


Abstract—Virtualization is a technology that is frequently

employed in computers and servers to provide isolation for

execution environments, and to support the execution of multiple

Operating Systems (OS) on the same hardware platform. In the

embedded systems´ world, virtualization has been a rising trend,

essentially because it offers an isolation mechanism that provides

hardware manufacturer´ independence and it avoids

obsolescence issues. The isolation mechanism supports safety and

security measures, and assists in the certification of safety-critical

systems. Virtualization offers improved performances, better

transparency, portability and interoperability by integrating

hardware and software resources, and also networking services

into one computing entity. It makes the integration process of

Mixed Criticality Systems (MCS) easier. For industries, Field-

Programmable Gate Arrays (FPGAs) hardware solutions provide

the needed level of flexibility and performance. In this paper, a

Self-test application is integrated in the hardware and also in the

software level. The importance of self-test applications for

Instrumentation and Control (I&C) systems will be discussed in

the context of virtualization. For this implementation a type 1

hypervisor called Xtratum is used. An analysis of inter-partition

communication channels´ performance will be provided

including the implications multicore approaches will have on

communication. The novelty of this work is to study the isolation

impact multicore approaches can have on inter-partitions

communications in Xtratum. Another novel aspect is the

implementation of a self-test application in the hypervisor and

the board as well.

Index Terms— Virtualization, MCS, Xtratum, Self-test, Cortex

A9, FPGA, multi-core.

I. INTRODUCTION

With the advance of digital technology, a remarkable

increased worldwide attention towards FPGAs is seen,

including safety and operational I&C applications in Nuclear

Manuscript June 7, 2019; revised October 23, 2019. Date of publication

November 18, 2019. Date of current version November 18, 2019. Some of the
addressed cybersecurity related topics are being elaborated as part of

Framatome GmbH’s participation in the “SMARTEST” R&D (2015-2018)
with German University partners, partially funded by German Ministry

BMWi.

A. Tellabi is with the Department of Data Communications Systems at
University of Siegen and with Framatome GmbH, Germany. C. Ruland is with

the Department of Data Communications Systems at University of Siegen,

Germany. K. Waedt is with the Department of Cybersecurity for I&C Systems
at Framatome GmbH, Germany. A. Sabri is with the Department of Hardware

Co-design at the University of Erlangen-Nürnberg, Germany (e-mails:

asmaa.tellabi@student.uni-siegen.de, christoph.ruland@uni-siegen.de, karl.wa
edt@framatome.com, abdelbast.sabri@fau.de).

Digital Object Identifier (DOI): 10.24138/jcomss.v15i4.810

Power Plants (NPPs) [1]. FPGAs are capable of increasing the

reliability and also decreasing the complexity for some gate

circuit logic-based hardware functionalities [1].

In [2], a new secure system´s architecture was presented

based on Xtratum, which is used to implement the test

architecture in this paper, it also presented the current use

cases of virtualization technologies in the industry and the

possible future implementations. Presently, MCS

implementations are gaining popularity both in research and in

the industrial design domains. As the computational demands

are increasing, this offers multiple benefits by making the

implementation of applications with different criticality levels

into one system possible [2]. Nowadays, the embedded

market is gradually willing to exploit the financial benefits

that virtualization technology offers. Embedded systems are

not similar to traditional computers. They have a fixed purpose

and are created precisely to achieve a particular task.

Currently, many of the developments on virtualization are

dedicated to desktop systems. Consequently, using these

results on embedded systems is not a simple task. As

virtualization technologies are actively expanding, with

various competing technologies gradually becoming mature,

the perfect solution is not defined yet. Security levels that are

essential to embedded devices differ based on the device´s

function [3]. MCS rely on temporal and spatial partitioning

[3].

