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ABSTRACT

In today’s world, with the advancement of technology, several
emerging technologies are coming. Faced with massive emerging
technologies which are the component of the technology pool,
how to identify the commercial potential of emerging technolo-
gies in theory and practice is an important problem. The scientific
approach to the selection of these emerging technologies is one
of the main objectives of the research. In this paper, we extend
Muirhead mean (MM) operator and dual MM (DMM) operator to
process the Pythagorean fuzzy numbers (PFNs) and then to solve
the multiple attribute decision making (MADM) problems. Firstly,
we develop some Pythagorean fuzzy Muirhead mean operators
by extending MM and DMM operators to Pythagorean fuzzy infor-
mation. Then, we prove some properties and discuss some special
cases with respect to the parameter vector. Moreover, we present
some new methods to deal with MADM problems with the PFNs
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based on the proposed MM and DMM operators. Finally, we verify
the validity and reliability of our methods by using an application
example for potential evaluation of emerging technology com-
mercialization, and analyze the advantages of our methods by
comparing with other existing methods.

1. Introduction

Atanassov (1986, 2000) introduced the concept of intuitionistic fuzzy set (IFS), which
is a generalization of the concept of fuzzy set (Zadeh, 1965). Each element in the IFS
is expressed by an ordered pair, and each ordered pair is characterized by a member-
ship degree and a non-membership degree. The sum of the membership degree and
the non-membership degree of each ordered pair is less than or equal to 1. More
recently, a Pythagorean fuzzy set (PFS) (Yager, 2013, 2014) has emerged as an effect-
ive tool for depicting uncertainty of the MADM problems. The PFS is also character-
ized by the membership degree and the non-membership degree, whose sum of
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squares is less than or equal to 1; the PFS is more general than the IFS. In some
cases, the PFS can solve the problems that the IFS cannot; for example, if a DM gives
the membership degree and the non-membership degree as 0.8 and 0.6, respectively,
then it is only valid for the PFS. In other words, all the intuitionistic fuzzy degrees
are a part of the Pythagorean fuzzy degrees, which indicates that the PFS is more
powerful to handle the uncertain problems. Zhang and Xu (2014) provided the
detailed mathematical expression for PFS and introduced the concept of Pythagorean
fuzzy number (PFN). Meanwhile, they also developed a Pythagorean fuzzy TOPSIS
(Technique for Order Preference by Similarity to Ideal Solution) for handling the
MCDM problem within PFNs. Peng and Yang (2015) proposed the division and sub-
traction operations for PFNs, and also developed a Pythagorean fuzzy superiority and
inferiority ranking method to solve multicriteria group decision making problem with
PFNs. Afterwards, Beliakov and James (2014) focused on how the notion of
‘averaging’ should be treated in the case of PFNs and how to ensure that the averag-
ing aggregation functions produce outputs consistent with the case of ordinary fuzzy
numbers. Reformat and Yager (2014) applied the PFNs in handling the collaborative-
based recommender system. Gou, Xu, and Ren (2016) investigated the Properties of
Continuous PFN. Ren, Xu, and Gou (2016) proposed the Pythagorean fuzzy TODIM
approach to multi-criteria decision making. Garg (2016a) proposed the new general-
ized Pythagorean fuzzy information aggregation by using Einstein Operations. Zeng,
Chen, and Li (2016) developed a hybrid method for Pythagorean fuzzy multiple-crite-
ria decision making. Garg (2016b) studied a novel accuracy function under interval-
valued PFSs for solving multicriteria decision making problems. Wei (2017a) utilized
arithmetic and geometric operations (Wang, Wei, & Lu, 2018a; Wei, Gao, & Wei,
2018a; Wei, Lu, Tang, & Wei, 2018b; Wu, Wang, Wei, & Wei, 2018) to develop some
Pythagorean fuzzy interaction aggregation operators: Pythagorean fuzzy interaction
weighted average (PFIWA) operator, Pythagorean fuzzy interaction weighted geomet-
ric (PFIWG) operator, Pythagorean fuzzy interaction ordered weighted average
(PFIOWA) operator, Pythagorean fuzzy interaction ordered weighted geometric
(PFIOWG) operator, Pythagorean fuzzy interaction hybrid average (PFIHA) operator
and Pythagorean fuzzy interaction hybrid geometric (PFIHG) operator. Wei and Lu
(2018a) extended Maclaurin symmetric mean (Maclaurin, 1729) to Pythagorean fuzzy
environment to propose the Pythagorean fuzzy Maclaurin symmetric mean (PFMSM)
operator and Pythagorean fuzzy weighted Maclaurin symmetric mean (PFWMSM)
operator. Wei and Lu (2018b) utilized power aggregation operators (Yager, 2001) to
develop some Pythagorean fuzzy power aggregation operators: Pythagorean fuzzy
power average (PFPA) operator, Pythagorean fuzzy power geometric (PFPG) oper-
ator, Pythagorean fuzzy power weighted average (PFPWA) operator, Pythagorean
fuzzy power weighted geometric (PFPWG) operator, Pythagorean fuzzy power
ordered weighted average (PFPOWA) operator, Pythagorean fuzzy power ordered
weighted geometric (PFPOWG) operator, Pythagorean fuzzy power hybrid average
(PFPHA) operator and Pythagorean fuzzy power hybrid geometric (PFPHG) operator.
Lu, Wei, Alsaadi, Hayat, and Alsaedi (2017) proposed some hesitant pythagorean
fuzzy hamacher aggregation operators and their application to multiple attribute deci-
sion making. Wei and Lu (2017a) defined some dual hesitant Pythagorean fuzzy
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Hamacher aggregation operators in multiple attribute decision making. Wei and Lu
(2017b) developed some Pythagorean hesitant fuzzy Hamacher aggregation operators
in multiple attribute decision making. Wu and Wei (2017) gave some Pythagorean
fuzzy Hamacher aggregation operators and their application to multiple attribute
decision making. Wei, Lu, Alsaadi, Hayat, and Alsaedi (2017a) proposed some
Pythagorean 2-tuple linguistic aggregation operators: Pythagorean 2-tuple linguistic
weighted average (P2TLWA) operator, Pythagorean 2-tuple linguistic weighted geo-
metric (P2TLWG) operator, Pythagorean 2-tuple linguistic ordered weighted average
(P2TLOWA) operator, Pythagorean 2-tuple linguistic ordered weighted geometric
(P2TLOWG) operator, Pythagorean 2-tuple linguistic hybrid average (P2TLHA) oper-
ator and Pythagorean 2-tuple linguistic hybrid geometric (P2TLHG) operator. Lu and
Wei (2017) proposed some Pythagorean uncertain linguistic aggregation operators for
multiple attribute decision making.

