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Abstract: When the quasi graph-theoretical Hückel–London–Pople–McWeeny (HLPM) approach is used to calculate ‘topological’ π-electron 
ring-currents and bond-currents in conjugated hydrocarbons, a problem is identified that occurs whenever application of the Aufbau process 
gives rise to a π-electronic ground-state configuration that is a triplet. This circumstance seems to occur only occasionally and, even when it 
does, the generally somewhat outré molecular graphs in question appear unlikely to represent extant or viable conjugated systems. The 
molecular graphs of four examples are used to illustrate this ‘triplet ground-state problem’, only one of which represents a hydrocarbon that 
has actually been synthesised. It is pointed out that the ‘triplet ground-state problem’ does constitute an intrinsic limitation of the HLPM 
approach. It is, though, a limitation that is also necessarily inherent in other equivalent (though ostensibly different) methods of calculating 
magnetic properties due to π-electron ring-currents — methods that are likewise founded on the Hückel molecular-orbital conventions. When 
a triplet ground-state arises, topological ring-currents and bond-currents cannot be calculated by the HLPM method and its equivalents. Infinite 
paramagnetism is formally to be predicted in such situations. 
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INTRODUCTION  
OR a period of some 25 years, one of us (RBM) was 
privileged to work with the late Edward Cameron  

Kirby (1934–2019), the honorand of this Session of 
MATH/CHEM/COMP 31 (Dubrovnik, 2019). A considerable 
proportion of our collaboration was devoted to the idea  
of spanning trees in graphs,[1–7] especially of chemical 
graphs[8] that represent conjugated hydrocarbons (extant 
or hypothetical). A prominent application of these ideas  
in Mathematical Chemistry has been in the context of what 
the present authors have named [9,10] the Hückel[11,12]–
London[13]–Pople[14]–McWeeny[15] (HLPM) formalism for 
calculating what are frequently called ‘topological’ ring-
currents and bond currents[9,10] — for reviews please see 
Refs. [16–19].  
 In the course of performing calculations on 
individual molecules by means of this HLPM approach a 
problem has, from time-to-time, been encountered 
whenever, on application of the Aufbau Principle,[11,20–24] 

the π-electronic ground-state configuration of the 
conjugated hydrocarbon in question is found to be a triplet 
ground-state. We have occasionally noted specific 
examples of this phenomenon as we have serendipitously 
come across them in our previously reported work.[16,25] 
 Such structures have, however, arisen only very 
occasionally and, even then, they have been associated 
with somewhat outré molecular graphs[8] that are unlikely 
to represent the carbon–carbon connectivities[8] of extant 
or viable conjugated hydrocarbons — examples are (3,12)-
Coronene[25,26] (structure 1, on the left-hand side of Figure 1) 
and[16] what Agranat et al.[27] call Corannulene [61, 61, 61, 61, 
61, 61] (structure 2, on the right-hand side of Figure 1). 
 The problem also arose in some recent calculations 
(not yet published) in which, following the ab initio 
calculations of Monaco and Zanasi,[28,29] we attempted to 
extend our earlier studies of the neutral altans and multiple 
(‘iterated’) altans of corannulene and coronene,[30] and 
their dianions,[31] to the tetra-anions and hexa-anions of 
the same parent species. 
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 We have also noted this occurrence of what we are 
somewhat colloquially calling ‘the triplet ground-state 
problem’ in some charged species of a hypothetical 
conjugated system (structure 3, on the left-hand side of 
Figure 2) and in the case of an extant hydrocarbon of the 
[8]-circulene family (structure 4, on the right-hand side of 
Figure 2), the latter of which was recently considered by 
Baryshikov et al.[32] These two structures will be used in this 
presentation, along with structures 1 and 2 (in Figure 1), in 
order to illustrate the observations that are being 
documented here about the ‘triplet ground-state problem’.  
 The overall aim of the present communication is to 
describe the problems that a triplet ground-state brings 
about, to record some specific examples of this problem’s 
occurrence, and to emphasise that it represents an intrinsic 
limitation of the HLPM approach. It is, furthermore, also a 
limitation that is necessarily inherent in other equivalent 
(though ostensibly different) methods[13–15,33–38] of 
calculating magnetic properties due to π-electron ring-

currents — methods that are likewise founded on the 
Hückel molecular-orbital conventions.[11,12,39]  
 

THE OVERALL STRUCTURE OF  
HLPM RING-CURRENT  

CALCULATIONS  

HLPM ‘topological’ ring-current and bond-current calcul-
ations are carried out in the following four stages:[16–19] 

 
(a) Hückel[11,12,39] energy-levels and molecular-orbitals 

— the latter consisting of appropriate linear-
combinations of the atomic orbitals (LCAO) that are 
centred on each of the carbon atoms — are first 
calculated from an arbitrarily labelled molecular-
graph[8,16–19] representing the carbon–carbon 
connectivity of the particular conjugated 
hydrocarbon under study. In the graph-
theoretical[8,16–19] language in which the HLPM 

                              
    1                                                                                  2 

Figure 1. Carbon–carbon connectivities (‘molecular graphs’[8]) of hypothetical conjugated hydrocarbons (3,12)-Coronene[25,26] 

(1) and Corannulene [61, 61, 61, 61, 61, 61],[16,27] latent in both of which is the ‘triplet ground-state problem’, discussed in the 
text. 
 

