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Summary

Drought is an acute abiotic stress that limits wheat production worldwide, particularly in arid and semi-arid 
zones, due to the uneven distribution of rainfall, possibly as a consequence of climate change. In south Asia, 
including Bangladesh, India and Pakistan, wheat is generally grown under rainfall deficit in winter causing the 
reduction of wheat yield during this period. This study aimed to characterize the drought tolerance of 35 wheat 
genotypes of diverse morphologies grown in the field. Plants were grown under drought (irrigation was stopped 
after the crown root initiation (CRI) stage and the crop was protected from receiving rainfall) and well-watered 
(control) conditions. Phenological variation on days to first visible awn, days to heading, days to anthesis, days 
to full expansion of flag leaf, days to awn drying, and days to physiological maturity of all 35 wheat genotypes 
were significantly different (p≤0.01) under water deficit (drought stress). Similarly, plant height, tillers m-2, spike 
length, spikelets spike-1, grains spike-1, grain weight, grain yield (GY) and straw yield of all 35 genotypes were 
significantly reduced under water deficit. Among the tested genotypes, nine genotypes i.e., ‘BARI Gom 26’, 
‘Sourav’, ‘BAW 1169’ and ‘BAW 1158’ (GY reduction < 30%), and ‘BAW 1151’, ‘BAW 1157’, ‘BAW 1159’, ‘BAW 
1161’, ‘BAW 1165’ and ‘BAW 1170’ (GY reduction < 40%) were classified as tolerant on the basis of minimum 
variation in phenology, growth and yield attributes, while also considering the lowest yield reduction (< 40%) 
under drought stress. Genotypes ‘Prodip’, ‘Shatabdi’, Gourav, ‘Sufi’, ‘Kanchan’, ‘Barkat’, ‘Balaka’, ‘Aghrani’, ‘Akbar’, 
‘Protiva’, ‘Ananda’, ‘Bijoy’, ‘BARI Gom 25’, ‘BAW 1160’, ‘BAW 1162’, ‘BAW 1163’, ‘BAW 1164’, ‘BAW 1168’ and 
‘BAW 1172’ were categorized as moderately sensitive (< 50% GY reduction), while genotypes ‘Seri’, ‘Pavon’, ‘BAW 
1166’, ‘BAW 1167’, ‘BAW 1171’ and ‘BAW 1173’ were considered to be highly susceptible to drought (>50% GY 
reduction). Therefore, among the 35 genotypes, nine may be recommended as drought-tolerant wheat genotypes 
for cultivation under water deficit (drought) conditions or may be used in a future breeding program to develop 
drought-tolerant varieties.
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Introduction
Wheat (Triticum aestivum L.) is the world’s most important 

cereal in terms of production area and yield (FAO, 2015), providing 
20% of all calories consumed by people worldwide while also 
significantly contributing to animal feed (Shiferaw et al., 2013; 
Horváth, 2014; Shewry and Hey, 2015). The world’s population 
of 7.2 billion is projected to increase by 1 billion over the next 12 
years and reach 9.6 billion by 2050 (UN Report, 2013). To meet the 
dietary demand of increasing populations (Timsina et al., 2018), 
wheat production will bear a crucial weight on food security and 
the global economy in coming decades (The Guardian, 2014). 
Therefore, there will be a need to increase wheat productivity 
by optimizing existing resources such as water, fertilizers and 
pesticides to overcome the negative impact of climate change 
and pressure on agriculture caused by rising energy costs (IFDC, 
2016). In arid and semi-arid regions of the world, factors such as 
high temperature, moisture deficit and low soil fertility limit wheat 
production (Balasubramanian et al., 2012; Chauhan et al., 2012). 
Soil water deficit, or water stress, limits photosynthates through 
stomatal closure and early leaf senescence (Chauhan et al., 2012), 
which ultimately affects processes related to grain development 
(Zhang et al., 2004; Rajala et al., 2009; Wang et al., 2018).

Wheat is the most important cereal in terms of production and 
acreage in the world, as well as in countries in SouthAsia (FAO, 
2015). In Bangladesh, it is the second most important crop after 
rice, serving as a staple food crop that is grown on an area of 3.74 
million ha with an annual production of 1 million metric tons and 
an average yield of 3.08 t ha-1 (BBS, 2015). However, according to 
the Bangladesh Agricultural Research Institute (BARI), the range 
of potential yield of wheat varieties is 4.0–4.5 t ha-1 (BARI, 2016) 
with climatic yield potential as high as 6.0 t ha-1 (Timsina et al., 
2010, 2018). One of the main reasons is that one third of the total 
area under wheat production in Bangladesh lies in rainfed regions 
which can experience episodes of drought, thereby limiting plant 
growth and productivity (Khaliq et al., 1999). Separately, due to 
climate change, the amount of rainfall in the world (Dore 2005), 
including Bangladesh, has decreased in the past few decades 
(Shahid, 2010; Islam and Hasan, 2012) and is much lower than 
the amount of water needed for irrigation (Hossain and Teixeira 
da Silva, 2013). During the wheat-growing season in Bangladesh, 
monsoon rain is absent and as a result, wheat cultivation is fully 
dependent on irrigation water, which is already scarce, so any 
drought spell during its growth cycle may substantially decrease 
grain yield (GY) (Sarker et al., 2015).

