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Abstract—In this paper an approach of obtaining optimal 

planar antenna arrays consisting of omnidirectional sensors is 

proposed. The novelty of the proposed approach is to apply an 

exact expression of the Cramer-Rao lower bound for an arbitrary 

planar antenna array consisting of a number of omnidirectional 

elements which has been presented in the further chapters of the 

paper. The obtained formula describes the influence of antenna 

elements locations on the direction-of-arrival estimation 

accuracy. It has been shown that the direction-of-arrival 

accuracy via planar antenna arrays is determined as the sum of 

squares of differences between all omnidirectional elements 

coordinates along x- and y-axis. Thus knowing an expected area 

or sector of signal source it is very easy to calculate optimal 

arrangement of antenna elements in order to reduce direction-

finding errors, because obtained by that way positions gives the 

best match according to the maximum likelihood criterion. It is 

worth nothing that such antenna arrays are useful in the way that 

they allow estimating the coordinates of radio emission sources in 

the three-dimensional coordinate space, i.e. in azimuth and 

elevation. In order to confirm the proposed methodology optimal 

antenna arrays constructed after minimization of the new 

formulas are researched. It is found out that the new shapes of 

antenna arrays based on the analytical expressions have better 

direction-of-arrival accuracy in comparison with the circular 

ones.  

Index Terms—Antenna arrays, Phased arrays, 

Omnidirectional antennas, Direction-of-arrival estimation, 

Estimation error. 

I. INTRODUCTION 

irection-of-arrival estimation (DOA) followed by spatial 

separation of users signal sources by antenna arrays (AA)  
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takes a great interest in such tasks as radars, sonars and 

wireless communications in order to increase the capacity of 

the network with a dynamically changing radiation pattern by 

means of the beamforming algorithms. Today a variety of 

direction-finding methods with superresolution capable of 

resolving signals in the resolution interval according to the 

Rayleigh criterion have been distributed, such as projections 

onto subspaces, maximum likelihood, etc., and also digital 

beamforming algorithms that are the optimal spatial filters of 

only linear antenna arrays with ideal non-directional emitters. 

The antenna arrays configurations which were researched and 

used for DOA-estimation on the azimuth plane mainly 

concerned only uniform linear geometries [1-6]. Moreover, it 

is well known that antenna array geometry imposes some 

limitations on the direction-finding measurements, like only 

azimuth estimation capability [7]. The circular and concentric 

antenna array is used to overcome the problem of this kind in 

the tasks requiring both azimuth and elevation direction-

finding [8-10]. Thus the most popular configurations of the 

antenna arrays are uniform linear, rectangular, as well as 

uniform circular ones which had been investigated mainly in 

the azimuth plane assuming that the antennas are isotropic [1-

10]. Therefore, the problem of comparative analysis, research 

and development of methods for spatial filtering of wideband 

signals in the azimuth and elevation planes using planar 

systems (rectangular, circular, concentric, etc.), as well as 

spherical and other variants of conformal antenna arrays 

represents a serious research interest. Thus the paper is 

devoted to obtaining planar antenna array with higher 

accuracy by using the direction-of-arrival methods like 

MUSIC or Capon. That can be develop[ed further for the 

digital beamforming. Moreover, the accuracy is determined 

quantitatively, either as the root mean square error rate of the 

bearing estimates in azimuth or elevation from their true 

values, or as the variance. 

The Cramer-Rao lower bound is a natural and common 

criterion for choosing geometry of antenna arrays, which does 

not depend on the choice of one or another algorithm for 

implementing the evaluation of the spatial angular coordinates 

of signals on the azimuth or elevation planes. In papers [11-

12] the problem of obtaining the Cramer-Rao lower bound
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(CRLB) for the azimuth and elevation DOA-estimation using 

antenna arrays with omnidirectional elements is considered. 

They make the use of the polar coordinates of the array 

sensors and do not give an exact expression taking into 

account the position of the source together with the locations 

in space of each antenna element. The approach does not 

allow accurately assessing the antenna elements positions 

impact on DOA-estimation performances and build an array 

with the best performance within confined sectors.  