In some real decision making, there exist the interrelationships among the attrib-
utes in MADM problems. Bonferroni mean (BM) operators (Bonferroni, 1950; Deng,
Wei, Gao, & Wang, 2018; Liu, Chen, & Liu, 2017; Wang, Wei, & Wei, 2018b; Wei,
2017b; Zhu, Xu, & Xia, 2012) and the Heronian mean (HM) (Beliakov, Pradera, &
Calvo, 2007; Chu & Liu, 2015; Liu, Liu, & Zhang, 2014; Liu, Zhu, Liu, & Hao, 2013;
Yu, 2013; Yu, Zhou, Chen, & Wang, 2015) operators provided a tool to consider the
interrelationships of aggregated arguments; however, they can only consider the inter-
relationships between two attributes and cannot process the interrelationships among
three or more than three attributes. Muirhead mean (MM) (Muirhead, 1902) is a
well-known aggregation operator which can consider interrelationships among any
number of arguments assigned by a variable vector, and some existing operators,
such as arithmetic and geometric operators (not considering the interrelationships),
both BM operator and Maclaurin symmetric mean (Maclaurin, 1729) are the special
cases of MM operator. Therefore, the MM can offer a flexible and robust mechanism
to process the information fusion problem and make it more adequate to solve
MADM problems. However, the original MM can only deal with the numeric argu-
ments, in order to make the MM operator to process the linguistic information, Qin
and Liu (2016) extended the MM operator to process the 2-tuple linguistic informa-
tion, and proposed some 2-tuple linguistic MM operators and applied the proposed
operators to solve the MADM problems.

Because PFNs can easily describe the fuzzy information, and the MM operator and
dual MM (DMM) operator can capture interrelationships among any number of
arguments assigned by a variable vector, it is necessary to extend the MM and DMM
operator to deal with the PENs. The purpose of this paper is to propose some
Pythagorean fuzzy MM operators by extending MM and DMM operators to
Pythagorean fuzzy information, then to study some properties of these operators, and
applied them to solve the MADM problems in which the attributes take the form
of PFNGs.

In order to achieve this purpose, the rest of this paper is set out as follows. Section
2 reviews some basic concepts and theory of PFSs. In Section 3, we propose the some
Pythagorean fuzzy MM operators, and study some properties of these operators. In
Section 4, we develop two MADM methods for PFNs based on the PFWMM operator
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and PFWDMM operator. In Section 5, an illustrative example for potential evaluation
of emerging technology commercialization is given to verify the validity of the pro-
posed methods and to show their advantages. In Section 6, we give some conclusions
of this study.

2. Preliminaries

In this section, we review some fundamental concept of Pythagorean fuzzy set and
MM, which will be used in the next section.

2.1. Pythagorean fuzzy set

The basic concepts of PFSs (Yager, 2013, 2014) are briefly reviewed in this section.
Afterwards, novel score and accuracy functions for PFNs are proposed. Furthermore,
a new comparison method for PFNs is developed.

Definition 1 (Yager, 2013, 2014). Let X be a fix set. A PFS is an object having the
form

P = {{x, (up(x),vp(x)))|x € X} (1)

where the function pp : X — [0, 1] defines the degree of membership and the function
vp: X — [0,1] definles the degree of non-membership of the element x € X to P,
respectively, and, for every x € X, it holds that

(1p(0))* + (p(x)* < 1. @)

Definition 2 (Wei, 2017a). Let a = (i, v) be a Pythagorean fuzzy number, a score
function S of a Pythagorean fuzzy number can be represented as follows:

S(a) == (14 —12),8(a) €[0,1]. (3)

1
2

Definition 3 (Ren et al, 2016). Let a = (u,v) be a Pythagorean fuzzy number,
an accuracy function H of a Pythagorean fuzzy number can be represented as
follows:

H(a) = i +v*, H(a) € [0,1]. (4)

to evaluate the degree of accuracy of the Pythagorean fuzzy number a = (u, ), where
H(a) € [0, 1]. The larger the value of H(a) is, the more the degree of accuracy of the
Pythagorean fuzzy number a.

Based on the score function S and the accuracy function H, in the following, we
shall give an order relation between two Pythagorean fuzzy numbers, which is defined
as follows:
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Definition 4 (Wei, 2017a) Let &1 = (,ul,l/l) and a, = (u,,v,) be two Pythagorean
fuzzy numbers, s(a;) =3 (1 + (1)” = (11)?) and (@) =1(1+ (11,)> — (12)?) be the
scores of a and b, respectlvely, and let H(a;) = (,)> 4+ (1)* and H(a,) =
(1) + (1,)* be the accuracy degrees of @ and b, respectively, then if S(a )<S(b),
then @ is smaller than b, denoted by a<b; if S(a) = S(b), then

1. ifH(a)=H (ZN))L then a and b represent the same information, denoted by a = b;
(2) if H(a)<H(b), a is smaller than b, denoted by a<b.

Definition 5 (Reformat & Yager, 2014). Let a; = (u;,v1), a2 = (i, 12), and a =
(u,v) be three Pythagorean fuzzy numbers, and some basic operations on them are
defined as follows:

L @@ = (4 (1) + (1) () (), vamn):
2 @ ®ar = (s /(1) + ()~ ()2 (2));

3. Ja=(\/1-(1 — )", v, i>0;

4. (@) = (@, \[1—(1 — 12)"), i>0;

5. a= (v, p).