Water shortage between November and March is very common 
in Bangladesh and this is accentuated by a rapid lowering of the 
ground water table caused by the intensive cultivation of Boro rice. 
One of the best and most practical solutions to solve the problem 
of water shortage is to develop wheat genotypes that are tolerant 
to water deficit and that can withstand water deficit or that require 
less water but still produce optimum yield. Very few experiments 
have been performed in Bangladesh to identify drought-tolerant 
wheat genotypes as a practical way to increase national wheat 
production. Cognizant of this challenge in Bangladesh, in this 
research, the drought stress tolerance of 35 wheat genotypes 
was studied in a bid to differentiate them based on their levels of 
tolerance. To achieve this, it was necessary to determine genotypic 
variation in response to drought based on phenology, canopy 

temperature and yield and to identify promising lines for future 
wheat breeding programs.

Materials and Methods

Location of the Experiment

The experiment was conducted on upland soil at the research 
field of the department of Agronomy of Bangabandhu Sheikh 
Mujibur Rahman Agricultural University (BSMRAU), Salna, 
Gazipur located in the center of the Madhupur Tract (24° 05" N, 
90° 16" E and 8.4 m above sea level) from November to March. 
Experimental soils are of the Salna soil series of Shallow Red-
Brown Terrace, representative of agro-ecological zone 28 (AEZ-
28; Madhupur Tract) and with silty clay on the surface and silty 
clay loam in the sub-surface region (Brammer, 1978; Shaheed, 
1984; FAO/UNDP, 1988).

Chemical and Physical Properties of Soil

Soils of the experimental sites were analyzed before sowing 
wheat (Table 1). Soil pH was measured in soil/water (1:2, w/v) 
using a glass electrode pH meter. Organic carbon was determined 
by the Walkley and Black oxidation method (Walkley and 
Black, 1934), total N (nitrogen) by the micro-Kjeldhal method 
(Jackson, 1958), phosphorus (P), potassium (K) and sulphur (S) 
by a modified Hunter’s method (BARC, 1984), while boron (B) 
was determined colorimetrically by the Azomethine-H method 
(Sippola and Ervio, 1977). Soil pH in the experimental plot (AEZ-
28) was slightly acidic (5.99) while particle density and bulk 
density were 2.66 and 1.42 g cm-3, respectively. Soil had 0.69% 
organic matter, 0.07% total N, 0.15 µg/g B, 10.2 ppm S, 20.5 ppm 
available P and 0.27 meq 100 g-1 soil exchangeable K.

Weather Information at the Experimental Site

The climate of the experimental site is characterized by heavy 
rainfall from July to September and little or no rainfall for the rest 
of the year. Monthly maximum and minimum air temperature, 
soil temperature at different depths, humidity, rainfall as well as 
evaporation were measured in the experimental site during the 
experimental period. The HOBO U12 Family of Data Loggers 
(MicroDAQ.com) was used to record temperature at the 
meteorological stations of BSMRAU. Rainfall was monitored by a 
rain gauge (Table 2).

Experimental Design and Treatments

Wheat genotypes were planted under adequate water supply. 
However, irrigation was stopped after the crown root initiation 
(CRI) stage (20 days after sowing (DAS)) in the water deficit 
treatment and the crop was protected from rainfall by a rainout 
shelter. The well-watered treatment was irrigated four times (at 
CRI, booting, anthesis and grain-filling stages). The experiment 
was conducted in a split plot design where water regime was 
the main plot and wheat genotypes were the sub-plot with three 
replications. Unit plot size was 6 m2 (1.2 m × 5 m) and inter-line 
spacing was 20 cm with continuous sowing.
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SA = slightly acidic, VL = very low, L = low, M = medium

Table 1. Soil chemical properties of experimental field

Soil properties pH Organic matter 
(%) Total N (%) Available

P (ppm)
Exchangeable

K (meq 100 g-1 soil) Available S (ppm) B µg g-1

Initial 5.99 0.69 0.07 20.5 0.27 10.2 0.15

Status SA VL VL M M L VL

Experimental Procedure

Thirty five wheat genotypes comprising some popular 
varieties, advanced lines and exotic lines provided by the Wheat 
Research Centre of the Bangladesh Agricultural Research Institute, 
Nashipur, Dinajpur, Bangladesh, were tested in this study as in 
Bazzaz et al. (2015) (Table 3).