Currently, various digital platforms integrate embedded

diagnostics applications that are executed repeatedly during

the platform´s operating phases. Self-diagnostics applications

are capable of testing multiple modules that are available in

the platform [4]. In [5], the different authentication and access

controls mechanisms were presented, including security

concerns surrounding industrial systems. As stated in [5], for

industrial computers, Availability is the primary security

concern and self-diagnostics applications can be used to verify

the internal status. The idea of developing self-diagnostics

applications are based on the findings in [5]. This type of

application is also able of guaranteeing the platform´s safety

integrity. In this paper, both applications developed on the

hardware and software level focus on verifying the availability

of components. The main focus will be on techniques to

ensure availability characteristics. In [9], the architecture in

[2] was further detailed with communication channels and

communication path between partitions. A comparison

between single core approaches and multicore was presented

Self Diagnostics and Isolation Mechanisms for

Mixed Criticality Systems

Asmaa Tellabi, Christoph Ruland, Karl Waedt, and Sabri Abdelbast

JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 4, DECEMBER 2019 329

1845-6421/12/810 © 2019 CCIS

mailto:asmaa.tellabi@student.uni-siegen.de
mailto:christoph.ruland@uni-siegen.de
mailto:edt@framatome.com
FESB
Typewritten Text
 Original scientific paper

in that paper but only on the hardware level. This paper

implemented the test architecture based on the information

provided in that paper [9].

The remainder of this paper is structured as follows. Section

II explains the different techniques used to implement MCS.

Section III emphasizes the utility and implementation of Self-

diagnostics applications on the hardware level. In section IV,

experimental results on the inter-partition communication

channels, using single-core and multi-core approaches,

including the self-test application on the software layer are

analyzed. Section V concludes the paper with an outlook of

the future work.

II. MCS TECHNIQUES

A. Separation Kernel

 Separation Kernel was first introduced in 1981 by John
Rushby [6], in order to create a secure environment by
providing temporal and spatial isolation for applications. An
additional intent was to guarantee a single access point to the
system by verifying that there are no other unauthorized
channels for information flows between partitions that were
implemented other than those created. The separation kernel is
characterized by its small size; this will allow formal
verification of its accuracy. The approach used for a separation
kernel is based on Multiple Independent Levels of
Security/Safety (MILS) [7]. MILS is a high-assurance security
architecture based on isolation [6] and a controlled information
flow. Fig.1 shows an architecture based on the MILS concept.
MILS offers ways to have multiple strongly isolated partitions
with different security/safety levels on the same physical entity.
A separation kernel is considered as a method that provides
security at the OS kernel level [6] by simulating a distributed
environment. It is seen as a solution which creates and verifies
large and complex kernels that are intended to offer multilevel
secure operations on systems. Based on separation kernels, the
system´s security is realized partially by physically isolating
different modules and managing trusted functions which are
executed within some modules. Separation kernel is expected
to provide hosted applications with high-assurance partitioning
and controlled information flows that are tamperproof and also
non by-passable.

Fig. 1. MILS concept.

 Hardware Virtualization is an approach that can solve the
issue of resources´ sharing. In such configurations, the
hypervisor is considered as a secure and trusted element that
manages all of the system´s resources [8]. The hypervisor is

placed at the highest privilege level in the system and controls
the access to system´s resources by virtual machines (VMs). A
hypervisor can be seen as a container that comprises each VM
in a separated environment and does not permit the propagation
of errors, by this decreasing the surface of attack. Conversely,
this signifies that the system´s security is as robust as the
hypervisor itself. For this reason it is recommended to reduce
the hypervisor´s size to simplify the process of verification and
validation. Hypervisors can be divided into two categories [2]:

1) Type I Hypervisors
 Native or bare-metal hypervisors, they are executed
directly on top of the hardware to control the hardware and to
manage the guest OS. They are executed in a privileged
processor mode, e.g. ring 0 or supervisor mode [8]. Therefore,
supplementary overhead and security matters, which could be
caused by an underlying OS, are not present. Instead, the
Hypervisor manages the entire hardware, e.g., scheduling and
resource´s allocation, so it might get complex. Since it runs
directly on the machine´s hardware, it is seen as an OS or a
kernel that integrates features to support VMs [2]. Fig2. shows
a Type 1 hypervisor´s architecture. This means that a Type-1
hypervisor can be much larger than a Type-2 hypervisor,
because of the additional code that is needed to integrate these
features.