 

 

                                                                3                                                                                            4 

Figure 2. Carbon–carbon connectivities (‘molecular graphs’[8]) of (left) a hypothetical conjugated hydrocarbon (3) that we  
have ‘designed’, and (right) structure 4, the extant [8]-circulene labelled ‘9’ by Baryshikov et al. in Ref. [32]. The di-anion and 
the di-cation of 3, and the neutral species 4, are used here in order to illustrate the ‘triplet ground-state problem’, discussed in 
the text. 
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approach[9,10] is frequently cast, these are the 
eigenvalues and eigenvectors,[11,21] respectively, of 
the vertex-adjacency matrix[8] of that associated 
labelled molecular-graph.[8] 

 
(b) Then the Aufbau process[20–24] is applied, during the 

course of which the available π-electrons are 
distributed amongst these calculated energy-levels 
in order to determine a π-electron ground-state 
configuration for the hydrocarbon in question. If the 
Aufbau procedure has been successful — which is 
not always the case, as is discussed in Refs. [21–23] 
— then, at this stage, each energy level is known to 
have been unambiguously assigned either two π-
electrons (in which case that energy level is said to 
be ‘fully occupied’ or ‘filled’), or just one π-electron 
(when it is ‘singly occupied’), or no π-electrons at all 
(in which latter case the molecular orbital in 
question is said to be ‘unoccupied’, or ‘empty’). This 
is all as described on pp. 123–125 of Cotton.[20] 

 
(c) Once this π-electronic ground-state has been 

established, the π-electron energy-levels and the 
LCAO molecular-orbitals (determined in stage (a), 
above), together with the ground-state π-electron 
configuration (determined in (b), above, by invoking 
the Aufbau process[20]), are used to calculate certain 
quantities that are referred to as[16–19] Coulson bond-
orders[11,40] and self- and mutual imaginary bond–
bond polarisabilities[15,40] (all of which are explicitly 
defined in the next section). 

 
(d) These purely graph-theoretical quantities are then 

combined with geometrical information (in the form 
of the areas of the various rings within the 
conjugated system being studied) in order to 
calculate the HLPM ring-currents and bond-currents. 

 
In the present paper, we shall not be concerned at all with 
stage (d). We do, however, now consider stages (a)–(c) in 
more detail. 
 

DETAILS OF STAGES (a)–(c)  
(a) Hückel Energy-Levels and LCAO Molecular-Orbitals 
The first task in a ring-current calculation carried out by 
means of the HLPM method is to find the eigenvalues and 
the corresponding eigenvectors of the vertex-adjacency 
matrix[8,21] of the molecular graph[8] representing the 
conjugated hydrocarbon under consideration. If that 
hydrocarbon has N carbon atoms, then  

 { } =1,2,...,J J N
c  ( ){ }( )=

= 1 2
1,2,...,

... T
J J JN

J N
c c c   

denotes the set of eigenvectors (i.e., the standard, field-

free Hückel coefficients in each of the N LCAO molecular-
orbitals), and { } =1,2,...,J J N

E  denotes the family of 
eigenvalues of that molecular graph — that is, they are the 
Hückel energy-levels, Jε , when expressed in the 
conventional form = +α βJ Jε E , where α and β are the 
standard Hückel Coulomb-integrals and resonance-
integrals, respectively.[11,12,39] 

 It is assumed in the above that the eigenvectors are 
(a) normalised and (b) orthogonalised (if degeneracies 
amongst the energy levels — that is, repetitions within the 
eigenvalues — make this latter operation necessary 
because the eigenvectors of the real-symmetric vertex-
adjacency matrix are then no longer all automatically 
mutually orthogonal). This matter is gone into in 
considerable detail on pp. 63–65 of Ref. [21].  
 