Land was prepared by four-cross ploughing, followed by 
laddering to break clods, levelled with a power tiller, and then 
cleaned to remove debris. To protect run off of irrigation water 
and fertilizer, 10 cm high ridges were built around each plot.

Genotypes were sown in 20 cm spaced lines with a hand drill 
using a seeding rate of 120 kg ha-1. To ensure uniform germination, 
seeds were lightly irrigated just after sowing. Fertilizers were 
applied at 100-60-40-20-1 kg N-P2O5-K2O-S-B ha-1 using 
urea, triple super phosphate, muriate of potash and gypsum, 
respectively as sources. Two-thirds of N and the full amount of 
all other nutrients were applied as the basal dose. The remaining 
amount of urea was applied as a top dress at CRI and during the 
second irrigation, split equally. Hand weeding was done by hoe to 
uproot weeds and break the soil crust at 15 DAS and at 35 DAS, 
respectively. A detailed description of the experimental procedure 
is available in Bazzaz et al. (2015).

Data Collection

Phenology

To understand phenological variation under well-watered 
(control) and drought (water deficit) conditions, data on days 
to first visible awn, days to heading, days to anthesis, days to 
full expansion of flag leaf, days to awn drying, and days to 
physiological maturity were recorded. Days to heading was 
recorded by counting the number of days from the sowing date 
until 80% of heads were completely visible in each row of the plot. 
Similarly, days to anthesis were recorded by counting the number 

of days from the sowing date until 80% of heads had completed 
anthesis in each row of the plot. Days to physiological maturity 
were calculated from sowing to the day when the peduncle and the 
spike on the tagged main stem became completely yellow (Fig. 1).

*Data not recorded

Table 2. Weather data at the experimental site during the course of experimentation

Months
Air temperature (°C) Soil temperature (°C) at different soil depths Humidity 

(%)
Rainfall 
(mm)

Pan evaporation 
(mm)Max. Min. Mean 10 cm 20 cm 30 cm

November 27.76 23.76 25.76 26.55 26.91 27.33 85.66 0.00 55.06

December 24.80 16.58 20.69 22.72 23.17 23.56 90.70 5.19 208.15

January 22.32 11.53 16.93 18.85 19.34 19.84 89.81 0.00 1.37

February 27.31 13.24 20.28 20.03 20.45 20.83 87.66 0.00 3.60

March 32.58 20.68 26.63 23.53 23.97 24.42 83.94 0.00 4.03

Figure 1. Wheat in field at physiological maturity stage

Yield and Yield Attributes

Plants from two 0.4 m lines and 2.5 m in length comprising 
1.0 m2 from each plot were harvested randomly to calculate GY 
and straw yield (SY). The harvested crop of each plot was bundled 
separately, tagged and manually threshed on a threshing floor. The 
bundles were thoroughly dried in bright sunshine before their dry 
weights were recorded. Data were recorded for plant height (cm), 
flag leaf length (cm), tillers plant-1, spike length (cm), spikelets 
spike-1, grains spike-1, 1000-grain weight (g; TGW), GY (t ha-1), SY 
(t ha-1) and harvest index (HI) (%), all at harvest. GY was recorded 
at 12% moisture content while SY was calculated on a sun-dry 
basis (approx. 3% moisture content) (Hellevang, 1995).
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Source: FAO (2018)