Fig. 2. Type 1 or Bare-metal Hypervisor Architecture.

2) Type II Hypervisor
 It is executed on top of an OS, so it can use all services
that are available in the OS. One obvious drawback is the
considerable overhead caused by the underlying OS and any
present issue in that OS which can directly affect the VM [9].
A Type-2 hypervisor should be simpler than a Type-1
hypervisor because the memory management, scheduling task
, resource allocation, and hardware drivers of the used host OS
are already implemented in it. Figure 3 shows the differences
between these hypervisors´ architectures. A Type-2 hypervisor
offers only virtualization support services. This type
virtualizes the real machine even if the hypervisor is being
executed as an application in the host OS [7]. The most
efficient type of hypervisors to deploy depends on the use
cases. Bare metal hypervisors offer higher performance,
availability, and security than Type-2 hypervisors, because
they do not rely on an OS layer [6]. One disadvantage, which
is a Type-2 advantage, is that Type-1 hypervisor hardware
support is restricted to exactly what the hypervisor was created
for and to certain boards only, while Type-2 hypervisors
utilize OS drivers to abstract any hardware [7]. Ease of use is
also a problem, since Type-2 hypervisors are running over a
familiar OS user interface.

330 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 4, DECEMBER 2019

Fig. 3. Type 2 or Hosted Hypervisors Architecture.

III. SELF DIAGNOSTICS APPLICATIONS

B. Self-diagnostic Application for I&C Systems

 A built-in self-test (BIST) or a self-diagnostic application is
a procedure, which allows a system to test itself. They were
created to fulfill stringent requirements such as high
availability, low latency in the operation cycle and low cost
testing procedures during operation [10]. Multiple digital
platforms integrate diagnostics applications that run on a
continuous basis in the platform´s operating cycles [4]. These
applications are able to test multiple system components as
well as application parameters. They can be used to examine
the internal calibration and define the health status. These
diagnostics´ functions help with checking the platform´s
integrity. Computer systems based on a fail-safe design that are
vital to safety will certainly integrate on-board self-diagnostics
applications to guarantee the timely detection of failures and
errors. As indicated before, these on-board self-diagnostics
applications are generally created to check the memory
integrity, input/output abilities, processor´s availability, etc [4].
Diagnostic´s procedures are generally divided between the
initialization phase that occurs before the start of control
systems (called self-test during startup) and applications, and
the diagnostic´s phase that is executed in parallel with the
application code (called cyclic selftest) [1].

 A self-diagnostic application would deliver a
comprehensive analysis of the failure process inside boards. In
the United Kingdom, on-board self-diagnostics are integrated
inside protection systems for the advanced gas cooled reactor
(AGC) fuel roads and the primary protection system (PPS) for
Sizewell B NPPs [1]. The industry must gradually exploit these
benefits from digital systems. Regulators still have a
conservative position on this matter since only few applications
have been integrated; consequently a deep understanding and
confidence in digital abilities of computer based systems are
not yet completely achieved.

C. Xtratum

Xtratum is a bare-metal or type 1 hypervisor, that was
designed to realize temporal and spatial separation for safety
critical applications. It was created by the Universidad
Politécnica de Valencia in Spain with contributions from the
Lanzhou University in China [11]. Xtratum offers
virtualization services to partitions. It runs in supervisor
processor mode and virtualizes the Central Processing Unit
(CPU), memory, interrupts, and other available peripherals. It
was designed precisely to fulfill safety critical demands.
Iinitially, it was created to run on an x86 processor architecture
(version 2.0), then it has been fully altered to run on a SPARC

version 8 architecture, to be precise for the LEON2 and
LEON3 processors. Currently, a new version has been
uploaded that is compatible with Advanced RISC Machine
(ARM) processors. The present version consists of the features
needed to develop safety critical systems built on ARINC 653,
AUTOSTAR and other standards [2]. Used for the aerospace
sector, Xtratum is capable of creating software blocks on
board, and managing payloads units in aerospace. Xtratum
implements an ARINC 653 scheduling policy, it provides
partition management, inter-partition communication, health
monitoring and traces, so it adheres to the ARINC standard´s
specification. The hypervisor is configured using an eXtensible
Markup Language (XML) configuration file, where system´s
resources are allocated statically [9][12].