The following is an improved and expanded matrix-vector 

expression of the Cramer-Rao lower bound taking into account 

the aforementioned shortcomings. In particular, the new 

generic expression of CRLB takes into account only the 

coordinates in the Cartesian system, which is natural to realize 

and also allows evaluating the mutual influence of the 

positions of elements on the accuracy of direction-finding of 

any array geometry. Additionally, the obtained equation will 

be very helpful to analyze the important factors which 

determine the DOA-estimation accuracy by using the antenna 

arrays of these kinds. Impact on these factors will help us to 

generate such configuration that will have better 

characteristics for accuracy and resolution of DOA methods.  

Several different performance and design criteria have been 

introduced to be used in obtaining optimal arrays [13-17], we 

can say the array with the highest bound is optimum in the 

sense that array is constructed using prespecified performance 

levels, in our case Cramer–Rao Bounds on error variance and 

minimum and maximum coordinates in the XY plane. The 

calculations can be executed manually by means of the 

presented in the paper simple relationships. Finally, we 

provide simple formulas for comparing the performance of 

different arrays to each other including optimal ones. The 

proposed array design does not take into account array 

ambiguity as in [18].  

The paper is organized as follows. The Chapter II provides 

an overview of related works. In the chapter III the well 

known representations of narrowband signals and antenna 

arrays are described. In the chapter IV CRLB for DOA-

estimation on azimuth-elevation is discussed [10]. Chapter V 

gives the previously obtained results in [8] about symmetric 

antenna arrays and their CRLB values. Part VI discusses non-

symmetric antenna arrays that have not previously been 

published, but it is a continuation of Part V and also a special 

case. Parts VII-VIII present the derivations of the general 

expression of CRLB for arbitrary two- and three-element 

planar arrays describing how the DOA accuracy is related with 

the x and y coordinates of the elements. Part IX gives the 

general expression of CRLB for an arbitrary planar array out 

of any number of elements. Examples of obtaining new arrays 

reducing DOA errors are given. 

II. RELATED WORK 

There are several criteria for statistical evaluation of 

parameter estimates: the Ziv-Zakai bound, the CRLB etc. The 

Ziv-Zakai bound is a detection probability, while CRLB 

belongs to so-called inequality bounds [19, 20]. Historically, 

the latter is most widely used for DOA-estimation. 

Cramer–Rao bound on direction of arrival estimation have 

been thoroughly analyzed in the literature. As it was 

mentioned above there are several criteria which have been 

introduced in obtaining optimal AA. Among them it is 

possible to underline the paper in which the dispersion of a 

antennas distribution [21] is used for the optimization of the 

2D geometry of sensor arrays for 2D direction-of-arrival 

(DOA) estimation. In other words the variance of the element 

positions is used for that. Another work is devoted to optimal 

antenna array geometry obtaining ant that can be fulfilled if 

using the complex number when denoting the antennas 

coordinates [22] in space. In the paper [22] the placement of 

the mth antenna element is stated by a complex value. A lot of 

references are devoted to the antenna optimization by using 

the approximate expression of the Cramer–Rao bound like in 

[23; 24]. Based on the simplified CRLB equation the metric 

function is defined and minimized. A few papers consider only 

certain array shapes [13] like 3D particular geometry antennas 

made from uniform linear array (ULA). As it can be seen from 

the above, these approaches complicate the implementation of 

the search for the solution of cost functions, because it is 

necessary to use genetic algorithms. For this reason in the 

proposed method the AA will be considered an optimal with 

minimum error dispersion of the CRLB direction finding, 

under the condition that antenna element (AE) coordinates are 

restricted by the given bounds. It follows that another purpose 

of the work is to obtain a convenient target function in the 

form of the CRLB expression, dependent upon the AE 

coordinates along the x, y and z axes.  

