinder-cone equivalents Trischka [47] observed Strouhal (St = fD/u) numbers from 0.23 to 
0.29, where f is the frequency of shedding, D is the characteristic dimension of the obstacle, u 
is the wind speed. According to the review by Atkinson [48], the Strouhal number can range 
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from 0.15 to 0.32, where the characteristic length scale is the island diameter, while in the 
computational simulations by Schär and Smith [49] the respective Strouhal number is 0.18. 
As a representative result of the present study, the peak value of the large hill configuration 
reported in Fig. 12f corresponds to St = fD/u = 0.28. D is the average hill diameter (0.8 m) 
calculated as an average of the hill length (0.6 m) and width (1 m), u is the free stream 
velocity (15 m/s), and f is the vortex shedding frequency recorded in this test (5.25 Hz). In 
addition, while the present study was carried out for the neutrally stratified ABL, it was 
previously observed that the thermal stratification of the atmosphere can significantly alter 
vortex shedding from the hill [47] as well as the flow and turbulence near wind turbines, 
Chamorro and Porté-Agel [7], Zhang et al. [22]. This indicates that further work is still 
required with respect to wake characteristics of wind turbines with rotating blades in the 
thermally stratified ABL developing above a complex terrain. 

In the lower part of the wind turbine tower (up to z/zhub = 0.500), the large hill almost 
completely shadows the tower as the flow pulsation energy is close to zero at all frequencies. 
In this height range, the peak is particularly pronounced in the hill with a bay configuration 
due to the flow through the hill pass generating shed vortices. In the flat terrain configuration, 
the velocity power spectra look very much like the standard von Kármán [50] design curve, 
which trend does not significantly change all the way up to the top tip height. In the lower 
half of the tower height, the small hill induces the velocity power spectra similar to those in 
the flat terrain configuration. Between the hub height and the top tip height, several 
interesting turbulence features can be observed. In particular, the turbulent kinetic energy 
behind the large hill starts to increase at z/zhub = 0.666 without a clear peak value observed at 
this height. However, with a further increase in the height, the peak associated with the vortex 
shedding from the large hill gains on its strength reaching the maximum at z/zhub = 1.000 due 
to a free shear layer that separates from the hill ridge. With a further increase in the height, 
this peak weakens, and it is approximately of the same amplitude as in the case of other hills 
at the top tip height (z/zhub = 1.666). The peak values and frequencies in the flat terrain, small 
hill and the hill with a bay configurations are nearly the same above the hub height, indicating 
that the dominant effects of these terrains are mostly constrained within the range between the 
ground surface and the hub height. 

At the hub height (Fig. 13) immediately downstream of the hill, the flow pulsations are 
dominant in the large hill configuration, while the power spectra in the flat terrain, small hill, 
and the hill with a bay configurations are nearly the same. A similar balancing among the 
spectra for different terrains is observed at x/D = 1 along with the turbulent energy increase in 
the hill with a bay configuration, which continues further in the wake for x/D = 3 and 5 along 
with a strong decrease in the large hill peak value. In the far wake at x/D = 5, the large hill 
effect almost completely dies out with the peak value lower than in all other terrains. With 
respect to the energy production of a wind turbine near a hill, the higher yield is expected for 
smaller hills of simpler topography due to weaker flow pulsations at characteristic frequencies 
in the flat terrain and the small hill configurations. The effects of hills on the velocity power 
spectra are particularly pronounced closer to the hill up to x/D = 1 because further 
downstream (x/D = 3 and 5) the footprints of the complex terrain on the power spectra are not 
that strong any more. 

4. Conclusions 

Experiments were designed and carried out in a boundary layer wind tunnel in order to 
analyze wind characteristics in the wake of a single wind turbine placed downstream of a hilly 
terrain. The focus was on flow characteristics at the same position downstream of the hill and 
the wind turbine small-scale models studied on various sizes and shapes of the hill model. 
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The wind tunnel simulation of the atmospheric boundary layer (ABL) developing above 
the flat urban-type terrain was created by using a castellated barrier wall, vortex generators 
and surface roughness elements. The created ABL simulation is in good agreement with the 
full-scale conditions in the simulation length scale 1:300. This is confirmed through 
comparison of wind tunnel and full-scale values of the mean velocity in the main flow 
direction, the turbulence intensity in the longitudinal, lateral and vertical directions, the 
dominant (u’w’) component of the turbulent Reynolds shear stress, the longitudinal integral 
length scales of turbulence, and the power spectral density of longitudinal velocity 
fluctuations. 

The hill models were separately exposed to the ABL simulation and the wake 
characteristics of an alone-standing wind turbine model were studied by using three different 
hill models (a small and a large hill with laterally uniform height, a hill with a bay). The flat 
terrain configuration was used as a reference case. The wind turbine model was in the parking 
position in order to study wind characteristics of a strong wind situation when there is no 
rotation of rotor blades. Mean flow velocity, turbulence intensity, Reynolds shear stress, and 
velocity power spectra were studied to gain more understanding about the complex wake 
physics. 