2.2. Muirhead mean (MM)

The MM was first introduced by Muirhead (1902), the advantage of the MM operator
is that it can capture the overall interrelationships among the multiple input argu-
ments and it is a generalization of some existing aggregation operators. It was defined
as follows:

Definition 6 (Muirhead, 1902). Let a;(j = 1,2,...,n) be a set of crisp numbers and
[4] = (41, 42, ..., 44) € R, then the Muirhead mean (MM) operator is defined as

MM (ar, az, ..., ay) ( |ZH%> (5)

Jes, j=

Where 9(j)(j = 1,2, ...,n) is any permutation of (1,2,...,n) and S, is the set of all
permutation of (1,2,...,n).

By assigning some special vectors to A, we can obtain some special cases of the
MM operator:

1. IfA=(1,0,0,..,0) the MM is reduced to

MM (1,000 (al,az,.. an) = — Za] (6)
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Which is the arithmetic averaging operator.
2. If 2=(1,1,0,0,...,0) the MM is reduced to

1 o
MM(l*l’O’O""’O)(al, Az, an) 72 AN lnaiaj (7)

Which is the BM operator (Bonferroni, 1950).

3. If
B 1/k
Z Haij

-~ ~ 1<i < <i.<n j=1

MM(LLW’I k7 07 07 e ,Oﬂ - k)(ah az,: - 7an) = — 72};”]

n
the MM is reduced to
. 1/k

Haij

~ ~ 1<, <---<ip<n j=1

MMOL17k 0 07 00— k) (ag, a, - a) = | )

c

which is the Maclaurin symmetric mean (MSM) operator (Maclaurin, 1729).
4. IfP=(1/n,1/n,...,1/n) the MM is reduced to

MM(I/”’I/”""‘l/”)(al,az, ey ) = Hajl/n 9)
=1

which is the arithmetic averaging operator.
3. Pythagorean fuzzy Muirhead mean operators

In this section, we shall develop some Pythagorean fuzzy Muirhead mean operators based
on the operations of PFNs.

3.1. PFMM operator

The MM operator has usually been applied to a situation where the aggregation
assessments exhibit interaction relationship. Next, we extend MM operator to PFS.
From definition 5 and 6, we can obtain:

Definition 7. Let p;=(u;,v))(j=1,2,..,n) be a set of PFN and [i]=
(A1, 42, ...; 2n) € R be a vector of parameters, then the Pythagorean Fuzzy Muirhead
mean (PFMM) operator is defined as

1
n

1 n N » 4
PEMM? (p1, p2, ... pn) = (EZpr;@)l (10)

' 9es, j=1
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Where 9;(j = 1,2, ...,n) is any permutation of (1,2,...,n), and S, is the collection of
all permutations of (1,2, ..., n).
Based on the operations of the PFN described, we can drive the Theorem 1.

Theorem 1. Let p; = (1;,v;)(j = 1,2,...,n) be a collection of PFNs, then their aggre-
gated value by using the PEFMM operator is also a PFN, and

DJ
)

PFMM)'(pl,Pz, ~~-,Pn = (nl 9es, sz?(]

1 Z/L
(e )y )

n % Z”j
1— 1—<H (1—1_[(1—1/1290))%)) =1 (11)

Proof :
b=l 1= (1-2 ) (12)
Py = \ Hogy 9G)
n ;v n /L n /1
[T ey = | Tty | =TT (1= v30) (13)
j=1 j=1 j=1
Thereafter,

St = (=TT (-T0 ) I - TT0-)) oo

Jes, j=

st ({-(- () (e

Therefore,
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We can obtain ,uf%.) + vzw) < 1 from the definition of PFS, so

)

We complete the proof.

(16)

(17)

(18)

(19)
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Example 1. Let x; = (0.6,0.7),x, = (0.4,0.3),x3 = (0.8,0.1) be three PFNs, and [1] =
(0.2,0.5,0.3), then we have

PFMM(0.2,0A5,043) (xl , X2, x3)

R S—
0.2+0.54+0.3

(1— 0.6 x 0.4" x 0.8°6) x (1 —0.4%* x 0.6" x 0.8°6)x \
= 1—| (1-0.6% x0.8" x 0.4%6) x (1 — 0.4 x 0.6' x 0.8°6)x ,

(1 —0.8%4 x 0.4' x 0.6°¢) x (1 —0.8°* x 0.6' x 0.4%6)

1
1\ 02+05+03
3!

(1 —0.51°2 x 0.91°% x 0.99°3) x (1 — 0.51°2 x 0.99%5 x 0.91%3) x
1-| 1 — | (1-0.91°2 x 0.51%% x 0.99°3) x (1 —0.91°2 x 0.99°% x 0.51°3)x
(1 =0.99°2 x 0.51°° x 0.91°3) x (1 —0.9992 x 0.91%5 x 0.51°3)

= (0.5818,0.4673)
In the following, we give some properties of PFMM operator.
Property 1. (Idempotency) let p; = (1,,vp) =p = (1), )i =1,2,3,...,n),

then
PEMM (p1, 3, ..., Pn) = P (20)

Proof :

1
n

ey
PFMM}H(phpZ) "‘5pn) = <% Z'ﬂGSn Hp;bj> =
j=1

: 21)
20| 2
= i' n' .pj_l j=1

Property 2. (Monotonicity) let p; = (u,, V) and q; = (i, v4) (j=1,2,3,...,n) be
2 2 {2 < 2 a7
two sets of PENs, If (1, )" < ()" and (v,,)" > (vg,)” then

PEMM’ (p1, p2, ..., pu) < PEMM”(q1, G2, -, n) (22)

Proof :

T o
JH Hopy) < ,H”“(qj) 23)
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n al n i
24 2
<Z (1 - H“%;))) Z <Z (1 - /“‘ﬂ(jqj))> (24)
IS j=1 veS, j=1

Therefore,
2% — 2) =
VeS, =1 JES, =1
(25)
Similarly, we also can obtain
1 i
n 5 by al = )
1= 1= Tlpes, |1 - H(l - Vﬁ(pj)> =
j=1
: (26)
" AR\ DA
2 j i—
(1o (nﬁ <1 (- ) )) =
]:

then, the proof is completed. Then
2 2 2,2
If 1, <tig, and Vo > Ve, then

PEMM” (p1, p2, ..., pu) <PEMM’ (q1, 42, ..., 4n);
If ;112,)_< uéj and vf,j = véj then