The studies described in the references [11-12] consider the 

problem of obtaining the CRLB expression to estimate the 

angular coordinates of signal sources using AAs with omni-

directional sources. The distinctive feature of these studies is 

the use of AEs polar coordinates, which is unacceptable for 

the purposes at hand. The originality of the proposed method 

consists in minimizing the new generalized CRB expression, 

taking into account only the coordinates of the AEs in the 

Cartesian system, as well as allowing estimating mutual 

influence of AEs positions on the accuracy of radio direction 

finding within the arbitrary antenna configuration. The 

advantage of the proposed method reduces to the clarity and 

simplicity of the implementation, because optimization can be 

performed either manually or with the help of a well-known 

the steepest descents algorithm. Among other things, it is 

possible to introduce location restrictions on all elements, or 

on certain elements, for example, with the purpose of 

mounting the AA on any vehicle (a car, plane or train).  

III. PROBLEM FORMULATION 

Fig. 1 shows an antenna array of N elements arbitrarily 

distributed in the XY plane. Consider a narrow-band signal s(t) 

at a carrier frequency ω0 with spatial coordinates θ (azimuth) 
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Fig. 1. Arbitrary planar antenna array. 

and φ (elevation) with respect to the x and z axes [4]: 

 v(t))+(ωu(t)=(t)s 0cos~  

where u(t) and v(t) are slowly changing functions of time. As 

the signal is narrowband, then the delay τi causes the phase 

shift 0ωτ=ξ ii  , i.e. 

 0
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jτ
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c

ω
=ξ iiii cosssinsc0  

 

where λ is the wavelength. And now, if the signals on the 

antenna elements are described as x1, x2, …, xN, then in the 

vector notation they will look like: 

        tseeetλ)sθ(ω=t
T
N

jTjTj kr
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where    φinφθinφosθ=k,k,k
λ

π
= zyx cos,ssin,sc

2
k  is the 

wave number, T

nnn

T

n )(x= z ,y ,r  is the radius-vector pointed 

to the n-th antenna element. 

As already shown [25], the accuracy of direction-of-arrival 

estimation is influenced by the inter-element spacing, as well 

as the shape of the antenna array. A natural and common 

criterion for choosing the antenna array geometry is the 

Cramer-Rao lower bound. The antenna elements in all the 

arrays are omnidirectional sensors. The geometry and the 

received voltage expressions of each antenna array are 

introduced in this Section, which are prepared for the CRLB 

calculation. 

The geometry of square, hexagonal, octagonal and circular 

symmetric planar antenna arrays are shown in Fig. 2. The 

received voltage of square array is 

     ]}11[exp{),( yyxx

sq

mn kdmkdnjka   

where xNn 1 , yNm 1 , Nx, and Ny are the antenna 

element numbers along X and Y axis, dx and dy is the inter-

element distance along the X and Y axis.  

The steering vector value of circular antenna array: 
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where r  is the antenna array radius, Nn 1 ,  /2k . 

The views of hexagonal and octagonal arrays are illustrated 

in Fig. 2 b-c and their voltage values, which can be obtained 

from (1), are written as:  
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
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m  , 

1,,1,0  mNn x . All the equations of received voltages 

are obtained after solving and simplifying T

nrk  in (4) taking 

into account position of each antenna element. 

IV. CRAMER-RAO LOWER BOUND FOR DOA 

The Cramer-Rao lower bound, related to the concept of 

Fisher Information, represents the theoretical limit of the 

average precision with which DOA can be estimated for a 

particular antenna array. Suppose η̂  is unbiased estimation of 

the parameter vector 0η , i.e.   0
ˆ ηη E  based on samples 

NX , then the derivation of the Cramer-Rao lower bound to an 

arbitrary number of signals and their parameters (first of all, 

azimuth and angle direction finding) we use [15]. We define 

the matrices of the derivatives Dθ and Dφ as follow: 
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Thus, the covariance matrix of error estimates for 2D radio 

direction-finding can be written [16]: 
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Fig. 2. Geometries of a) circular, b) octagonal, c) hexagonal, d) square 

arrays 
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As we can see from the equation (10), the matrices iΛ  have 

to be specified by means of determining the partial derivatives 

of the steering vectors of an arbitrary antenna array (4) from θ 

and φ: 
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azimuth for k-th signal on n-th antenna element [8]: 
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Next, it is necessary to determine the expressions for the 

derivatives of exponential part on elevation spatial coordinate 

for the k-th signal on the n-th antenna element: 
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Then the Cramer-Rao lower bound for azimuth or/and 