Table 3. Pedigree of wheat genotypes used in the study

# Entry Cross/pedigree # Entry Cross/pedigree

1. Prodip G. 162/BL 1316//NL 297
NC2055-4B-020B-020B-4B-0B 19. BAW 1157 BAW 923/BAW 1004

BD(DI)1207S-0DI-4DI-010DI-010DI-0DI-DIRC6

2. Shatabdi MRNG/BVC//BLO/PVN/3/PJB-81
CM98472-1JO-0JO-0O-1JO-0JO-0R2DI 20. BAW 1158 BAW 968/SHATABDI

BD(JO)358-0DI-1DI-010DI-010DI-DIRC6

3. Sourav NAC/VEE
CM 64224-5Y-1M-1Y-2M-0Y 21. BAW 1159 KAN//IAS 63/ALDAN 

BD(DI) 961S-0DI-62DI-010DI-010DI-0DI-03DI-DIRC5

4. Gourab TURACO/CHIL
CM 92354-33M-0Y-0M-6Y-0B 22. BAW 1160 BAW 1004/GARUDA

BD(DI)1493-0DI-8DI-6DI-HR3R6DI

5. Sufi
KAN/6/COQ/F61.70//CNDR/3/OLN/4/PHO/5/MRGN/
ALDAN//CNO
BD(JE) 349-X-0JE-9DI-10HR

23. BAW 1161 BAW 677/BIJOY
BD(JA)1365S-0DI-15DI-3DI-HR12R3DI

6. Kanchan UP301/C306
1187-1-1P-5P-5JO-OJO 24. BAW 1162 SOURAV/3/ZSH23/HLB48//NEPAL297

BD(DI)1296S-0DI-2DI-010DI-010DI-2DI-HR18R2DI

7. Seri KVZ/BUHO//KAL/BB
CM33027-F-15M-500Y-0M-87B-0Y-0BGD 25. BAW 1163 SHATABDI/BAW 824

BD(JE)1176S-0DI-11DI-010DI-010DI-8DI-HR27R8DI

8. Pavon VCM//CNO/TC/3/KAL/BB
CM8399-D-4M-3Y-1M-1Y-1M-0Y-0BGD 26. BAW 1164 BAW 969/BAW 824

BD(JO)403S-0DI-6DI-010DI-010DI-8DI-HR31R8DI

9. Barkat BB/GLL//CARP/3/PVN
CM 33483-C-7M-1Y-OM-OJO 27. BAW 1165 SOURAV//SUFI/BAW 805

BD(DI)1334T-0DI-1DI-010DI-010DI-5DI-HR32R5DI

10. Balaka RON/TOB
CM 7705-3M-1Y-2M-2Y-OY-OJO 28. BAW 1166 BL 3373 = BL 1923/NL 876

NC99B3131-5B-020B-020B-1B-0B

11. Aghrani INIA/3/SON64/P4160E//SON64
PK 6841-2A-1A-OA 29. BAW 1167 BL 3877=KAUZ/STAR/CMH 81.749//BL 2224

NC 02B3616-5B-020M-020B-3B-0B

12. Akbar RON/TOB
CM 7705-3M-1Y-2M-2Y-OY-OJO 30. BAW 1168 BAW 923/BIJOY

BD(DI) 1327S-0DI-3DI-1DI-DIRC4

13. BARI Gom 26 ICTAL123/3/RAWAL87//VEE/HD2285
BD(JOY) 86-0JO-3JE-010JE-010JE-HRDI-RC5DI 31. BAW 1169 SHATABDI/BAW 923

BD(DI) 1134S-0DI-4DI-010DI-010DI-1DI-DIRC3

14. Protiva KU HEAD SELECTION 12 32. BAW 1170 CHIR7/CBRD//GOURAB
BD(DI) 1327S-0DI-3DI-1DI-DIRC4

15. Ananda KAL/BB
CM 26992-3OM-3OOY-5OOY-OY-OJA-OJA 33. BAW 1171 CHIR7/CBRD//GOURAB

BD(DI) 1335S- 16DI-010DI-010DI-010DI-1DI-DIRC4

16. Bijoy NL297*2/LR25 34. BAW 1172 GOURAB/PAVON 76 NCD99-04-0DI-1DI-0DI-0DI-
0DI-0DI-32DI-0DI

17. BARI Gom 25 ZSH 12/HLB 19//2*NL 297 35. BAW1173 KAUZ//ALTAR 84/AOS/3/PASTOR/4/TILHI CMSS-
97M03915T-040Y-020Y-030M-020Y-040M-12Y-1M-0Y

18. BAW 1151
SOURAV/KLAT/SOREN//PSN/3/BOW/4/VEE#5. 10/5/
CNO 67/MFD//MON/3/ SERI/6/NL297
BD(DI)112S-0DI-030DI-030DI-030DI-9DI 
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Boxplot, Cluster and Correlation Analysis

In this study, we used boxplot analysis (McGill et al., 1978; 
Chambers et al., 2018) to assess variation in yield and yield 
attributes when plants were grown under water deficit conditions. 
Cluster analysis (Scott and Knott, 1974) was performed for all 
wheat genotypes grown under water deficit condition on the basis 
of grain and biomass yield (SY). Correlation analysis (Cohen et 
al., 1983) between yield and yield attributes under water deficit 
conditions was performed. Boxplot, cluster and correlation 
analysis were performed using R software (R Core Team, 2013).

Statistical Analysis

Collected data were statistically analyzed using R software (R 
Core Team 2013). Duncan’s new multiple range test (DNMRT) at 
a 5% probability level was used to test differences among mean 
values (Steel and Torrie, 1984).

Results

Phenological Variation of Wheat under Water Deficit

Phenological traits such as days to heading, days to 
physiological maturity and days to grain filling were significantly 
reduced by drought stress (Fig. 2). The following phenological 
traits took different number days to complete in the control (well-
watered) and water deficit treatments, respectively: 51-69 and 
50-66 days to peak visible awn, 61-79 and 61-78 days to heading, 
67-81 and 64-78 days to anthesis, which indicates that anthesis 
occurred three days earlier as a result of water stress, 46-64 or 45-
62 days for the flag leaf (an important factor for photosynthesis) 
to expand fully, 91-101 and 87-96 days for the awn of a wheat 
spike (an important contributor to grain development) to dry, 
and 102-110 and 93-103 days to reach physiological maturity. 
However, physiological maturity was achieved seven days earlier 