PEMM” (p1, p2, ..., pn) <PEMM’ (q1, 42, ..., Gn);
If ,uf,j = ,uéj and vf,j>v§j then

PEMM’ (p1, p2, ..., pu) <PEMM*(q1, @2, -, qn);

2 _ 2 2 _ 2
If My, = Hy, and vp =V, then
PEMM (p1,p, .., pu) = PEMM (q1, 42, ..., n);
Property 3. (Boundedness) Let p; = (u;,v;)(j = 1,2,...,n) be a set of PENs. If p* =

(max;(g;), min;(v;)) and p~ = (min;(4;), max;(v;)), According the process of property
of Monotonicity and Idempotency, it is easy to got that
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p~ < P2TLMM*(py,pa, e, pn) < P (27)

3.2. PFWMM operator

In Section 3.1, it can be seen that the PEMM operator doesn’t consider the importance
of the aggregated arguments. However, in many real practical situations, especially in
multiple attribute decision making, the weights of attributes plays an important role in
the process of aggregation. To overcome the limitation of PFMM, we shall propose the
Pythagorean fuzzy weighted MM (PFWMM) operator as follows.

Definition 8. Let p; = (;,vj)(j =1,2,...,n) be a set of PFNs with weights vector

being W = (wy, wy, own) w; € [0,1], Z}’Zl w;=1and [A] = (A1, 42, ..., 44) € R, then

the Pythagorean fuzzy weighted Muirhead mean (PFWMM) operator is defined as

1

1 ! , i’"‘f
PFWMMi(pl,pz, '-'7Pn) = (m Z H ("WﬂU)PﬂU))ﬂ’> j=1 (28)

T 9eS, j=1

Based on the operations of the PFN described, we can drive the Theorem 2.

Theorem 2. Let p; = (u;,v)(j = 1,2,...,n) be a collection of PFNs, then their aggre-
gated value by using the PFWMM operator is also a PFN, and

" znljflj
)

PFWMMfV(pl,pz, ) = (%Zﬁesn H(nwﬁ(j)pﬂ(j))/lj j=1

j=1

A(Fefme e

§_|>—A
M <
\N})

31—
Ingh

~
I
-

(29)

1-[1- (H <1 —ﬁ(l—vﬁ%w")))j)) |

proof :

nwyjpag) = (\/ 1= (1~ ) 00)”%“) (30)
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A o o N
(mwoPog))” = (<\/1_(1_“1290>) m) ’\/1_(1_”290)%)) ]) o

Thereafter,

n n )
1 nwy(j)
H (nwa o)) = ( 1 (\/1_(1 - .“129(,'))
]:

j=

s 1 nWy(i )'j
ST oo’ = (J -] ( IL(- (1 m)™) )
ves, j=1 VeSS, j=1

S~
~
_—
—
|
~.
Il 2
/
—
|
<
3
Sz
S
~—
&
\—/
—~
W
N
N—r

Il J =11 U)) e
J

VES, =1
Thus,
1 n N n R mwag) 4 l
o 2 LLewogipo)” = ( - (H (1 - H<1 ~ (1-#ip) ) >> |
T €S, j=1 VES, j=1
(H 1- (1 - v%"’“’) 1) (34)
V€S, j=1
Therefore,
0 4
(nl! D ves, H(”Wﬁo‘)Pﬁo‘))M) a
=1

ftasem| -

and we can get followed easily,
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0< \ll—<H (1— n <1‘(1—u5@)nw>lj>>m o<l (36)
v€eS, j=1

o< |1-{1—(]](r- (1—V§ZT;"°)>’ =< (37)
JeS, j=1

: (38)
" 4 Zniij
+| - (1 - (Hﬂesn (1—1_[(1 i) J)) )jzl
=1
1 2
. N 2
((Fe e
=1
(39)

We complete the proof.

Example 2. Let x; = (0.6,0.7),x, = (0.4,0.3),x3 = (0.8,0.1) be three PFNs, and [/]
(0.2,0.5,0.3), W = (0.3,0.4,0.3) then we have
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(0.2,0.5,0.3)
PFWMM(043,0.4,03) (1, X2, x3)

1
0.2+0.5+0.3

2=

(1 —0.6013%2 x 0.1888%5 x 0.3308%3)

1
x (1 —0.6013%2 x 0.3308%5 x 0.1888%3)
_ 1| x(1—0.1888°2 x 0.6013%° x 0.3308°?)
x (1 —0.1888°2 x 0.3308%5 x 0.6013%2) ’
x (1 —0.3308°2 x 0.1888%% x 0.6013%3)
x (1 —0.3308%2 x 0.6013%5 x 0.1888%2)
1
1\ 02105103
(1 —0.0158%2 x 0.0556%5 x 0.5262%3) \~
1 —0.0158%2 x 0.5262°° x 0.0556°3
e 1 —0.0556%% x 0.0158%> x 0.5262°-

1 —0.5262°2 x 0.0556%> x 0.0158°3

1
x( )
x( )
x (1 —0.0556%2 x 0.5262%5 x 0.0158°3)
x( )
x (1 — 0.5262°2 x 0.0158%3 x 0.0556°3)

= (0.5821,0.4766)

The PFWMM operator has the property of boundedness and monotonicity,
but it does not satisfy the property of idempotency. In the following, we omit-
ted the process of proof, because it is similar with the PFMM monoton-
icity property.

Property 4. (Monotonicity) let p; = (1, vy,) and q; = (i, vy) (G=1,2,3,...,n) be
two sets of PENGs, If Iy, < Mg, and vy, > v, then

PEWMMY, (p1, P2, - ) < PEWMMY,(q1, 42, .-, Gn) (40)

Property 5. (Boundedness) Let p; = (1;,v;)(j = 1,2,...,n) be a set of PFNs with
weights vector being W = (wi,ws,..w,)", w;€[0,1], >0, wj=1 1If p*=
(max;(g;), min;(v;)) and p~ = (min;(y;), max;(v;)), because of property 4, then

P2TLWMMY,(p™,p, ... p”)
< P2TLWMMY, (p1, P2, ..., Pn) (41)
< P2TLWMM, (p*,p™, ..., p7)

3.3. PFDMM operator

Qin and Liu (2016) proposed the dual Muirhead mean (DMM) based on
MM operator.
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Definition 9. Let a;(j = 1,2,...,n) be a set of non-negative real numbers, and P =
(p1,P2, -, Pn) € R" be a vector of parameters. If

DMM" (a1, az, ..., a) ST 1P] (H Zp]ag(, ) (42)

0ES, j=

Then we called DMM? the dual Muirhead mean (DMM) operator, where ¢(j)(j =
1,2,...,n) is any a permutation of {1,2,...,n} and S, is the set of all permutation
of {1,2,...,n}.