D. Implementation at the Hardware and Software Level

 A self-test application was implemented on the board based
on the tutorial in [10], which was modified in order to be able
to run on a Cortex A9 processor and also to be able to run tests
every minute. Fig 4 shows the execution of the Universal
Asynchronous Receiver/Transmitter (UART) test. Multiple
tests are performed on the Processing System (PS) or cortex
A9:

1) PS UART Test

This test case executes a local loopback and checks that

data can be sent and received.

2) PS I2C Test

This test case is dedicated to the Inter-Integrated Circuit

(I2C) component. In case the test was successful, the

device will be reset.

3) PS Timer Test

This test frees the timer enabled bit in the control

register, writes in the timer load register and verifies if

the read value equals the value written. Then, it restores

the control register along with the timer load register.

4) PS Snoop Control Unit/Generic Interrupt Controller

(SCU/GIC) Test

This test reads the ID registers and then compares them.

5) PS Device Configuration Interface (DCFG) Test

It does a self-test on the Device Configuration device and

the xdevcfg driver. The purpose is to demonstrate the use

of the xdevcfg driver.

6) PS Double Data Rate Type3 (DDR3) Test

It tests memory regions, memory controller, sizes and

regions that are specified.

7) PS Interrupt Test
It checks if the SCU Private WDT driver and hardware in

Timer mode are still functioning through interrupts.

8) PS Watchdog Timer Test

It does a basic test on the watchdog timer device and

driver. The purpose of this function is to show how the

watchdog Timer driver can be used.

A. TELLABI et al.: SELF DIAGNOSTICS AND ISOLATION MECHANISMS FOR MIXED CRITICALITY SYSTEMS 331

9) PS Light Emitting Diode (LED) Test

It uses an application that tests if LEDs blinks on the

board.

10) PS General Purpose Input/Output (GPIO) Switch Test

It includes an example for using GPIO hardware and

driver. For this example, it considers that a UART device

or standard input output (STDIO) device is present in the

hardware system.

Fig. 4. The execution of the UART Test.

 In order to implement the self-test application on the
software layer, the compatible version of Xtratum with ARM
processors was installed [11] running on Ubuntu 15.4. This
implementation was based on the architecture shown in Fig. 5.
A self-test application on Xtratum is capable of detecting if
applications inside partitions are still responding or not,
meaning that it checks the partition´s internal status. To
implement this self-test application on Xtratum, the Xtratum
Abstraction Layer (XAL) API’s XM get partition status () was
used, it returns the current state of the system. In case
applications inside partitions are not responding, it shuts down
the partition and restarts it again. A partition is considered not
responding when the function XM get partition status () returns
a negative value.

 First, the XML file had to be configured. System partitions
and user partitions had to be specified; also the path for
communication channels and the scheduling plan of these
partitions had to be included in the XML file. In this case, the
schedule plan provided in Table 1 was followed. Xtratum
defines two types of partitions: User and System [2]. Fig.6
shows the configuration of the XML file for the single core
approach. System partitions are permitted to manage and
control the state of the system along with other partitions.
System partition´s rights are related to the ability of managing
the system, but not the ability to access directly the native
hardware neither to break the isolation. A system partition is
scheduled in the same way as a user partition; and it is allowed
to only use the resources allocated to it in the XML
configuration file. In any system, applications communicate
between them and to the outside world as well. In this example,
only inter-partition communication mechanisms were
considered. Xtratum offers two types of inter-communication
channels [2][9][13]:

1) Queuing Channel

It is deployed for buffered unicast inter-communication.