elevation estimation can be written [21]: 
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As we can see the equation (13) is rather complicated and 

here we consider only one particular case. Then after 

simplifying (4), CRLB for the case of only one signal source 

can be expressed as follows: 
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The equation (14) can be re-written more compactly as 

follows: 
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Assuming that SP , i.e. the signal power in the one 

signal case, we can express the term inside square brackets in 

the equation (15) in the following matrix-vector form as [8]: 
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Further we accept the following designations 1H
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a . After that the term AR inside the equation (16) can 

be written as 
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As we can see the term AR depends on the antenna array 

configuration only. So that the Cramer-Rao lower bounds is 

inversely proportional to the term AR. In order to make 

variance of DOA-estimation on the azimuth or/and elevation 

planes as lower as possible, AR should be as large as possible. 

As we can see from the AR equation (17), increasing the 

difference between the radius-vectors pointed to the antenna 

elements T

nnn

T

n )(x= z ,y ,r  will help to make the AR term as 

maximum as possible. 

V. EXACT EQUATION FOR CRAMER-RAO LOWER BOUND FOR 

DOA VIA SYMMETRIC ARRAYS 

Here we can perform comparative statistical estimation of 

the planar antenna array based on the Cramer-Rao bound (10). 

The circular, octagonal, hexagonal and square antenna arrays 
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will be researched further as follows in the Section. All the 

antenna arrays geometries consist of 24 elements, inter-

element spacing is 0.5λ (half-wavelength). The number of 

snapshots of averaging the spatial correlation matrix is 100, 

the number of trial iterations is 500. We will be using the 

equation (1) to set up the signals matrix S and noise power σ2 

which define signal-to-noise ratio (SNR) and then SNR is 5 dB. 

Here we assume that the signals are uncorrelated between 

themselves and the noise. The root mean square error rate of 

direction-of-arrival estimation on azimuth and elevation will 

be performed. Consider the case when there is a signal source, 

azimuth spatial coordinate will be changed from 0° up to 180°, 

elevation angle θ = 45°. In another case the elevation 

coordinate will vary in the range 1° to 89° at a fixed azimuth 

angle value of 1°. 

However, first, it is necessary to determine the exact AR 

expressions for the types of antenna arrays under consideration 

by using the equations (16, 17). At present there are a few 

ways and approaches to estimate antenna arrays for direction-

of-arrival estimation by means of the Cramer-Rao lower 

bound exact equation in known references, in particular 

[18,21]. However the CRLB described in the references is 

calculated only for one type of antenna array configuration 

(circular, as example) or for a limited number of elements 

(two, as example). Further, several symmetrical planar antenna 

arrays are considered, with the help of which it is possible to 

determine the coordinates along the azimuth and the elevation 

angles. 

So, for a rectangular antenna array: 
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here and further AR  and AR  are the AR functions in the 

azimuth and elevation angle, respectively. Since only planar 

antenna arrays are considered in this paper, zn coordinates are 

assumed to be zero. 

For the hexagonal antenna array: 
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For the octagonal antenna array: 
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For the circular antenna array:  
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So that, it is possible to make comparisons about the AR 

parameter for the given arrays [8]: 

 circocthexsq ARARARAR  ,,,,   

and consequently 
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a) 

 
b) 

 
Fig. 3. Cramer-Rao bound a) θ=0°-180°, φ=45°, b) θ=1°, φ=1°-89° for one 

signal case. 

 

From Figure 3 it is seen that the best antenna array is 

circular for DOA-estimation. The antenna geometry with the 

worst accuracy is square for 2D DOA estimation. However the 

variance is not evident, only 0.01°. Moreover we see from the 

equation (28) that according to the CRLB analytical 

expression of the particular array configurations the obtained 

results are rather small for one signal case. Moreover, the error 

estimation distribution is uniform because the arrays are 

symmetrical. 
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All the arrays do not dependent on one signal azimuth 

location, because the shape of the antenna element 

arrangements is symmetric. In the case of one signal RMSE of 

estimates of MUSIC via the circular array is a bit less than the 

others have. That matches CRB results (27-28). The accuracy 

of DOA-estimation in azimuth-elevation scenario is highly 

determined by the source elevation angle. The best accuracy 

can be reached if the signal source is close to φ = 45°. 