In the following, we proposed the Pythagorean fuzzy dual MM (PFDMM) operator
for PFNGs.

Definition 10. Let p; = (u;,v;)(j = 1,2, ...,n) be a collection of PFNs and there exists
parameter vector [4] = (41,42, ..., 4,) € R", then

PEDMM™ (py, ps, ..., p) = Z" (H Zﬂ,pg(, ) (43)
174

= €S, j=
Based on the operations of the PFN described, we can drive the Theorem 3.

Theorem 3. Let p; = (1;,v;)(j = 1,2, ..., n) be a collection of PFN, then their aggregated
value by using the PEDMM operator is also a PEN, and

PFDMM* (p1, p2, .., Pn) = (H Z@Pao )

g€S, j=

1

- 1—-(1- (ngsn (1 —ﬁ(l —Mrzr(i)))uj>> | Zj:lij,
=1

1 A

-]

-

Proof :

r
. J— _ 42 4
)VPU(J) = ( 1 (1 .UU(J)> , 0(])) (45)
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=
B

; AiPo(j) = J -] (1 - uﬁw))"j, I1v% (46)

Therefore,

11> e = | 11 J =11 (1 _F‘im)ij’ J =11 (1 —Hvii})) “7)

o€S, j=1 geS,

(IIE:@%m)WI IIJI— <l—u%0% 7J (II( IIf“))
s, j=1 g€ES, j=1 g€ES,

Then, we can get

v (H S it ) |- (1 ] (H (1 - uim)i’))%) T

{-(m(-m)))

From the aggregation result above, we prove the result of PFDMM aggregation is
also a PFN in the following, then

o< |io (1 - (H (1 - n (1 _Mi@)zj))W) Zj:m' <1 (50)
gES, j=1

(51)

Sl
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And, we can prove

n - P Z;; g
(T (117
i=1 (52)

So, we proved that the aggregation result of PFDMM is also a PFN.

Example 3. Let x; = (0.6,0.7),x, = (0.4,0.3),x3 = (0.8,0.1) be three PFNs, and [1] =
(0.2,0.5,0.3), then we have

PEDMM (*20503) () x), x3)

1
1\ 02405403
(1 —0.64°2 x 0.84%5 x 0.36%%) x (1 — 0.64°2 x 0.36%5 x 0.84%3)x \°
= - 1— | (1-0.8492 x 0.64%5 x 0.36%%) x (1 — 0.84%2 x 0.36%5 x 0.64%3)x
(1 —0.36%2 x 0.84%5 x 0.64°3) x (1 — 0.3692 x 0.64%5 x 0.84°3)

1
0.2+0.54+0.3

o)

(1 —0.49°2 x 0.09° x 0.01°3) x (1 — 0.49°2 x 0.01° x 0.09°3) x
1—| (1 —0.09%% x 0.49%5 x 0.01°%) x (1 — 0.09%2 x 0.01%5 x 0.49°3)x
(1 —0.01%2 x 0.49°5 x 0.09°3) x (1 — 0.01°2 x 0.09° x 0.49°3)

= (0.6447,0.2891)

Property 6. (Idempotency) if all p;(j =1,2,...,n) are equal, ie.pj=p = (u,v),
then

PEDMM" (p1, P2, .-.s pu) = P (53)

Property 7. (Monotonicity) let p; = (1, v),) and q; = (i, vy) (G=1,2,3,...,n) be
two sets of PFNGs, If Iy, < My, and vy, > v, then
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PFDMM (p1,p2, ... pu) < PEDMM*(q1, G2, ., 4n) (54)

Property 8. (Boundedness). Let p; = (k;,v;)(j =1,2,...,n) be a set of PFNs. If
p* = (max;(y;), min;(v;)) and p~ = (min;(y;), max;(v;)), because of property 7 and
property 8, then PEDMM*(p~,p~,...,p~) = p~,< PEDMM*(p*, p*, ...,p*) = p*.

p~ < PEDMM(p1,ps, ..., pu) < p* (55)

3.4. PFWDMM operator

In Section 3.3, it can be seen that the PFDMM operator doesn’t consider the import-
ance of the aggregated arguments. However, in many real practical situations, espe-
cially in multiple attribute decision making, the weights of attributes plays an
important role in the process of aggregation. To overcome the limitation of PFDMM
operator, we shall propose the Pythagorean fuzzy weighted DMM (PFWDMM) oper-
ator as follows.

Definition 11. Let p; = (;,v;)(j = 1,2,...,n) be a collection of PFNs with weights
vector being W = (wy, w,, ...wn)T [0 1] Z _,wj =1 and there exists parameter
vector [1] = (41,42, ..., An) € R, then

PFWDMM! (p1, p2, ..., pr) = (H Zﬂ, ZZ”“)I (56)
] 1 ]

€S, j=

Based on the operations of the PFN described, we can drive the Theorem 4.

Theorem 4. Let p; = (1;,vj)(j = 1,2, ...,n) be a collection of PFNs, then their aggre-
gated value by using the PFWDMM operator is also a PFN, and

PFMMi(pth," 7Pn - (n‘ZHp )

VES, j

B <H< H”ﬁo))' T

Jes,

) D> i
= (57)
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Proof :

4 Zz;m - (\/1_ (1 B ’“‘%GU))%’ (\/1_ (1 - Vﬁ-(j))nww))ij) (58)

S = J
=1

j=1 =
Thereafter
VIR
€S, =1
- <16_[S,. \J 1_],11 (1 - 'uz(;) @)Aja J 1- le_S[n (1 - 11 (1 — (1 _ V20)> WOO’))%‘))

bl e -
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0< 1—<H (1—ﬁ<1— (1_V§U))nwgo))zj>>nz - o
j=1

g€ES,

Because y? + v* < 1, therefore

1_ B . n Lo (1 i. nw,,@)/lj ul ” _
(H S”( 111( (1) ) (65)

S
N
—
|
QN
S
<3
3
S
N——
>
\—/
v
2|
T
I
—_

11— (HGES,, (1 -

So, the aggregation result of PFWDMM is also PFN.