As a result, each port has a queue to store messages

until they are delivered to the destination partition. The

delivery of these messages is ensured by a First in First

out (FIFO) mechanism.

Fig. 5. System´s architecture.

TABLE I.
SCHEDULE PLAN

Partition Type Duration

P0 User 1 ms

P1 User 1 ms

P2 User 1 ms

P3 System 1 ms

2) Sampling Channel

It is implemented for broadcast, multicast or unicast

inter-communications. This channel does own a queue.

Consequently, messages stay in the source port until

they are read or overwritten by a new instance. This

feature is mandatory in case the destination partition

needs information about the current situation.

Fig. 6. XML Configuration file for the single-core approach.

Fig. 7. Self-test code in Xtratum.

332 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 4, DECEMBER 2019

 To implement this test architecture, a Sampling Channel
between partitions P0 (source), P1 (destination), P2
(destination) and P3 which is the self-test application were
created. For Queuing Channels, one channel between P0
(source) and P1 (destination) was implemented. For this
implementation, P0 owns a write access to Port Q (Queuing
Port) and Port S (Sampling Port). P1 owns only a read access to
Port Q (Queuing Port), to Port S (Sampling Port) and has
access to the Shared Memory. P2 has a read access to Port S
(Sampling Port) and to the Shared Memory. Fig.7 shows a part
of the self-test code. The compilation of partitions is done
using the command “make”. The result of this command
includes an image of the resident software (RSW) that has to be
put on top of the board and the container [13].

E. Experimental Results

11) Single-core Approach

XAL API’s XM_get_time() is a method provided by

Xtratum that measures time performance. It returns the

hypervisor’s internal incremental clock in microseconds (us)

as a 64 bit unsigned integer. It was declared before and after a

message´s transfer. The difference was calculated and used as

the transfer’s delay. In this implementation only bare ANSI C

applications were implemented. 10 messages were sent using

methods provided by Xtratum for inter-partitions

communication. The message size is 128 bytes. For Queuing

messages, the Queue depth was 16 messages deep.

TABLE II

TOTAL DELAY ON XAL SAMPLING AND QUEUING PORTS USING A SINGLE-
CORE APPROACH

Number of
messages

Sampling

Messages Delay

(us)

Queuing Messages
Delay (us)

0 4028 6793
1 4028 10142

2 4028 11540

3 4028 6783
4 4028 6793

5 4028 11540

6 4028 11525
7 4028 11515

8 4028 7975

9 4028 6786

Minimum 4028 6783

Maximum 4028 11540

Average 4028 9139,2

Fig. 8. Delays on Sampling and Queuing ports using the single-core

approach.

Table 2 presents sampling and queuing message delays of

each message. This implementation was made on a Xilinx ZC

706 board. As Table 2 and figure 8 demonstrate, Sampling

Messages are faster than Queuing Messages; this delay is

caused by the internal structure of ports and the procedure

used for sending messages. For Queuing Messages, each port

is connected to a queue where messages are stored until they

are delivered to the destination partition. Transmission of

messages is done in a First-in First-out (FIFO) order [13]. This

is the reason behind delays in Queuing Messages, because it

must access a FIFO rather than a direct memory place. For

Sampling Messages, they stay in the source port until they are

transferred over the channel or are overwritten by a new

message. The recipient then enters the specified memory,

configured in an XML File, and reads messages.

12) Multi-core Approach

Generally, multicore processors comprise two or more

cores that work in parallel in order to read and execute

instructions. These computational units or cores are integrated

on a single processor. One obvious advantage of multicore

processors is that they offer similar or better performance as

compared to a single processor but with lower power

consumption and at a reduced clock frequency by executing

more instructions in parallel [14]. This processing rapidity is

the result of the internal composition in processors; a multi-

core processor consists of numerous cores that execute

simultaneously instructions, with a lower frequency than a

processor featuring a single core would process [9]. Using the

same clock frequency, a multicore processor will execute

more tasks than the single core processor would do.