(b) The Aufbau Process and the Possibility of a Triplet 

Ground-State 
Once the energy levels are established, as in stage (a), 
above, they may notionally be thought of as being arranged 
vertically in (from the bottom to the top) increasing order 
of energy, and the available π-electrons (N for a neutral 
species, (N+2) for a di-anion, (N–2) for a di-cation, etc.) are 
then assigned to occupy the energy-levels, beginning with 
the one of lowest energy, according to the well-known 
Aufbauprinzip, which incorporates the Pauli Exclusion 
Principle and Hund’s Rules of Maximum Multiplicity (e.g., 
Ref. [20]). This process yields a family of N numbers, 
{ } =1,2,...,J J N

v  (which are the occupations numbers assigned, 
by the Aufbau process, to the energy levels/eigenvalues); the 
elements of the family { } =1,2,...,J J N

v  are all either 0, 1 or 2.  
 Rouvray and one of the present authors (RBM)[22,23] 
showed many years ago that the Aufbau process may 
effectively be simulated by means of an algorithm, the 
outcome of which depends only on the relative order of the 
eigenvalues/energy levels computed (as in (a), above) for 
the structure. In that sense, therefore, since the order of 
the energy levels/eigenvalues — being latent, as they are, 
in the vertex-adjacency matrix — depends only on the 
carbon-atom connectivity in the molecular graph in 
question, the Aufbau procedure[20] may itself be thought of 
as an entirely graph-theoretical process. (Please see Refs. 
[21–23] for full details of this idea.) 
 Now, our purpose in this communication is to point 
out that there are occasions — after an attempt is made by 
application of the Aufbau Process[20–23] to determine a π-
electronic ground-state configuration — when that ground-
state turns out to be a triplet, in which the highest-occupied 
levels are doubly degenerate and each is singly occupied 
(i.e, = 1Jv  for both of those degenerate energy-levels). 
This case arises when the last two π-electrons to be 
distributed in the course of applying the Aufbau process[20–23] 
have to be assigned to a pair of doubly degenerate 
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molecular-orbitals (that is, a pair of repeated eigenvalues 
of the molecular graph[8,17,21]) — thereby necessarily 
resulting in two unpaired spins and thus a triplet ground-
state. This is where there is a problem with the HLPM 
approach — a problem that is shared with other ostensibly 
different formalisms[33–38] that also rely on the simple 
Hückel model.[11,12,39] How this comes about is explained in 
the next sub-section.  
 A referee has pointed out that there are wider and 
more sophisticated considerations concerning the Aufbau 
process than are addressed here — see, for example, Refs. 
[41–43] — which involve predicting spin by use of a variety 
of different techniques. In this work, however, we are 
avowedly using Hückel Theory only. We are also strictly 
adhering to Hund’s rule[20]. Consideration of species such as 
extended graphite and graphene-like structures — together 
with concomitant boundary-conditions — is, therefore, not 
directly relevant to our work here on discrete molecules. 
Furthermore, neither are we doing configuration inter-
action nor valance bond calculations. We are merely 
establishing the circumstances under which application of 
the HLPM approach, in its originally proposed form,[9,10] 
exposes certain pathological cases. In addition, it should be 
noted that he HLPM formalism is explicitly defined[9,10,17] to 
incorporate the graph-theoretical algorithm of Refs [17, 
21–23] in order to mimic the conventional Aufbau 
process.[20] That is why no other form of Aufbau scheme is 
entertained here.  
 
(c) Coulson Bond-Orders and Self- and Mutual Bond–

Bond Polarisabilities 
The third stage in the HLPM approach is to take the graph-
theoretical data — the eigenvalues and the eigenvectors of 
the vertex-adjacency matrix of the molecular graph — that 
have been obtained in stage (a), above, and the ground-
state π-electronic configuration — the family of 
eigenvalue/energy-level occupation-numbers, { } =1,2,...,J J N

v  
— established by an application of the Aufbau process in 
stage (b), in order to calculate two types of graph-
theoretical Hückel molecular-orbital indices that are 
needed in the ring-current calculations.[17] These are the 
well-known Coulson bond-order,[11,12,40] ( )rsP , for the bond 
between carbon atoms r and s (defined in equation (1), 
below) and the imaginary mutual- (and self-) bond–bond 
polarisabilities, ( )( )π rs tu  and ( )(rs)π rs , respectively, originally 
defined by McWeeny in Ref. [15] (with some misprints that 
are corrected in the Appendix of Ref. [40]). The imaginary 
mutual bond–bond polarisabilities, ( )( )π rs tu , between bonds 
(rs) and (tu), are defined in equations (2) and (3), below;  
the imaginary self bond–bond polarisability for the bond 
(rs) is obtained by replacing ‘tu’ everywhere with ‘rs’ in 
equations (2) and (3). All the symbols in equations (1) – (3) 
have been defined in the previous sub-section, with the 

exception of M, which is the number of doubly-occupied 
orbitals. It should be emphasised that, for equations (2) and 
(3) to be valid, there must be no singly-occupied orbitals; 
the number of unoccupied orbitals is thus (N–M) 

=
= ∑( ) 1

N
rs J Jr JsJ

P v c c   (1) 

= − + −( )( ) , , , ,π π π π π  ,rs tu rs tu rs ut sr ut sr tu  (2) 

where 

= = +
=

−∑ ∑, 1 1

2
π .