VI. EXACT EQUATION FOR CRAMER-RAO LOWER BOUND FOR 

DOA VIA NON-SYMMETRIC ARRAYS  
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 a) b) 

Fig. 4. Schematic of a) Arc- and b) L-shaped arrays.  

 

It is known that L-shaped arrays (fig. 4b), as well as arc-

shaped ones (Fig. 4a) [18, 26] may give better performances of 

DOA-estimation, than circular arrays (Fig. 2а) for one signal 

source case. Therefore the problem of choosing the best 

antenna array geometry is very important for multiple signal 

sources as well as a radio direction finding method. 

The considered antenna arrays depicted in Fig. 4 consist of 

24 omnidirectional elements, the interelement spacing is half-

wavelength, angle between two sides of the L-shaped array is 

equal to φ0 = 45°, the radius of the arc-shaped array in 

comparison with the standard circular one is doubled while 

using the expression (6). We will use the following steering 

vector equation for the L-shaped antenna array [9]: 
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Consider a single source scenario, as in the example above. 

From Fig. 5 it is seen that the best antenna array for DOA-

estimation in the azimuth and elevation is the arc-shaped 

geometry. 

Let us obtain the exact equations of the AR term for 

calculating CRLB via the considered non-symmetric antenna 

arrays and compare them with the expression for the circular 

AR (25-26). Then, after simplifying the expression (18) for the 

arc-shaped array the AR term can be written as: 
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The equation (18) for the L-shaped array becomes: 
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As it can be seen from the expressions (30-33), the variable 

AR for the arc-shaped array is bigger than others. Wherein: 


circarc ARAR  ,,   


circarc CRBCRB  ,,   

 
a) 

 
b) 

Fig. 5. Cramer-Rao bound a) θ=0°-180°, φ=45°, b) θ=1°, φ=1°-89° for one 

signal case. 

 

Then it turns out that the DOA-estimation accuracy via the 

arc-shaped arrays is better than the standard circular array. 

However, there is some hopping in the azimuth scanning 

plane. Although for the entire scanning range there are less the 

errors than via the circular one. 

In other words it is found out that the super-resolution 

methods like MUSIC should be used via arc-shaped antenna 
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arrays in order to obtain more accurate estimates of two-

dimensional angular coordinates of a signal source including 

the worst case source locations, i.e. away from the middle of 

the elevation angle. This case is produced because this kind of 

arrays posses dimensions two times the circular ones with the 

same number of elements. 

VII. GENERAL EXPRESSION OF CRLB FOR ARRAYS WITH 

OMNIDIRECTIONAL ELEMENTS (SINGLE SIGNAL-TWO 

ELEMENTS) 

As it was already shown from the expressions (15-18), 

accuracy of direction finding in azimuth and elevation is 

mainly determined by the antenna array geometry, namely the 

coefficient AR (18). Consider it more in detail. Let us assume 

that there is an array consisting of two elements and single 

signal source. Then the following expression is derived in 

Appendix A: 
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Accept that iziiyiixi dzkzdykydxkx  ,, , and also that 

the considered antennas are planar, i.e. 0iz . Then it turns 

out that: 
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We open parentheses in the formula (37) and get: 
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It can be seen from the last expression (38) that the Cramer-

Rao lower bound of the planar arrays mainly determined by 

the sum of squares of the difference of coordinates along the x 

and y axes. In other words, increasing the difference between 

the elements quadratically reduces errors of the DOA-

estimations on the azimuth or elevation planes. 

Consider a single signal source scenario, whose coordinate 

in azimuth is θ = 70°. Let us take the standard circular two-

element antenna array (Fig. 6a), as well as the array 

constructed by maximizing the last expression (38). The radius 

is r = 0.0442 m. After the maximization (38), the coordinates 

of the elements are (x1 = 0.0415; y1 = -0.0151), (x2 = -0.0415; 

y2 = 0.0151), as shown in Fig. 6b. 
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Fig. 6. Schematic of a) standard circular, b) optimized arrays 
 

 
 

Fig. 7. CRLB of the antenna arrays: the green curve relates to the usual array 

from Fig. 5a, the red curve relates to the optimized array from Fig. 5b. 