Furthermore, multicore processors offer better performance

and execute more instructions, thus consuming less power as

compared to single core processors; this can be a fundamental

aspect for devices like mobile phones or laptops that work

with batteries [15]. In this section, a multicore configuration

was used in Xtratum to analyze the implications it will have

on inter-partitions communication performance.

For Xtratum´s configuration, two approaches can be used,

either a single core approach or a dual-core approach. With the

single core approach, only one virtual core was used in

Xtratum [16]. With the multi-core approach in Xtratum, only 2

virtual cores can be used. Virtual cores´ configuration is done

internally, in the XML configuration file as shown in Fig.9.

For this implementation, [P0, P1] are integrated in core1 and

[P2, P3] are integrated in another separated core. Fig.10 shows

the selected architecture for this dual core implementation.

Xtratum has been used in multiple EU projects such as

DREAMS [17] and OVERSEE [18].

In this implementation, the previous scheduling policy

shown in Table 1 related to the single core implementation

was used. As shown in Table 3, the total delay of Sampling

and Queuing channels was reduced. The delay on sampling

channels was reduced by 0.03%. On the other hand, the delay

on queuing channels was reduced by 24.6%. In the single core

architecture, Xtratum is responsible of virtualizing physical

CPUs in the hardware to partitions. A partition uses the virtual

CPU (vCPU) to execute the code inside the partition.

A. TELLABI et al.: SELF DIAGNOSTICS AND ISOLATION MECHANISMS FOR MIXED CRITICALITY SYSTEMS 333

Fig. 9 XML Configuration file for the multi-core approach.

TABLE III
TOTAL DELAY ON XAL SAMPLING AND QUEUING PORTS USING A MULTI-

CORE APPROACH

Number of

messages

Sampling

Messages Delay
(us)

Queuing Messages

Delay (us)

0 4026 6889

1 4027 6888

2 4028 6887
3 4026 6889

4 4027 6888

5 4028 6896
6 4028 6889

7 4027 6896

8 4026 6889

9 4026 6897

Minimum 4026 6886

Maximum 4028 6897
Average 4026,9 6890,8

Then, the hypervisor initializes the CPU, and after the

initialization phase the scheduling plan will be started. In the

multicore approach, Xtratum virtualizes all available physical

CPUs offering to partitions vCPUs (virtual CPUs). A partition

is capable of using one or more vCPUs to execute the code

inside partitions. In this version, which is compatible with

ARM processors, the maximum number of vCPUs was 2. This

experiment proves that multicore approaches offer better

performances for communication between partitions in

Xtratum.

Fig. 10 Multi core test architecture.

These tests were executed 10 times to get a stable value.

Different scheduling policies were also tested but the one

followed in this implementation seemed to be more stable

where no messages were lost. Different frequencies were

tested as well on Xtratum, but in some cases it did not

influence the results only in the case 600 MHz where some

messages were lost. At first different emplacement of

partitions was used, putting P0 and P2 for example in one core

or P1 and P2 in one core but messages were not received so

the emplacement used was the most stable and messages were

all received.

IV. CONCLUSION

 Virtualization offers multiple advantages for embedded
systems especially for time critical systems. Even though
hypervisors used for embedded systems are more likely to be
much optimized to adhere to critical schedules requirements,
their performance must not be affected. Several modern
embedded systems are complex computing entities that execute
critical tasks, and security in these devices is a critical task. In
this paper the importance of self-diagnostics applications on the
hardware level and also on the software layer was emphasized.
A performance analysis of inter partitions channels found in
Xtratum on a cortex A9 processor was provided. Without
effective self-diagnostics, designed and configured for the
Mixed Criticality Systems, any undetected hardware failure can
reduce the system reliability with and impact on safety and
security. In the future, a General Purpose Operating System
(GPOS) will be ported on Xtratum with Authentication and
Access Control applications.

REFERENCES

[1] J. Jung, I. Ahmed, “Development of Field Programmable Gate Array-based
Reactor Trip Functions Using Systems Engineering Approach,” Nuclear
Engineering and Technology, Volume 48, Issue 4, 2016.