β
M N Ir Js Jt Iu

rs tu I J M
I J

c c c c
E E

 (3) 

 The actual fine details of the calculations — such as 
equations (1)–(3), above — are, however, not necessary for 
the present considerations and, for any interested reader, 
they may be found in our earlier reviews[16–19]; the crucial 
points that we emphasise here are that 
 
(i) Bond order is defined for open-shell states — see  

pp. 63–64 of Ref. [11]: some of the { } =1,2,...,J J N
v  in 

equation (1) may thus be equal to 1 for certain values 
of the running-index, J. 

 
(ii) The imaginary bond-bond polarisabilities, ( )( )π rs tu , by 

contrast, are defined (by equations (2) and (3)) only 
for closed-shell ground-states — that is, only when 
every energy level is either unoccupied or doubly 
occupied. In particular, we observe that, in equation 
(3), M denotes the number of doubly-occupied 
orbitals and the other (N–M) orbitals are all 
unoccupied; there must be no singly occupied orbitals. 

 
Triplet ground-states are, accordingly, not catered for in the 
HLPM method, nor are they by other methods[33–38] that are 
based on the Hückel approach. As a very special case of the 
more-general scenario outlined here, the first explicit 
encounter with this phenomenon was in the context of the 
[4n]-annulenes without ‘bond-alternation’, studied by Pople 
and Untch[44] in their classic paper of more than fifty years 
ago. Consequently, in these ‘triplet ground-state’ situations, 
infinite paramagnetism is formally to be predicted — as was 
pointed out originally by Pople and Untch,[44] was re-iterated 
and further discussed in Note 21 on Page 170 of Ref. [11], and 
as was also more recently re-emphasised by Aihara.[45] 
 

EXAMPLES OF CASES IN POINT  

(i) Structure 1 (shown on the left-hand side of Figure 1) 
The left-hand section of Scheme 1, labelled ‘I’, shows the 
energy levels (eigenvalues) for the neutral species of 
structure 1 (which is depicted on the left-hand side of 
Figure 1). They are presented according to the conventions 
explained in the caption to Scheme 1.  
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I 
Eigenvalues/Energy 

Levels for Structure 1 (in Figure 1), 
and their Occupation by  

π-Electrons. Structure 1 has  
30 carbon atoms. 

 
II 

Eigenvalues/Energy 
Levels for Structure 2 (in Figure 1), 

and their Occupation by  
π-Electrons. Structure 2 has  

24 carbon atoms. 

 

III 
Eigenvalues/Energy 

Levels for Structure 3 (in Figure 2), 
and their Occupation by  

π-Electrons. Structure 3 has  
48 carbon atoms 

 

IV 
Eigenvalues/Energy 

Levels for Structure 4 (in Figure 2), 
and their Occupation by  

π-Electrons. Structure 4 has  
28 carbon atoms. 
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Scheme 1. Disposition of Eigenvalues/Energy-Levels for structures 1 and 2 (in Figure 1) (in the sections headed ‘I’ and ‘II’, 
respectively) and for structures 3 and 4 (in Figure 2) (in the sections headed ‘III’ and ‘IV’, respectively), together with their 
corresponding occupation by π-electrons after the Aufbauprinzip has been applied. Colour Scheme: Doubly (‘fully’) occupied 
orbitals are depicted in red, singly occupied orbitals are presented in green, and unoccupied (‘empty’) orbitals are denoted in 
black. In each of the four sets of data — headed by the labels ‘I’, ‘II’, ‘III’ and ‘IV’ — the integer in the left-hand column of the 
pair of columns pertaining to each of the four structures considered (1– 4) is the molecular-orbital labelling (‘1’ being the 
lowest-energy bonding-orbital and ‘30’, ‘24’, ‘48’ and ‘28’ being the highest-energy anti-bonding orbitals in, respectively, 
structures 1, 2, 3 and 4). In the right-hand column of each pair appropriate to the four sets (I – IV) of data pertaining to each of 
the structures 1 – 4 is a floating-point number; this is the quantity k when the Hückel molecular-orbital energy is represented 
in the conventional way as α + kβ (with being α and β being, respectively, the standard Hückel Coulomb-integral and the 
standard Hückel resonance-integral11,12,39). 



 
 
 
450 T. K. DICKENS, R. B. MALLION: Triplet Ground-States and Topological Ring-Currents 
 

Croat. Chem. Acta 2019, 92(4), 445–455 DOI: 10.5562/cca3538 

 

 

 

 After an application of the Aufbau process to the 
neutral species of structure 1 — in the course of which 30 
π-electrons are notionally to be assigned to the energy 
levels — the first 28 electrons go into the orbitals (labelled 
1–14) coloured in red in the section of Scheme 1 labelled 
‘I’; each of these orbitals is therefore fully occupied with 
two electrons. The last two electrons of the 30 to be 
distributed are then available to be placed, with paired 
spins, in the non-bonding energy-level 15. However, level 
16 is also a non-bonding orbital; according, therefore, to the 
rules of the Aufbau procedure, the two non-bonding orbitals 
(15 and 16, coloured in green in section I of Scheme 1) are 
consequently both singly occupied. The remaining (anti-
bonding) orbitals — which are denoted in black in section I 
of Scheme 1 and are labelled 17–30 — are unoccupied. The 
result is a triplet π-electronic ground-state for the neutral 
species of structure 1. (It should be noted, however, that, 
for example, the di-anion (12–) of structure 1 would have a 
closed-shell ground-state, as the two extra π-electrons that 
it possesses would be accommodated in levels 15 and 16, 
thereby completing the double occupation of both of these 
two non-bonding orbitals, and thus resulting in a closed-
shell structure.) 
 