Figure 2. Variation of days to first awn visible (a), days to heading (b), days to anthesis (c), days to full expansion of flag leaf (d), days to awn drying 
(e), and days to physiological maturity (f) of 35 wheat genotypes under well-watered (1) and water deficit (2) conditions.
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Table 4. Range and mean of morphological and yield related parameters of tested wheat genotypes under well-watered and water deficit condi-
tions

Plant characters
Water deficit Well-watered

Range Mean ± SD Range Mean ± SD

Plant height (cm) 68.30-91.45 82.89 ± 5.17 80.76-107.67 94.00 ± 5.67

Flag leaf length (cm) 18.60-26.74 22.89 ± 1.86 22.89-30.75 26.22 ± 1.73

Tillers / plant-1 (no.) 1.23-2.10 1.48 ± 0.19 2.08-2.98 2.54 ± 0.22

Spike length (cm) 8.38-11.83 10.23 ± 0.76 9.48-13.18 11.33 ± 0.83

Grains spike-1 (no.) 33.33-46.47 40.56 ± 2.97 41.73-54.83 48.75 ± 3.14

1000-grain weight (g) 34.87-44.80 40.28 ± 2.22 43.13-50.47 47.68 ± 1.78

Grain yield (t ha-1) 1.68-4.98 3.15 ± 0.67 4.11-5.81 5.32 ± 0.48

Straw yield (t ha-1) 3.23-7.56 5.43 ± 0.92 6.23-9.67 8.48 ± 0.85

Harvest index 31.72-41.88 36.78 ± 2.05 36.64-41.51 38.61 ± 1.26

in drought-stressed ‘BARI Gom 25’, ‘BAW 1167’ and ‘BAW 1173’, 
but only 1-3 days earlier in ‘BAW 1169’, ‘BARI Gom 26’, ‘Sourav’, 
‘BAW 1157’, ‘BAW 1158’, ‘BAW 1159’, ‘BAW 1161’, ‘BAW 1165’ and 
‘BAW 1170’, compared to the control.

Boxplot Analysis-based Variation in Yield and Yield 
Attributes of Drought-stressed Wheat

The yield and yield attributes of 35 wheat genotypes were 
influenced by water regime (Fig. 3; Table 4). Flag leaf length 
ranged from 18.60-26.16 cm in drought-stressed plants and from 
22.89-30.75 cm in control plants. The highest reduction in flag 
leaf length was 28.61 cm in ‘Seri’ and the lowest was 2.62 cm in 
‘BAW 1165’. The number of tillers plant-1 ranged from 1.23-2.10 
in the water deficit treatment and from 2.08-2.98 in the control. 
The highest reduction in number of tillers plant-1 due to water 
deficit was 58.22% in ‘Barkat’ and the least reduction was 26.78% 
in ‘BAW 1169’.

Spike length ranged from 8.38-11.83 cm in drought-stressed 
plants and from 9.48-13.18 cm in control plants. However, the 
highest reduction in spike length due to water deficit was 15.92% 
in ‘Pavon’ and the lowest was 3.82% in ‘BARI Gom 26’. The 
minimum and maximum number of grains spike-1 were 33.33 
and 46.47, respectively under water deficit but 41.73 and 54.83, 
respectively in the control. The greatest reduction in number of 
grains spike-1 due to water deficit was 24.97% in ‘BAW 1167’ and 
the least was 9.15% in ‘BARI Gom 26’. Water regime induced 
considerable variation in TGW which ranged from 34.47-44.80 
g and from 43.13-50.47 g in drought and control conditions, 
respectively. The greatest reduction in TGW due to water deficit 
was 21.13% in ‘BAW 1167’ and the least was 8.13% in ‘Saurav’. 
GY ranged from 1.68-4.98 t ha-1 and from 4.11-5.81 t ha-1 in the 
drought and control treatments, respectively. SY ranged from 
3.23-7.56 t ha-1 and from 6.23-9.67 t ha-1 in drought and control 
conditions, respectively (Fig. 3, Table 4).

Reduction of Grain and Straw Yield of Wheat under Water 
Deficit

Grain Yield

The relative GY of 35 wheat genotypes was significantly 
affected by water deficit (Fig. 4). The highest relative GY was 
obtained in ‘BARI Gom 26’ (0.91), followed by ‘BAW 1158’ (0.78), 
‘Sourav’ (0.75), ‘BAW 1169’ (0.73), ‘BAW 1170’ (0.70) and ‘BAW 
1165’ (0.67). The lowest relative GY was recorded in ‘Pavon’ (0.41), 
followed by ‘BAW 1167’ (0.44), ‘BAW 1166’ (0.45), ‘Seri’ (0.45), 
‘BAW 1173’ (0.47), ‘BAW 1171’ (0.47) and ‘BARI Gom 25’ (0.48). 
The reduction in percentage GY also displayed marked variation 
among the 35 wheat genotypes under water deficit. The lowest 
reduction in GY was recorded in ‘BARI Gom 26’ (9.07%) and the 
highest in ‘Pavon’ (59.17%), followed by ‘BAW 1167’ (56.20%), 
‘BAW 1166’ (55.47%), ‘Seri’ (55.33%), ‘BAW 1171’ (53.45%), 
‘BAW 1173’ (53.10%) and ‘BARI Gom 25’ (52.41%).