Example 4. Let x; = (0.6,0.7),x, = (0.4,0.3),x3 = (0.8,0.1) be three PFNs, and [1] =
(0.2,0.5,0.3), W = (0.3,0.4,0.3) then we have

pFWDMMgg;g;gj;g;; (x1, %2, X3)

1
0.24+0.5+0.3

2

(1 —0.8181%2 x 0.3330%° x 0.6314°7)
x (1 —0.8181%2 x 0.6314%° x 0.3330%3)
x (1 —0.3330%2 x 0.8181°° x 0.6314%?)
x (1 —0.3330%2 x 0.6314°° x 0.8181°3) ’
x (1 —0.6314%2 x 0.3330° x 0.8181°%2)
x (1 —0.6314%2 x 0.8181%° x 0.3330%3)

1
0.2+0.5+0.3

2=

(1 —0.0090%2 x 0.1070%° x 0.4545%3)
x (1 —0.0090%2 x 0.4545%° x 0.1070°2)
1| 1= | *(1=0.1070%2 x 0.0090°% x 0.4545%?)
x (1 —0.1070%2 x 0.4545%° x 0.0090°)
x (1 —0.4545%2 x 0.1070%° x 0.0090°2)
x (1 — 0.4545%2 x 0.0090%° x 0.1070°2)

= (0.6567,0.2890)

PFWDMM is also satistying property boundedness and monotonicity, but it is not
satisfying the property of idempotency.



ECONOMIC RESEARCH-EKONOMSKA ISTRAZIVANJA 1687

Property 10. (Monotonicity) let p; = (1, vp) and q; = (i, vy) (i=1,2,3,...,n)
be two sets of PFNs with weights vector being W = (wy, ws,..w,)", w; € [0,1],
Z}’Zl wj =1, If p, < i, and vy, > vy then

PFWDMM;,(p1, p2, --- pn) < PFWDMMY, (1, G2, ---. 4n) (66)

Property 11. (Boundedness) Let p; = (1, v;)(j = 1,2,...,n) be a set of PFNs with
weights vector being W = (wi,ws,..w,)", w;€[0,1], >0, wj=1 1If p~=
(max;(g;), min;(v;)) and p~ = (min;(g;), max;(v;)), because of property 10, then

PFWDMM/ML/(p_ap_v "'7p_)
< PFWDMM, (p1,p2, .- Pn) (67)
< PFWDMM;, (p*, p*, ...,p")

5. Models for MADM with PFNs

Based the PFWMM and PFWDMM operators, in this section, we shall propose the
model for MADM with PFNs. Let A = {A;,A;,...,A,,} be a discrete set of alterna-
tives, and G = {Gy, Gy, ..., G,} be the set of attributes, ® = (v, @y, ...,®,) is the
weighting vector of the attribute Gj(j =1,2,...,n), where w; €[0,1],>7", w; = 1.
Suppose that P = (pj),x, = (s Vij) mxn is the Pythagorean fuzzy decision matrix,
where y; indicates the degree that the alternative A; satisfies the attribute G; given by
the decision maker, v;; indicates the degree that the alternative A; doesn’t satisfy the
attribute G; given by the decision maker, u; C [0,1], v; C [0, 1], (,u,-j)2 + (vy)” <1,
i=1,2,...mj=12,..,n

In the following, we apply the PFWMM (PFWDMM) operator to the MADM
problems with PFNG.

Step 1. We utilize the PFNs given in matrix R, and the PEWMM operator

1

n
4j
N\ S

pi = PEWMMY, (pit, piz;s ---» Pin) = (% > ves, H(”Wﬂﬁ)Pﬂ(ij>)Aj> g

=1

n W 2 ER W ]
= 1_<Hﬂesn (1 - H(l - (1 —ufmj)) M) )>> =
=1

. N
2nwyg \ P .
1-{1- <| | (1 -] 1| <1 —vﬂ(,.j)”(”) J)) =Uoi=1,2, ., m. (68)
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pi = PEWDMM;, (p,-l, Pizs-ees pm)

HWH(J
H J a(if)
J 1 J o€S, j=1
n py i ZVL %
o 2nwej) \ Y =1
=t (Hoesn <1_H(1_““(ij) ) )) ’
=1

j=

2
1 i
ul =177

n A\ \
nWs(j) \ .
1‘(11 (1_ <1— (I—Vi(m) > )) i=1,2,...m (69)
GESy =1

to derive the p;(i = 1,2, ...,m) of the alternative A;.

Step 2. Calculate the scores S(p;)(i = 1,2,...,m) of the overall PENs p;(i = 1,2, ...,m)
to rank all the alternatives A;(i =1,2,...,m) and then to select the best one(s). If
there is no difference between two scores S(p;) and S(p;), then we need to calculate
the accuracy degrees H(p;) and H(p;) of the overall PENs p; and pj, respectively,
and then rank the alternatives A; and A; in accordance with the accuracy degrees
H(p;) and H(p;).

Step 3. Rank all the alternatives A;(i=1,2,...,m) and select the best one(s) in
accordance with S(p;)(i = 1,2, ...,m).

Step 4. End.

6. Numerical example and comparative analysis
6.1. Numerical example

For the time being, emerging technologies have mushroomed up gradually with the
rapid development of science and technology, and emerging technologies have
brought obvious impacts on states, industries and societies. There are no countries
which can oversee the development of emerging technologies, it can be said that the
competition between countries and states is the one of emerging technologies, espe-
cially the quality, quantity and speed of commercialization and industrialization of
emerging technologies. It is not only a difficult task for countries and enterprises to
identify, further evaluate and select emerging technologies, finally commercialize and
industrialize emerging technologies; but also a weak issue for researchers to study
theoretically. Thus, in this section we shall present a numerical example to show
potential evaluation of emerging technology commercialization with Pythagorean
fuzzy information in order to illustrate the method proposed in this paper. There is a
panel with five possible emerging technology enterprises O;(i = 1,2,3,4,5) to select.
The experts selects four attributes to evaluate the five possible emerging technology
enterprises: @G, is the technical advancement; @G, is the potential market and mar-
ket risk; ®G; is the industrialization infrastructure, human resources and financial
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Table 1. PFN decision matrix.