(ii) Structure 2 (shown on the right-hand side of Figure 1) 
The section of Scheme 1 headed ‘II’ shows the energy levels 
(eigenvalues) for the neutral species of structure 2 
(depicted on the right-hand-hand side of Figure 1). They are 
likewise presented according to the conventions explained 
in the caption to Scheme 1. It should be noted that, in 
accordance with the Coulson–Rushbrooke Theorem 
(please see Chapter 6, pp. 88–110, and Appendix D, pp. 
159–166, of Ref. [11]), the eigenvalues of the bipartite 
graph[8,11] that represents structure 2 are seen to occur in 
± pairs, around zero. 
 After an application of the Aufbau process, in which 
24 π-electrons are notionally to be distributed, the first 22 
electrons go into the bonding orbitals (labelled 1–11) 
coloured in red in section II of Scheme 1 and each of these 
is therefore fully occupied with two electrons. The last two 
electrons are then available to be assigned to the non-
bonding energy-level 12. However, in an exact analogy with 
what happened in the case of structure 1 in Scheme 1, level 
13 in section II of Scheme 1 is also a non-bonding orbital; 
according, therefore, to the rules of the Aufbau procedure, 
the two non-bonding orbitals (12 and 13, coloured in green 
in section II of Scheme 1) are, as a result, singly occupied. 
The remaining orbitals — namely, the anti-bonding orbitals, 
denoted in black in section II of Scheme 1 and labelled 14–
24 — are all unoccupied. The result is once again a triplet 
π-electronic ground-state for the neutral species of 
structure 2. (It should be noted that — as was the case with 
structure 1 — the di-anion (22) of structure 2 would have a 

closed-shell ground-state, as the two extra π-electrons that 
it possesses would complete the full occupation of the two 
non-bonding orbitals 12 and 13.)  
(iii) Structure 3 (shown on the left-hand side of Figure 2) 
The section of Scheme 1 headed ‘III’ presents the energy 
levels (eigenvalues) for the neutral species of the ‘designed’ 
structure 3 (shown on the left-hand side of Figure 2). They 
are likewise displayed according to the conventions 
explained in the caption to Scheme 1. Once again, as with 
structure 2, the eigenvalues of the bipartite graph[8,11] that 
represents structure 3 occur in ± pairs, around zero (in 
accordance with the Coulson–Rushbrooke Theorem,[11] 
referred to above).   
 After an application of the Aufbau process, in which 
48 π-electrons are notionally to be distributed, all 48 may 
straight away be accommodated in the (bonding) energy 
levels labelled 1–24 and coloured in red in the section of 
Scheme 1 headed ‘III’; each of these orbitals is therefore 
fully occupied with two electrons. The remaining orbitals 
— which are anti-bonding ones and which are denoted in 
black in Scheme 1 and are labelled 25–48 — are 
unoccupied. The result is — in contrast to what occurred in 
the case of the neutral species 1 and 2 — a closed-shell π-
electronic ground-state for the neutral species of structure 
3. This means that, by use of the standard HLPM 
procedures (of which full details are given in, for example, 
Refs. [9,10,16–19]), ‘topological’ ring-currents and bond-
currents may be computed for the neutral species of 
structure 3 (which is illustrated on the left-hand side of 
Figure 2). For the record, we note that the calculated ring-
current intensities (expressed as a ratio to the benzene 
value) are –0.161 — the negative sign indicates that the 
ring current is paramagnetic — for the inner, 12-membered 
ring and +1.113 (diamagnetic) for each of the 12 peripheral 
six-membered rings. As for the bond currents, a current of 
magnitude 1.113 flows around the perimeter (of length 36 
= ‘[4n]’, with n = 9), in the anti-clockwise (diamagnetic) 
direction, and one of magnitude 1.274 flows around the 
inner, 12-membered ring (‘[4n]’, with n = 3), in the 
clockwise (paramagnetic) sense. By symmetry, the ring-
current intensity in all the ‘spokes’ bonds,[46,47] connecting 
the inner ring to the perimeter, is precisely zero.  
 However, consultation of section III of Scheme 1 
shows that (for example) the dianion (32–) of structure 3 
would again have a triplet ground-state, because the ‘extra’ 
two electrons that the di-anion possess — but which the 
neutral species does not possess — would have to be 
assigned, by the Aufbau process, so that one was 
accommodated by level 25 and the other by the 
degenerate level 26, as both anti-bonding levels 25 and 26 
are of energy (α – 0.51764β). A similar situation would be 
encountered on considering the di-cation (32+) of 3. This has 