Straw Yield

The highest relative SY was obtained in ‘BARI Gom 26’ (0.83), 
followed by ‘BAW 1170’ (0.79), ‘BAW 1158’ (0.78) and ‘BAW 1169’ 
(0.72), and the lowest in ‘BAW 1167’ (0.50), followed by ‘BAW 
1172’ (0.52), ‘Pavon’ (0.52), ‘Seri’ (0.53), ‘BAW 1173’ (0.53) and 
‘BARI Gom 25’ (0.55) (Fig. 4). Water deficit significantly reduced 
SY, with the lowest reduction in ‘BARI Gom 26’ (16.62%) followed 
by ‘BAW 1170’ (21.19%), ‘BAW 1158’ (22.21%), ‘BAW 1169’ 
(28.09%) and ‘Sourav’ (28.55%), while the highest reduction in SY 
was observed in ‘BAW 1167’ (49.60%), followed by ‘BAW 1172’ 
(48.26%), ‘Pavon’ (48.08%), ‘BAW 1173’ (46.85%), ‘Seri’ (46.82%), 
‘BARI Gom 25’ (44.79%) and ‘BAW 1171’ (43.28%) (Fig. 4).
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Figure 3. Variation of flag leaf length (a), tillers plant-1 (b), spike length (c), spikelets spike-1 (d), grains spike-1 (e), 1000-grain weight (f), grain yield 
(g) and straw yield (h) of 35 wheat genotypes under well-watered (1) and water deficit (2) conditions.

Cluster Analysis of Wheat Genotypes Grown under Water 
Deficit on the Basis of Grain and Biomass Yield

Cluster analysis was used to arrange variables into different 
clusters based on their similarity. This was performed by measuring 
their levels of similarity and Euclidean distance (Everitt, 1993; 
Eisen et al., 1998). In the resulting dendrogram, cluster I includes 
two genotypes (7, 8), cluster II includes four genotypes (10, 17, 
18, 29), cluster III holds 15 genotypes (1, 2, 3, 4, 11, 15, 16, 22, 24, 
26, 28, 30, 33, 34, 35), while clusters IV and V include three (13, 
20, 31) and 11 (5, 6, 9, 12, 14, 19, 21, 23, 25, 27, 32) genotypes, 

respectively (Fig. 5). Cluster I includes genotypes with the fewest 
genetic differences among them and the highest reduction in 
yield. Cluster II also showed the lowest variability among them. 
Clusters III and V contain genotypes with large inter-genotype 
genetic diversity and medium yield reduction under water deficit. 
Cluster IV, however, has three genotypes that displayed the 
lowest reduction in GY and SY. Cluster IV also revealed greater 
genetic variability among all genotypes and lower reduction in 
yield attributes such as spike length, number of spikelets spike-1, 
number of grains spike-1, and TGW. Thus, the genotypes grouped 
in cluster IV exhibited the fewest differences among themselves.
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Figure 4. Relative value and percentage of reduction of grain (a) and straw (b) yield of 35 wheat genotypes under variable water regimes
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Figure 5. Performance grouping of tested wheat genotypes on the basis 
of grain and biomass yield grown under water deficit condition. Names 
of cultivars corresponding to numbers on the X-axis are listed in Table 
3.

Figure 6. Grain yield of 35 wheat genotypes grown under both well-wa-
tered and water deficit conditions. Names of cultivars corresponding to 
numbers on the X-axis are listed in Table 3.

* Correlation is significant at the 0.05 level; **, Correlation is significant at the 0.01 level.

Table 5. Correlation coefficient among various traits of tested wheat genotypes under well-watered and water deficit conditions

Yield and yield 
attributes

Yield 
(well-watered)

Yield
(water deficit)

 Plant height 
(cm)

Tillers 
plant-1 (no.)

Flag leaf 
length (cm)

Spike length 
(cm)

Spikelets 
spike-1 (no.)