 

The results of the accuracy calculation in azimuth of the two 

antenna arrays are shown in Fig. 7. After viewing the obtained 

curves we can say that there is no gain after rotating the array 

by 20° clockwise.  

In addition, in this case the term AR of the usual array 

depicted in Fig. 6a is equal to: 
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but for the optimized one from Fig. 7b on the azimuth 70°: 
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Obviously, there is no difference between these antenna 

arrays. 

VIII. GENERAL EXPRESSION OF CRLB FOR ARRAYS WITH 

OMNIDIRECTIONAL ELEMENTS (SINGLE SIGNAL-THREE 

ELEMENTS) 

Assume that there is a planar antenna array consisting of 

three elements in the XY plane and single signal source having 

arbitrary coordinates θ, φ. Based on (18) we can write down 

the following formula (the proof is in Appendix B): 
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Then it is easy to simplify the last expression: 
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(42) 

From the formula (42) it is seen that the accuracy of 

direction-of-arrival estimation by planar antenna arrays of 

three non-directional elements is determined by the sum of the 

squares of the differences of their coordinates as well. 

Consider the same scenario like almost above, i.e. the single 

signal source has the azimuth coordinate θ = 50° and elevation 

φ = 45°. Also we will use the common three-element circular 

antenna array depicted in Fig. 8a, and additionally an array 

which has been constructed by maximizing (42). The radius is 

r = 0.0442m. After maximization (42), the coordinates of the 

elements are (x1 = -0.0328; y1 = 0.0296), (x2 = -0.0349; y2 = 

0.0272), (x3 = 0.0339; y3 = -0.0284), as shown in Fig. 8b.  
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Fig. 8. Schematic of a) standard circular, b) optimized arrays 

 

In addition, in this case the term AR of the standard circular 

array is equal to: 
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Fig. 9. CRLB of the antenna arrays: the green curve relates to the usual 

circular array from Fig. 8a, the red curve relates to the optimized array from 
Fig. 8b. 

 

but consequently for the optimized on the azimuth 70° it is: 
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From the graphs in Fig. 9 and the values obtained in (43-44) 

it is seen that a new form of antenna array provides a reduction 

of errors in the range θ = 15° - 95°. 

 

IX. GENERAL EXPRESSION OF CRLB FOR ARRAYS WITH 

OMNIDIRECTIONAL ELEMENTS (SINGLE SIGNAL-SEVERAL 

ELEMENTS) 

We are now going to derive an expression for a single 

source and an arbitrary number of non-directional antenna 

elements of planar antenna arrays (Appendix C) based on (18). 
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After simplifying the expression (45) we obtain: 
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Also let us consider the same scenario like above, i.e. the 

single signal source has the azimuth coordinate θ = 120°. Also 

we will use the usual six-element circular antenna array 

depicted in Fig. 10a, and additionally an array which has been 

constructed by maximizing the last expression. In this case the 

radius is r = 2*0.0442 m. After maximization, the coordinates 

of the elements are (x1 =0.0632; y1 =0.0592), (x2 =0.0811; y2 = 

0.0329), (x3 =-0.0735; y3 =-0.0466), (x4 = -0.0632; y4 =-

0.0592), (x5 = -0.0811; y5 =-0.0329), (x6 =0.0735; y6 = 0.0466) 

as shown in Fig. 10b. 
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 a) b) 

Fig. 10. Schematic of a) standard circular, b) optimized arrays 

 
 

 
 

 

Fig. 11. CRLB of the antenna arrays: the green curve relates to the usual array 

from Fig. 10a, the red curve relates to the optimized array from Fig. 10b. 