 
 
 
 T. K. DICKENS, R. B. MALLION: Triplet Ground-States and Topological Ring-Currents 451 
 

DOI: 10.5562/cca3538 Croat. Chem. Acta 2019, 92(4), 445–455 

 

 

 

two fewer electrons than does the neutral 3 and so, with 
only 46 electrons now to be assigned when the Aufbau 
process is invoked, 44 of them would be accommodated by 
double occupation in each of levels 1–22, but the last two 
would have to sit, each on its own, in the two degenerate 
bonding-levels 23 and 24, which are both of energy (α + 
0.51764β). Hence, a triplet ground-state would once again 
be encountered.  
 
(iv) Structure 4 (shown on the right-hand side of Figure 2) 
Finally, the section of Scheme 1 headed ‘IV’ shows the 
energy levels (eigenvalues) for the neutral species of 
structure 4 (shown on the right-hand side of Figure 2). They 
are likewise displayed according to the conventions 
explained in the caption to Scheme 1. This extant structure 
(4), along with some doubly-charged species related to it, 
was recently discussed by Baryshikov et al.[32]  
 During an application of the Aufbau process, in 
which 28 π-electrons are notionally to be distributed, the 
first 26 electrons conveniently go into the bonding orbitals 
(labelled 1–13) that are coloured in red in the section of 
Scheme 1 headed ‘IV’; each of these orbitals is therefore 
fully occupied with two electrons. The last two electrons 
are then available to be assigned to the energy-level 
labelled 14 (also a bonding orbital). However, by analogy 
with what happened with structure 1 in section I of Scheme 
1 and with structure 2 in section II of Scheme 1, this level 
14 in section IV of Scheme 1 is degenerate with level 15, 
both bonding orbitals having energy (α + 0.13446β). 
According, therefore, to the rules of the Aufbau procedure, 
these two degenerate bonding-orbitals orbitals (14 and 15), 
coloured in green in section IV of Scheme 1, are, as a result, 
singly occupied. The remaining orbitals — one (labelled 16) 
which is non-bonding and the rest (labelled 17–28) which 
are all anti-bonding — are denoted in black in section IV of 
Scheme 1 and are all unoccupied. The result is once again 
a triplet π-electronic ground-state for the neutral species of 
structure 4.  
 It should be noted that — as was the case with, for 
example, structure 1 — the dianion (42–) of structure 4 
would have a closed-shell ground-state, as the two extra π-
electrons that it possesses when compared with the neutral 
species would completely fill the two bonding orbitals 
labelled 14 and 15, each of which, in neutral structure 4 
itself, is only singly occupied, as is evident from section IV 
of Scheme 1. The topological ring-currents and bond-
currents of 42– can, therefore, be computed, by the 
standard methods described in detail in our previous 
reviews.[16–19] Since this charged species is an extant 
structure recently discussed in Ref. [32], we take the 
opportunity to present, in Figure 3, the topological HLPM 
ring-currents and bond-currents of the di-anion of 
structure 4. For the full details of how these bond currents 

and ring currents were computed, the reader is referred to 
extensive and fully-worked examples in two reviews[16,17] 
and to several briefer, but still substantial, examples 
presented in Refs. [9,18 and 19]. 
 All ring-currents in 42– are diamagnetic; bond 
currents are such that there is a diamagnetic flow (that is, 
in the anti-clockwise direction) around the perimeter, 
which is of length 20 (= [4n], with n = 5), and a flow in the 
clockwise (paramagnetic) sense around the inner 8-
membered ring (which is [4n], with n = 2). In 42–, the spokes 
bonds[46,47] connecting the inner (8-membered) ring to the 
20-membered perimeter do not (as, by contrast, was the 
case with the spokes bonds of structure 3) carry zero 
current by symmetry but, as can be seen from Figure 3, they 
do in fact bear a substantial current — some 73 % of the 
benzene value.  
 In Figure 3, the numbers in black in the centres of the 
rings are the corresponding topological ring-currents 
(expressed as a ratio to the benzene value). The positive 
nature of all of these ring currents indicates, on the 
convention being used, that they are diamagnetic and thus 
are considered to circulate in the anti-clockwise direction 
around their respective rings. Figures written in red along 
the bonds denote the corresponding HLPM bond-currents 
(which, again, are expressed as a ratio to the corresponding 
bond-current calculated, by the same method, for 
benzene). The arrow pointing along each bond indicates 
the direction of flow of the bond current in that bond. By 
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Figure 3. HLPM ring-current and bond-current maps for  
42–, the di-anion of structure 4 (introduced in Ref. [32]). 
Figures in black in the centres of rings denote the 
corresponding (diamagnetic) ring-current intensities 
(expressed as a ratio to the benzene value), whilst red 
figures written along the bonds denote the bond-currents 
(in the directions indicated by the arrows) that are 
consistent with them  
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virtue of the validity of Kirchhoff’s Law of Conservation of 
Currents at Junctions,[6] all bond-currents — the quantities 
depicted in red in Figure 3 — are automatically 
predetermined once the ring currents in all rings — the 
quantities in black, in Figure 3 — have been specified.[48–50] 
As we have previously pointed out,[17,18,50] the strict 
observance of the Kirchhoff Conservation Law in the case 
of the HLPM approach is essentially because, on the 
assumptions made, a conjugated hydrocarbon really is 
mimicked as if it were a microscopic version of a standard 
macroscopic Kirchhoff network, with EMFs and ‘arms’ 
consisting of macroscopic wires, loop currents (the 
macroscopic analogy of ring currents) around the closed 
regions, and currents (the macroscopic analogy of bond 
currents) in the individual wires. Conservation of currents 
at junctions in ab-initio calculations is, by contrast, strictly 
observed only in the limit of an infinite basis set.[51–54] 
 