The experimental results indicate a velocity decrease and stronger turbulence in the 
wind turbine wake in the presence of a hill. In particular, the velocity at the hub height 
downstream of a hill decreases considerably in comparison to the undisturbed, free stream 
velocity. The large hill shadows the wind turbine to the largest extent which results in the 
largest velocity deficit with respect to other terrains. This shadowing effect weakens further 
downstream of the hill as the differences in the velocities observed in different terrains are 
fairly small in the far wake. Strong velocity gradients observed around the hub height in the 
large hill configuration (when the wind turbine is placed immediately downstream of the hill) 
may create large bending moments due to strong winds acting on the higher part of the wind 
turbine along with different vortex shedding characteristics of different parts of the structure 
resulting in deteriorated structural stability. Due to flow channeling, the velocity deficit at the 
wind turbine position immediately downstream of the hill is the smallest in the hill with a bay 
configuration, while this is the only case studied where the velocity deficit does not recover 
until reaching the far wake. 

Immediately downstream of the hill, the large hill induces the highest turbulence 
intensity followed by the hill with a bay, while the small hill exhibits low turbulence intensity 
similar to the flat terrain. These differences observed for different terrains are considerable in 
the lower part of the wind turbine, they die out with a further increase in the height, and the 
turbulence intensity higher than the hub height is nearly the same in all hill configurations. 
Along with moving further downstream of the hill, the turbulence intensity decreases, which 
trend is particularly pronounced in the large hill and the hill with a bay configuration. Due to 
a stronger turbulence observed close to the ground surface, the structural fatigue of wind 
turbine towers is expected to be greater closer to the hill as well as in the case of larger hills. 

The Reynolds stress remains nearly constant in the vertical direction in the flat terrain 
and the small hill configuration. On the other hand, in the large hill scenario strong gradients 
can be observed in the upper part of the vertical profile (when close to the hill) due to a free 
shear layer that separates from the hill ridge. In the hill with a bay configuration, strong 
gradients appear closer to the ground surface due to a complex aerodynamics developing as a 
consequence of the flow through the hill pass. Further downstream of the hill, the effects of 
the complex terrain diminish as the vertical profiles remain nearly uniform in all terrains as 
the height increases. 
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The peak values in the velocity power spectra due to the vortex shedding from the hill 
ridge are in good agreement with the atmospheric measurements, wind tunnel experiments 
and computational models. In the lower part of the wind turbine tower, the large hill shadows 
the tower as the flow pulsation energy is close to zero at all frequencies. In this height range, 
the peak is particularly pronounced in the hill with a bay configuration due to the flow 
through the hill pass generating shed vortices. In the flat terrain configuration, the velocity 
power spectra look very much like the standard von Kármán design curve observed upstream 
of the complex terrain, which trend does not significantly change all the way up to the top tip 
height. In the lower half of the tower, the small hill induces the velocity power spectra similar 
to those in the flat terrain configuration. The peak values and frequencies in the flat terrain, 
the small hill and the hill with a bay configurations are nearly the same above the hub height, 
thus indicating the dominant effects of these terrains are mostly constrained within the range 
between the ground surface and the hub height. Further work is still required to fully elucidate 
wake characteristics of wind turbines with rotating blades in the thermally stratified ABL 
developing above a complex terrain. 
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APPENDIX 

a) b) c) 

  
d) e) f) 

  
g) 

Fig. 14  Characteristic profiles of the created ABL simulation: a) mean flow velocity profile (solid dots are 
experimental results, solid line is the power law approximation with  = 0.26, d = 5 cm), b) Reynolds shear 

stress profile; uref = 10.2 m/s is mean flow velocity in the main flow direction x recorded at the reference height 
zref = 0.216 m, c) longitudinal integral turbulence length scale Lu,x (at wind tunnel scale) in comparison with the 
respective ESDU74031 [51] data scaled-down at the adopted 1:300 simulation length scale with the tolerance 
±30% (solid lines), d) longitudinal turbulence intensity Iu profile, e) lateral turbulence intensity Iv profile, f) 

vertical turbulence intensity Iw profile; all turbulence intensity values (solid dots) are normalized locally with a 
mean flow velocity in the main (x) flow direction at the measurement point height, reported in comparison with 

the respective ESDU74031 [51] data scaled-down at the adopted 1:300 simulation length scale with the tolerance 
±20% (solid lines), g) power spectral density of longitudinal velocity fluctuations (black solid line) at the 

reference height zref = 0.216 m in comparison with the von Kármán [50] function (grey solid line) 
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