 

In addition, in this case the term AR of the common circular 

array (Fig. 10a) is equal to: 
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For the optimized array (Fig. 10b) on the azimuth 120° it is: 
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This case with azimuth source location of θ = 120° is taken 

in order to show the diversity of the applied method. From the 

curves depicted in Fig. 11 it is seen that the obtained antenna 

array (Fig. 10b) after optimizing the expression (46) provides 

a reduction in the direction-finding errors both around azimuth 

120° and wide around it. This property can be used for 

implementation of the digital adaptive antennas with sector 

switching. 

Moreover, after viewing the shape of the modified forms of 

antenna arrays from Fig. 6, 8, 10 we can make some 

generalizations regarding the construction of the optimal shape 

of a planar antenna array. Namely, to scan a signal inside a 

specific area it is necessary to build two parallel antenna 

arrays, turned around by the appropriate angle. This angle will 

approximately correspond to the area of the intended scan. 

This technique and recommendations for the construction of 

planar antenna arrays can be applied to the cases in paragraphs 

IV-V.  

Remind that the single signal source has the azimuth 

coordinate θ = 70° and 24-element circular antenna array 

depicted in Fig. 12a is used, and additionally an array which 

has been constructed by maximizing (46). The radius is r = 

0.2392m. The constructed array is depicted in Fig. 12b. 
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Fig. 12. Schematic of a) standard circular, b) optimized arrays 

 

 

 
 

 

Fig. 13. CRLB of the antenna arrays: the green curve relates to the usual array 

from Fig. 12a, the red curve relates to the optimized array from Fig. 12b. 
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From expressions (49-50), as well as graphs in Fig. 13 it is 

seen that thanks to the new shape of the antenna array the 

errors within the target sector are reduced. 

X. CONCLUSION 

The adaptation of the Cramer-Rao lower bound expression 

for the 3D direction-finding tasks of planar antenna arrays 

with omnidirectional emitters is carried out. The influence of 

the azimuth and elevation coordinates of radio emission 

sources on the accuracy of radio direction finding is estimated. 

Also the exact expressions for estimation of the accuracy of 

direction-of-arrival using the Cramer-Rao lower bound via 

planar antenna arrays of the symmetric shape has obtained. 

Moreover the equations are legal for the particular case of one 

receiving signal. It is proved by math expressions that the 

circular antenna arrays are the best for DOA estimation with 

one receive source among the arrays of the symmetrical shape. 

If an arbitrary geometry is considered like L- or arc- shaped 

arrays then the non-symmetrical kind of antennas can be used 

to improve the direction-of-arrival estimation accuracy. 

In addition, the exact general expressions of the Cramer-

Rao lower bound for planar antenna arrays were obtained. The 

formulas describe the dependence of the direction finding 

accuracy in azimuth or elevation angle from the positions of 

antenna elements. It is found out that the pattern is quadratic. 

The obtained formulas allow the antenna elements to be 

positioned so that the direction-of-arrival errors will be 

significantly reduced in the target scanning sector, exceeding 

the circular antenna arrays by this measurement. 

The results for the optimized arrays have better performance 

only on specified ranges of azimuth values. This is due to the 

fact that minimization of the CRLB for a certain azimuth value 

is fulfilled. These results can be used to build a system with 

switched elements to scan a specific area of space with 

reduced direction finding error. 

APPENDIX 

A. Proof of (36) 
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  (A.1) 

Then the equation (A.1) can be simplified:  
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B. Proof of (41) 
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We would like to cancel the parentheses in (B.1) and obtain: 

2

3323133

32313332

31

2

33231

23

2

22123

22212322

2123

2

221

1312

2

113

12111312

111312

2

13

3/23/13/13/2

3/13/13/23/1

3/13/23/13/1

3/13/23/13/1

3/23/13/13/2

3/13/13/23/1

3/13/13/23/1

3/13/23/13/1

3/23/13/13/2

dydydydydydydx

dydxdydxdxdydxdy

dxdydxdxdxdxdx

dydydydydydydx

dydxdydxdxdydxdy

dxdydxdxdxdxdx

dydydydydydydx

dydxdydxdxdydxdy

dxdydxdxdxdxdxAR



















 (B.2) 

326 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 4, DECEMBER 2019



We group the terms of the last expression (B.2): 
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Then it is easy to simplify the expression (B.3): 
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C. Proof of (45) 
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