ARTIFICIALLY OBVIATING THE  
TRIPLET GROUND-STATE  

PROBLEM BY DELIBERATELY  
BREAKING SYMMETRY  

 
A referee has pointed out that a renowned example of a 
system for which Hückel molecular-orbital (HMO) theory 
predicts a triplet ground state is square cyclobutadiene, 
with all four resonance integrals, β, being the same. In this 
case, the non-bonding energy-level is doubly degenerate 
and this, of course, is what gives rise to the triplet ground-
state — see, for example, Page 78 of Ref. [11]. Another 
well-known example is cyclooctatetraene, the HMO 
description of which behaves in very much the same way, 
although, in practice, the most important aspect of this 
structure is that, on steric grounds, it is severely non-
planar; (please see Page 81 of Ref. [11]). In addition, we 
have ourselves already drawn attention in the present 
paper to an analogous situation that obtains in the case of 
the [4n]-annulenes; (please see Ref. [44] and Note 21 on 
Page 170 of Ref. [11]). However, as the above-mentioned 
referee has reminded, if the resonance integrals — in, say, 
cyclobutadiene — are allowed to alternate as β(s) and β(l), 
mimicking ‘short’ and ‘long’ bonds, respectively, this 
degeneracy disappears by means of a pseudo Jahn–
Teller/Renner distortion to a rectangular shape (as 
described by Coulson et al. on Pages 79–80 and in Note 13 
on Page 172 of Ref. [11]); as a result, the total π-electron 
energy goes down. This has led to the referee’s suggestion 
of investigating whether the examples considered in this 
paper in which a triplet ground-state is encountered might 
not behave in a similar way, if given the opportunity to 
lower the symmetry of the problem by the introduction of 

alternation in the values of the resonance integrals. 
Returning again to our structure 2, illustrated on the right-
hand side of Figure 1, we have taken up the referee’s 
suggestion and (somewhat arbitrarily) we have effected the 
following changes: 
 
(a) For those bonds around the periphery the resonance 

integrals have been changed so that they alternate 
between 0.90 and 1.10 (in units of β). 

 
(b) For those bonds forming the ‘inner star’, the 

resonance integrals alternate between 0.85 and 1.15. 
 
(c) For the ‘spokes bonds’, connecting the inner star to 

the periphery, the resonance integrals have been left 
at 1.00. 

 
This results in the ordered eigenvalue/energy-level list 
depicted in Scheme 2 (with the same colour conventions as 
in Scheme 1: red indicates doubly-occupied orbitals and 
black denotes empty energy-levels). 
 This, therefore, is seen to result in a closed-shell 
ground-state, as desired. This situation is to be compared  
with column II of Scheme 1, which shows the outcome of the  

Eigenvalues/Energy 
Levels for Structure 2 (in Figure 1) 

when alternating values are assigned 
to Resonance Integrals (as described in 
the text), and the Occupation of those 
Levels by π-Electrons. Structure 2 has 

24 carbon atoms. 
24 -2.5615528 
23 -2.3072793 
22 -2.3072793 
21 -1.6396742 
20 -1.6396742 
19 -1.5615528 
18 -1.3072728 
17 -1.3072728 
16 -1.0615108 
15 -0.6395066 
14 -0.6395066 
13 -0.0565232 
12 0.0565232 
11 0.6395066 
10 0.6395066 
9 1.0615108 
8 1.3072728 
7 1.3072728 
6 1.5615528 
5 1.6396742 
4 1.6396742 
3 2.3072793 
2 2.3072793 
1 2.5615528 