Grains 
spike-1 (no.) TGW (g)

Yield (water deficit) 0.62** 1.00

Plant height -0.28 0.05 1.00

Tillers plant-1 0.18 0.60** 0.21 1.00

Flag leaf length 0.28 0.52** 0.18 0.28 1.00

Spike length 0.30 0.74**. 0.16 0.67** 0.59** 1.00

Spikelets spike-1 0.39* 0.80** 0.02 0.61** 0.39* 0.71** 1.00

Grains spike-1 0.33 0.72** 0.09 0.51** 0.26 0.64** 0.72** 1.00

TGW 0.07 0.59** 0.11 0.54** 0.21 0.65** 0.70** 0.68** 1.00

Range of Mean Grain Yield of Wheat Genotypes Grown 
in Control and Water Deficit Conditions

Considering the range of mean GY under both environmental 
conditions, genotypes 13, 20 and 31 produced statistically similar 
and maximum GY while genotypes 7 and 8 produced the lowest 
GY in both conditions (Fig. 6, Table 4). Therefore, ‘BARI Gom 26’, 
‘BAW 1158’ and ‘BAW 1169’ are recommended for optimal GY 
and production under both conditions.

Correlation between Yield and Yield Attributes

The correlation between various traits and water regime was 
positive and significant (Table 5). In particular, GY under water 
deficit was positively and significantly correlated with tillers 
plant-1, flag leaf length, spike length, spikelets spike-1, grains spike-1 
and TGW. Plant height showed no correlation with yield and other 
yield-contributing attributes under stress but showed a negative 
correlation with yield in the control. Number of tillers plant-1 was 
significantly and positively correlated with spike length, spikelets 
spike-1, grains spike-1 and TGW, but not with flag leaf length.

No correlation was found between flag leaf length and grains 
spike-1 and TGW. A positive and significant correlation was found 
among spike length, spikelets spike-1 and TGW.

Discussion
In our study, we found that water deficit significantly influenced 

the phenological development of wheat plants in 35 genotypes and 
decreased the number of days to heading, days to anthesis and 
days to maturity. Under water deficit, genotypes which matured 
only 1 to 3 days earlier than well-watered plants showed a lower 
reduction in yield and may be tolerant to water deficit. The time 
required for the phenological development of crops is one of the 
most important factors for yield adaptation in any environment 
(Motzo and Giunta, 2007). Parchin et al. (2011) and Wang et al. 
(2018) noted that drought might speed up flowering in wheat 
but prolonged the process in rice. In principle, the length of the 
growing period and the phenological development of crops can 
affect yield by reducing the length of this period (Attarbashi et 
al., 2002). Compared to well-watered wheat genotypes, drought 
reduced days to heading (Farooq et al., 2009). This confirmed an 
earlier study by Bayoumi et al. (2008), while the reduction in days 
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to maturity confirmed the same trend in Saleem et al. (2007), and 
the reduction in grain-filling period also confirmed the findings 
by Sial et al. (2009), all in wheat.

In this study, canopy temperature increased a maximum of 
30% in ‘BAW 1167’ and a minimum of 10% in ‘BARI Gom 26’ 
due to water deficit (Bazzaz et al., 2015). This is due to increased 
respiration and decreased transpiration as a result of stomatal 
closure (Tasmina et al., 2017). Siddique et al. (2000) also reported 
that leaf temperature in drought-stressed wheat plants was higher 
than in well-watered plants at both vegetative and anthesis 
stages, and that those plants with a lower leaf temperature also 
had a higher photosynthetic rate. The lower photosynthetic rate 
in plants exposed to higher temperature might have resulted 
from an increase in respiration (Jones, 1983; Bakhat et al., 2018). 
Plants maintain canopy temperature below air temperature in 
well-watered conditions but canopy temperature exceeds air 
temperature under water deficit (Buttar et al., 2005).

Many processes that determine yield in plants respond to 
water stress. Yield integrates many of these processes in a complex 
way. Water deficit leads to a decline in yield-contributing traits 
such as flag leaf length, tillers plant-1, spike length, grains spike-1 
and grain weight, regardless of the genotype, compared to well–
watered conditions. Leaf expansion depends mostly on cell 
expansion which is a turgor-dependent process (Taiz and Zeiger, 
1991; Khan et al., 2018) and any increase in water stress during 
the vegetative growth stage limits leaf development in winter 
wheat, ultimately reducing GY (Musick and Dusek, 1980; Abid 
et al., 2018). Sangtarash (2010) also reported that flag leaf length 
in wheat was significantly affected by moisture stress, due to 
increased respiration and decreased transpiration as a result of 
stomatal closure (Tasmina et al., 2017). Bayoumi et al. (2008) and 
Khakwani et al. (2012) found that tillers plant-1 were reduced by 
36.3% and 35%, respectively in response to drought. Akram (2011) 
also noted that number of tillers per unit area was significantly 
affected by different water stress treatments. They also reported 
that spike length, grains spike-1 and GY decreased significantly 
due to water deficit. Mirbahar et al. (2009) found that spike length 
in wheat decreased more in stress-susceptible genotypes and less 
in stress-tolerant ones. Iqbal et al. (1999) imposed water stress on 
durum wheat at various growth stages and found the maximum 
reduction in spike length under water stress imposed at the 
flowering stage. Khanzada et al. (2001), Qadir et al. (1999), and 
Ullah et al. (2018) reported that water stress throughout vegetative 
and reproductive development caused a significant reduction in 
number of grains spike-1 in wheat. Some researchers observed a 
maximum reduction in number of grains spike-1 in wheat due 
to deficit moisture when the stress was imposed at the flowering 
stage (Warrier and Bhardwaj, 1987; Iqbal et al., 1999).