G G G G

0, (0.50,0.80) (0.60,0.50) (0.30,0.60) (0.60,0.70)
0, (0.70,0.50) (0.70,0.40) (0.60,0.20) (0.40,0.60)
0, (0.70,0.50) (0.50,0.70) (0.50,0.30) (0.60,0.20)
0, (0.80,0.20) (0.60,0.30) (0.40,0.50) (0.60,0.60)
0s (0.60,0.40) (0.40,0.70) (0.70,0.50) (0.60,0.80)

Table 2. The aggregating Result of PFMM, PFWMM, PFDMM and PFWDMM operators.

0, 0, 0, 0, 0,

PFMM (0.4827,0.6742) (0.5862,0.4590) (0.5695,0.4882) (0.5833,0.4411) (0.5639,0.6448)
PFWMM (0.4556,0.708) (0.5620,0.5247) (0.5362,0.6065) (0.5542,0.4671) (0.5262,0.6842)
PFDMM (0.522,0.6407) (0.6229,0.3947) (0.5874,0.382) (0.637,0.3673) (0.5936,0.5794)
PFWDMM (0.5960,0.6007) (0.6926,0.3695) (0.6400,0.3673) (0.6929,0.3416) (0.6280,0.5410)

Table 3. The rank and score of emerging technology enterprises by using PFMM, PFWMM,
PFDMM and PFWDMM operators.

0, 0, 03 04 Os Order
PFMM 0.3892 0.5665 0.543 0.5728 0.4511 04> 0,> 03> 05> 0,
PFWMM 0.3531 0.5203 0.4599 0.5445 0.4043 04> 0,> 03> 05> 04
PFDMM 0.4310 0.6161 0.5996 0.6354 0.5084 04> 0,> 03> 05> 04
PFDWMM 0.4972 06716 0.6373 0.6817 0.5508 0,> 0,> 03> 05> O,

conditions; @G, is the employment creation and the development of science and
technology. The five possible emerging technology enterprises O;(i = 1,2,3,4,5) are
to be evaluated using the PFNs according to four attributes (whose weighting vector
W = (0.2,0.1,0.3,0.4),A = (0.2,0.2,0.3,0.3), as shown in Table 1.

In the following, in order to show potential evaluation of emerging technology
commercialization of five possible emerging technology enterprises, we utilize the
PFMM, PFWMM, PFDMM and PFWDMM operators to solve MADM problem
with PFNs, which concludes the following calculating steps:

Step 1. According to Table 1, aggregate all PFNs p;(j =1,2,...,n) by using the
PFMM, PFWMM, PFDMM and PFWDMM operators to derive the overall PFNs
pi(i =1,2,3,4) of the emerging technology enterprises O;. The aggregating results
are shown in Table 2.

Step 2. According to the aggregating results shown in Table 2 and the score functions
of the emerging technology enterprises are shown in Table 3.

According the result of emerging technology enterprises order, we can know that
the best choice is emerging technology enterprise O4, we get same result by different
aggregation, that proved the effectiveness of the result.

6.2. Influence of the parameter on the final result

The aggregation method of extend PFS with MM has two advantages, one is that it
can reduce the bad effects of the unduly high and low assessments on the final result,
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Table 4. Ranking results by utilizing different parameter vector R in the PFWMM operator.

Scores

(M, 22, A3, \a) 0; 0, 0; 0,4 Os Order

(1,0,0,0) 0.4126 0.5869 0.6269 0.6000 0.5147 03>04>0,>05>0,
(1,1,0,0) 0.3793 0.5401 0.5521 0.5708 0.4696 0,>03>0,>05>0,
(2,0,0,0) 0.4389 0.5962 0.6440 0.6166 0.5412 03>04>0,>05>0,
(3,0,0,0) 0.4640 0.6052 0.6574 0.6309 0.5611 05>0,>0,>05>0;
(1,1,1,0 0.3638 0.5273 0.4993 0.5548 0.4374 04>0,>05>05>0,
(1,1,1,1) 0.3524 0.5197 0.4576 0.5438 0.4026 04,>0,>05>05>0,

Table 5. Ranking results by utilizing different parameter vector R in the PFWDMM operator.

Scores

()\,1 s 7\,2, 7\,3, 7\,4) 01 02 03 04 05 Order

(1,0,0,0 0.3750 0.5261 0.5875 0.5353 0.4572 05>04>0,>05>0;
(1,1,0,0 0.4317 0.6145 0.6137 0.6081 0.5234 05>0,>0,4>05>0;
(2,0,0,0) 0.3535 0.4827 0.5734 0.4913 0.4233 05>04>0,>05>0;
(3,0,0,0 0.3368 0.4486 0.5609 0.4603 0.3939 05>04>0,>05>0;
(1,1,1,0 0.4647 0.6502 0.6285 0.6582 0.5401 0,>0,>03>05>0;
(1,1,1,1 0.4991 0.6730 0.6379 0.6832 0.5515 0,>0,>03>05>0;4

the other is that it can capture the interrelationship between PFNs. These aggregation
operators have a parameter vector, which make extended operator more flexible, so
the different vector leads to different aggregation results, different scores and ranking
results. In order to illustrate the influence of the parameter vector R on the ranking
result, we discuss the influence with several parameter vectors, the result you can find
in Tables 4 and 5.

We can see that the different parameters lead to a different result and different
ranking order. More attributes we consider, the bigger the scores, the bigger the attri-
bute value and the more lower the scores. Therefore, the parameter vector can be
considered as decision maker’s risk preference.

6.3. Comparative analysis

The prominent characteristic of the PFMM, PFWMM, PFDMM and PFWDMM opera-
tors is that they can consider the interrelationship among the PFNs. We investigate some
comparative analyses to demonstrate the advantages of the proposed operators. Table 6
presents further details.