Scheme 2. Disposition of Eigenvalues/Energy-Levels for 
Structure 2 (in Figure 1) together with their corresponding 
occupation by π-electrons after the Aufbauprinzip has been 
applied. The Colour Convention is as in Scheme 1: Doubly 
(‘fully’) occupied orbitals are depicted in red, and 
unoccupied (‘empty’) orbitals are denoted in black. 
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original HLPM calculation on structure 2, when all resonance 
integrals were assigned the standard value, 1.00β. 
 Even though the quantifying of resonance integrals 
in the above calculation was subjective and arbitrary, this 
exercise — suggested by the referee — does allow the 
claim that there exists at least one set of resonance-integral 
values that has the effect of splitting the degeneracies of 
the non-bonding levels labelled 12 and 13 in column II of 
Scheme 1. In this case, these divide into two new levels — 
likewise labelled, in Scheme 2, as 12 and 13 — of energies 
(α + 0.0565232β) and (α – 0.0565232β), respectively. This 
splitting of the two previously degenerate non-bonding 
levels into a bonding orbital and a symmetrically paired 
anti-bonding one thus enables a ‘closed-shell ground-state’ 
to be established. This state of affairs thereby obviates the 
triplet ground-state problem — at least in the case of this 
particular example. 
 We noted earlier that structure 2 is an alternant 
species (that is, one whose carbon–carbon connectivity is 
represented by a bipartite molecular-graph),[8,11,21] and that 
the ‘pairing’ of eigenvalues prescribed by the Coulson–
Rushbrooke Theorem (discussed at length in Chapter 6 and 
Appendix D of Ref. [11]) is, accordingly, displayed in column II 
of Scheme 1 (as was observed earlier) and in Scheme 2. It 
may be noted that Schemes 1 and 2 are also in accord with 
the observation that the Coulson–Rushbrooke Theorem 
applies irrespective of the values assigned to the resonance 
integrals; (this point is discussed on Page 164 of Ref. [11]). 
Most eigenvalues (though not all, as this example shows) 
do change when the resonance integrals are changed, but 
all eigenvalues — whatever their value — continue to 
comply with the provisions of the Coulson–Rushbrooke 
Theorem and are, accordingly, still ‘paired’, as Scheme 2 
shows in this particular example of structure 2. 
 In summary, although this excursion into variation of 
resonance integrals has been instructive, it should be 
emphasised that not having all resonance integrals set at 
the standard value of 1.00β contravenes the ‘rules’ of the 
HLPM approach, as defined in Refs. [9 and 10]. That is why, 
in this work — as in our other recent applications of the 
rudimentary, pseudo graph-theoretical, HLPM approach — 
resonance integrals have not generally been varied from 
the standard value of 1.00β.  
 

CONCLUSION  
In this communication we have drawn attention to a 
difficulty that arises in the Hückel–London–Pople–
McWeeny approach to calculating topological ring-currents 
and bond-currents in conjugated hydrocarbons. This 
happens whenever application of the Aufbau process to the 
eigenvalues/energy levels of the vertex-adjacency matrix of 
the hydrocarbon’s molecular graph results in a triplet  

π-electronic ground-state for the system. This difficulty has 
been illustrated by explicit appeal to four of only about half 
a dozen examples that the authors, over the years, have 
come across in the course of carrying out HLPM calculations 
on scores of different conjugated systems. Not only are 
instances of this phenomenon apparently rare but, even 
when they do arise, they have tended to be associated with 
molecular graphs that are unlikely to represent the carbon–
carbon connectivities of existing or potentially viable 
conjugated hydrocarbons. Of the structures giving rise to the 
problem that have been dealt with here, for example, only 
one (structure 4) is, to our knowledge, an extant species.  
 Despite its ostensibly infrequent occurrence, we 
nevertheless emphasise that this ‘triplet ground-state 
problem’ does represent an intrinsic limitation of the HLPM 
approach. It is, furthermore, also a limitation that is 
necessarily inherent in other equivalent (though ostensibly 
different) methods[13–15,33–38] of calculating magnetic 
properties due to π-electron ring-currents — methods that 
are likewise founded on the Hückel molecular-orbital 
conventions.[11,12,39] When a triplet ground-state arises, 
topological ring-currents and bond-currents cannot be 
calculated by the HLPM method,[9,10,13–19] and its 
equivalents.[33–38] Infinite paramagnetism is formally to be 
predicted in such situations.[11,44,45] 
 We conclude by drawing attention to an observation 
that Rouvray and one of the present authors (RBM) made 
in Refs. [22] and [23] and which was further discussed in 
Ref. [21]: it was shown in those places that the Aufbau 
process may effectively be simulated by an entirely graph-
theoretical algorithm and that, for certain bizarre graphs 
that are unlikely to represent the carbon–carbon 
connectivity of viable molecules, no unambiguously 
defined π-electronic ground-state of any sort — let alone a 
closed-shell one — can be devised when the Aufbau 
process is applied.[21–23] It is, of course, self-evident that 
HLPM ring-currents cannot be computed for the network in 
question in these cases, either. 
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