[2] Tellabi, I. Ben Zid, C. Ruland and K. Waedt, “Virtualization on Secure
Platforms for Industrial Applications Current use cases and future
perspectives,”.12th International Conference on Reliability
Maintainability and Safety (ICRMS), October, 2018.

[3] Mixed-Criticality Forum, “Mixed-Criticality Forum,” Website, 2017,
last visited on 16/01/2019. [Online]. Available: http://www.mixedcritica
lityforum.org/.

[4] IAEA Nuclear Security Series No. 13, “Technical Challenges in the
Application and Licensing of Digital Instrumentation and Control
Systems in Nuclear Power Plants,” IAEA, 2015.

[5] A. Tellabi, Y. Sassmanhausen, E. Bajramovic, and C. Ruland, “
Overview of Authentication and Access Controls for I&C systems,”
IEEE 16th international conference on industrial informatics, 2018.

[6] Y. Zhao, Z. Yang, and D. Ma , “A survey on formal specification and
verification of separation kernels,”. Front. Comput. Sci. 11, 585-607,
2017. DOI: https://doi.org/10.1007/s11704-016-4226-2.

[7] M. Paulitsch, O. M. Duarte, H. Karray, K. Mueller, D. Muench and J.
Nowotsch, “Mixed-Criticality Embedded Systems – A Balance Ensuring
Partitioning and Performance,” in Digital System Design (DSD), 2015
Euromicro Conference on, Aug 2015. doi: 10.1109/DSD.2015.100 pp.
453–461.

[8] Y. Zaki, “An Embedded Multi-Core Platform for Mixed-Criticality
Systems Study and Analysis of Virtualization Techniques,”,2017.

[9] A. Tellabi. L. Peters, C. Ruland and K. Waedt, “Security Aspects of
Hardware Virtualization Technologies for Industrial Automation and
Control Systems ,”. GIACM WS on I4.0/IACS Standardization, Berlin,
September 2018.

[10] Xilinx, “Xilinx Support Forum,” Website, 2017, last visited on
10/02/2019. [Online]. Available: http://www.xilinx.com/support/docu
mentation/boards_and_kits/zc706/14_5/zc706-bist-pdf-xtp242-14.5-
c.pdf.

[11] Fentiss, “Fent Innovative Software Solutions,” last visited on:
4/03/2019 [online]. Available: http://www.fentiss.com/.

[12] M. Masmano, I. Ripoll, A. Crespo, and J.J. Metge, “Xtratum: a
Hypervisor for Safety Critical Embedded Systems,” in 11th Real-Time
Linux Workshop. Citeseer, 2009, pp. 263-272.

334 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 15, NO. 4, DECEMBER 2019

http://www.mixedcriticalityforum.org/
http://www.mixedcriticalityforum.org/
https://doi.org/10.1007/s11704-016-4226-2
http://www.xilinx.com/support/docu%20mentation/boards_and_kits/zc706/14_5/zc706-bist-pdf-xtp242-14.5-c.pdf
http://www.xilinx.com/support/docu%20mentation/boards_and_kits/zc706/14_5/zc706-bist-pdf-xtp242-14.5-c.pdf
http://www.xilinx.com/support/docu%20mentation/boards_and_kits/zc706/14_5/zc706-bist-pdf-xtp242-14.5-c.pdf
http://www.fentiss.com/

[13] Xtratum , “Xtratum Hypervisor for ARM,”last visited on: 4/01/2019
[online]. Available: http: http://www.fentiss.com/.

[14] S. Pinto, J. Pereira, T. Gomes, M. Ekpanyapong, and A. Tavares
“Towards a TrustZone-assisted Hypervisor for Real Time Embedded
Systems,” in IEEE computer architecture letters , 2016.

[15] Mixed-Criticality Forum, “Mixed-Criticality Forum,” Website, 2017,
last visited on 03/02/2019. [Online]. Available: http://www.mixedcritica
lityforum.org/.