Table 6 shows that the aggregation operators introduced in (Yager, 2014; Garg,
2016a; Zeng et al., 2016; Wei & Lu, 2017a; Wu & Wei, 2017; Wei, 2017¢) cannot con-
sider the interrelationship between the PFNs. Although PFCIA, PFCIG, PFPWA and
PFPWG can capture the interrelationship between the PFNs, they only change the
weight vector of the aggregation operators. In addition, the correlations of the aggre-
gated arguments are measured subjectively by the decision makers. PFMSM,
PFWMSM, PFIWA, PFIWG, PFIOWA, PFIOWG, PFIHA, PFIHG, GPFWBM,
GPFWBGM, GPFWHM, PFGWHM, PFMM, PFDMM, PFWMM, PFWDMM opera-
tors focus on the aggregated PFNs. In addition, the GPFWBM, GPFWBGM, PFMM,
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Table 6. The Comparison of the different aggregation operators under PFNs.

Whether the operator Whether the Whether a
can capture the operator can parameter
interrelationship capture the vector exists to
between any two interrelationship manipulate the

Aggregation operators or three PFNs among all PFNs ranking results
PFWA and PFWG (Yager, 2014) No No No
SPFWA and SPFWG (Ma & Xu, 2016) No No No
PFOWAWAD (Zeng et al., 2016) No No No
PFEWA, PFEOWA (Garg, 2016a) No No No
PFHWA and PFHWG (Wu & Wei, 2017) No No No
PFHOWA, PFHOWG (Wu & Wei, 2017) No No No
PFHHA, PFHHG (Wu & Wei, 2017) No No No
DHPFHWA, DHPFHWG (Wei & Lu, 2017a) No No No
DHPFHOWA,DHPFHOWG (Wei & Lu, 2017a) No No No
DHPFHHA, DHPFHHG (Wei & Lu, 2017a) No No No
HPFHWA, HPFHWG (Lu et al., 2017) No No No
HPFHOWA, HPFHOWG (Lu et al., 2017) No No No
HPFHHA, HPFHHG (Lu et al., 2017) No No No
PFCIA and PFCIG (Peng & Yang, 2016) Yes No No
PFPWA, PFPWG (Wei & Lu, 2018b) Yes No No
PFIWA, PFIWG (Wei, 2017a) Yes No No
PFIOWA, PFIOWG (Wei, 2017a) Yes No No
PFIHA, PFIHG (Wei, 2017a) Yes No No
PFMSM,PFWMSM (Wei & Lu, 2018a) Yes Yes No
GPFWBM,GPFWBGM (Zhang, Wang, Yes Yes Yes
Zhu, Xia, & Yu, 2017)
PFMM, PFDMM Yes Yes Yes
PFWMM, PFWDMM Yes Yes Yes

Table 7. Ordering of the emerging technology enterprises.

Ordering
PFWA operator (Yager, 2014) A3> 402050,
PFWG operator (Yager, 2014) A3> 40,2052,
SPFWA operator (Ma & Xu, 2016) A3> 40,2050,
SPFWG operator (Ma & Xu, 2016) A3> 40,2052,

PFDMM, PFWMM, PFWDMM operators have a parameter vector, thereby enabling
the aggregation process to be substantially flexible.

At the same time, we compare our proposed method with other existing methods
including the Pythagorean fuzzy weighted averaging (PFWA) operator (Yager, 2014),
Pythagorean fuzzy weighted geometric (PFWG) operator (Yager, 2014), symmetric
Pythagorean fuzzy weighted averaging (SPFWA) operator (Ma & Xu, 2016) and sym-
metric Pythagorean fuzzy weighted geometric (SPFWG) operator (Ma & Xu, 2016).

From the Table 7, we can get the same optimal emerging technology enterprises
and four methods’ ranking results are slightly different from the proposed
approaches. However, the existing aggregation operators, such as PFWA operator,
PFWG operator, SPFWA operator and SPFWG operator, do not consider the infor-
mation about the relationship between arguments being aggregated, and thus can-
not eliminate the influence of unfair arguments on decision results. Our proposed
operators, such as PFMM operator, PFDMM operator, PFWMM operator and
PFWDMM operator consider the information about the relationship among argu-
ments being aggregated.
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7. Conclusion

Aggregation operators have become a hot issue and an important tool in the decision
making fields in recent years. However, they still have some limitations in practical
applications. For example, some aggregation operators suppose the attributes are
independent of each other. However, the MM operator and dual MM operator have a
prominent characteristic that it can consider the interaction relationships among any
number of attributes by a parameter vector 4. Motivated by the studies about MM
operator and dual MM operator, in this paper, we proposed some new MM and
DMM aggregation operators to deal with MADM problems under a Pythagorean
fuzzy environment, included the Pythagorean fuzzy MM (PFMM) operator,
Pythagorean fuzzy weighted MM (PFWMM) operator, Pythagorean fuzzy dual MM
(PFWMM) operator and the Pythagorean fuzzy weighted dual MM (PFWDMM)
operator. Then, the desirable properties were proved. Moreover, these proposed oper-
ators are utilized to solve the MADM problems with PFNs. Finally, we used an illus-
trative example for potential evaluation of emerging technology commercialization to
show the feasibility and validity of the proposed operators by comparing with the
other existing methods. In the future, we shall extend the proposed operators to
dynamic and complex decision making (Chen, 2015; De & Sana, 2014; Gao, 2018;
Gao, Wei, & Huang, 2018; Huang & Wei, 2018; Tang & Wei, 2018; Wang, Wei, &
Lu, 2018c; Wei, 2017c, 2018a, 2018b; Wei, Gao, Wang, & Huang, 2018¢; Yue & Jia,
2013), risk analysis (Wei, Liu, Lai, & Hu, 2017b; Wei, Yu, Liu, & Cao, 2018d) and
many other fields under uncertain environment (Chen, 2017; Mardani et al.,, 2015,
2018; Peng & Selvachandran, 2017; Rostamzadeh, Esmaeili, Nia, Saparauskas, &
Ghorabaee, 2017; Wang, Wei, & Gao, 2018d; Wei, 2018c; Wei & Wei, 2018; Zeng,
Mu, & Balezentis, 2018).
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