Khannachopra et al. (1994) observed a reduction in number 
of grains spike-1 in wheat under water stress, but the extent 
of reduction depended on the genotype. Elhafid et al. (1998) 
demonstrated that drought stress resulted in reduced pollination 
and reduced number of grains spike-1. The decrease in GY under 
drought stress might be induced by a disturbance in nutrient 
uptake efficiency and photosynthate translocation (Iqbal et al., 
1999) resulting in shriveled grains by accelerating the maturity 
of the plant. This is possible due to a shortage of moisture, 
forcing the plant to form grains in less time (Blum, 2011; Basu 

et al., 2016). Mirbahar et al. (2009) observed a decrease in TGW 
in wheat during terminal drought followed by post-flowering 
drought. This result was also observed by Khan et al. (2005) and 
Qadir et al. (1999) who observed that TGW in wheat was reduced 
mainly due to an increase in water stress. Jaynes et al. (2003) also 
reported that cluster analysis sequestrated genotypes into clusters 
which exhibited high homogeneity within a cluster and high 
heterogeneity between clusters. Although cluster analysis grouped 
genotypes together with greater morphological similarity, the 
clusters did not necessarily include all genotypes from the same 
origin. Ahmad et al. (2008) and Ali et al. (2008) also reported 
the lack of an association between morpho-agronomic traits and 
origin.

The GY of any genotype is influenced by the contribution 
of yield attributes and phenological traits which are in turn 
influenced by soil moisture. Wheat genotypes that were evaluated 
in this study showed a significant difference in GY. A relatively 
low reduction in GY under water deficit was found in ‘BARI Gom 
26’, ‘Sourav’, ‘BAW 1157’, ‘BAW 1158’, ‘BAW 1159’, ‘BAW 1161’, 
‘BAW 1165’, ‘BAW 1169’ and ‘BAW 1170’, and might be due to a 
lower relative reduction in tillers m-2, spike length, grains spike-1 
and GY. Even though the genotypes have distinctly different 
inherent yielding ability, lower losses in GY under water deficit 
may be considered as drought tolerance. The average reduction 
in GY of wheat was 43.2% (Bayoumi et al., 2008) or 50% (Nouri-
Ganbalani, 2009) under drought stress. Khakwani et al. (2012) 
and Edmeades et al. (1994) estimated an average loss in GY of 
58-82% and 17-70%, respectively due to drought stress. Adequate 
water at or after anthesis not only allows the plant to increase the 
rate of photosynthesis but also gives it extra time to translocate 
carbohydrates to grains (Zhang and Oweis, 1998), improving 
grain size and thus GY. The GY of any variety is dependent on its 
yield components, including plant height, spike length and grains 
spike-1 (Sheron et al., 1986). Shamsuddin (1987) and Khakwani et 
al. (2012) reported that the number of spikes plant-1, number of 
grains spike-1, TGW, HI and biological yield were directly related 
to the GY of wheat.

Conclusion
Water deficit significantly affects the phenology, yield, 

yield attributes and canopy temperature of wheat genotypes. 
Physiological maturity was observed in ‘BARI Gom 25’, ‘BAW 
1167’ and ‘BAW 1173’ due to water deficit seven days early, and 
in ‘BAW 1169’, ‘BARI Gom 26’, ‘Sourav’, ‘BAW 1157’, ‘BAW 1158’, 
‘BAW 1159’, ‘BAW 1161’, ‘BAW 1165’ and ‘BAW 1170’ when water 
deficit was only 2-3 days early, compared to well-watered plants. 
All yield-contributing characteristics such as spike length, grains 
spike-1, and TGW decreased significantly due to water deficit 
stress. Regardless of the genotype, GY decreased significantly 
except for ‘BARI Gom 26’, which was affected less. Similarly, water 
deficit increased canopy temperature in all 35 genotypes compared 
to well-watered plants. Thus, based on physiological maturity, 
‘Sourav’, ‘BARI Gom 26’, ‘BAW 1157’, ‘BAW 1158’, ‘BAW 1159’, 
‘BAW 1161’, ‘BAW 1165’, ‘BAW 1169’ and ‘BAW 1170’ displayed 
a reduction in GY and an increase in canopy temperature. Thus, 
these genotypes can be considered to be tolerant to water deficit 
and recommended for growth in severe drought-prone areas or 
for use in breeding programs.
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