[16] T. Koller, G. Gala, D. Gracia Pérez, C. Ruland, and G. Fohler, “Dreams:
Secure communication between resource management components in
networked multi-core systems,” in 2016 IEEE Conference on Open
Systems (ICOS), IEEE Conference on Open Systems (ICOS). IEEE
Computer Society, October 2016, pp. 99–104, Best Paper Award.

[17] DREAMS: Distributed REal-time Architecture for Mixed Criticality
Systems,” Website, 2017, last visited on 11/04/2019. [Online].
Available: http://dreams-project.eu .

[18] OVERSEE Consortium, “OVERSEE: Open Vehicular Secure Platform,”
Website, 2012, last visited on 30/01/2019. [Online]. Available:
https://www.oversee-project.com/.

Asmaa Tellabi was born in Morocco in 1993. She
received her B.S. degree in software engineering from

the International University of Rabat, Rabat, Morocco,

in 2014 and the M.S. degree in IT Security from the
International University of Rabat University, Rabat,

Morocco, in 2016. She is currently pursuing the Ph.D.

degree in cybersecurity for critical infrastructures at
Framatome GmbH and University of Siegen,

Germany.

From 2017, she has been a PhD candidate at Framatome GmbH, Erlangen,
Germany. Her research interest includes the development of new secure

platforms based on virtualization techniques for critical infrastructures,

security controls for instrumentation and control systems used in Nuclear
Power Plants, and hardware security.

Karl Christoph Ruland studied mathematics,

computer science and physics. He received the

Diploma and Dr.-degree in mathematics at the
University of Bonn, Germany. After 6 years in the

industry he became professor for Data

Communications at the University for Applied
Sciences, Aachen, Germany, in 1982. Then, a full time

professor at the University of Siegen, Germany in

1992. His research focus is the integration of
cryptography based security into communications

systems, preferably real-time and industrial oriented

systems. He served as Co-Chair of the Security WG of the eSafety Forum (for
automotive security and safety) of the EU commission. For the last years he

specialized in Smart Grids control security.

Dr. Karl Waedt got his M.S in Computer Science

from Univ. Erlangen-Nürnberg in 1990. He started
working at Siemens KWU on Design & Software

Development of TXS. In 1994, he got his PhD in

Computer Science (Responsive Distributed Systems).
In 2002 he became the project leader of TELEPERM

XS FUTIS Software Development. In 2004, he
became the TXS System Software Development

Section Head and in 2006 he specialized in

Cybersecurity aspects for TXS Platform. He
participated in Cybersecurity for OL3 and German I&C projects, overall I&C

/ IT Security Cybersecurity Section Head. In 2015, he coordinated

Cybersecurity in I&C & ES Projects of Areva GmbH, Management of the
partially German BMWi Ministry funded SMARTEST-AREVA

Cybersecurity R&D Project (until end 2019, 8 PhD students, 6 partner

Universities). He is the Deputy Chair of DKE UK 967.1 (German Mirror
Committee of TC45/SC45A), German Delegate in TC45/SC45A WG3 (I&C)

and WG9 (Cybersecurity), Chairperson of CEN/CENELEC CLC/TC 45AX

(I&C), Deputy in KTA UK-EL (I&C and ES Board); Contributor to IAEA
TMs on Cybersecurity, on behalf of German Ministry BMWi, Member of

DKE/TBINK Safety & Security by Design, German Delegate in ISO/IEC

JTC1/SC27 WG4 Security Controls and Services, Member of GI (German

Informatics Society) and IEEE.

Sabri Abdelbast was born in Youssoufia,
Morocco. He got his BS at university of Paderborn

in 2016. Currently he is writing his master thesis at

Framatome GmbH and university of Erlangen-
Nürnberg, Germany. His focus is on

microelectronics and security controls on the

hardware level.

A. TELLABI et al.: SELF DIAGNOSTICS AND ISOLATION MECHANISMS FOR MIXED CRITICALITY SYSTEMS 335

http://www.fentiss.com/
http://www.mixedcriticalityforum.org/
http://www.mixedcriticalityforum.org/
https://www.oversee-project.com/

