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Abstract—Virtualization is a technology that is frequently 

employed in computers and servers to provide isolation for 

execution environments, and to support the execution of multiple 

Operating Systems (OS) on the same hardware platform. In the 

embedded systems´ world, virtualization has been a rising trend, 

essentially because it offers an isolation mechanism that provides 

hardware manufacturer´ independence and it avoids 

obsolescence issues. The isolation mechanism supports safety and 

security measures, and assists in the certification of safety-critical 

systems. Virtualization offers improved performances, better 

transparency, portability and interoperability by integrating 

hardware and software resources, and also networking services 

into one computing entity. It makes the integration process of 

Mixed Criticality Systems (MCS) easier. For industries, Field-

Programmable Gate Arrays (FPGAs) hardware solutions provide 

the needed level of flexibility and performance. In this paper, a 

Self-test application is integrated in the hardware and also in the 

software level. The importance of self-test applications for 

Instrumentation and Control (I&C) systems will be discussed in 

the context of virtualization. For this implementation a type 1 

hypervisor called Xtratum is used. An analysis of inter-partition 

communication channels´ performance will be provided 

including the implications multicore approaches will have on 

communication. The novelty of this work is to study the isolation 

impact multicore approaches can have on inter-partitions 

communications in Xtratum. Another novel aspect is the 

implementation of a self-test application in the hypervisor and 

the board as well. 

Index Terms— Virtualization, MCS, Xtratum, Self-test, Cortex 

A9, FPGA, multi-core. 

I. INTRODUCTION 

With the advance of digital technology, a remarkable 

increased worldwide attention towards FPGAs is seen,   

including safety and operational I&C applications in  Nuclear
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Power Plants (NPPs) [1]. FPGAs are capable of increasing the 

reliability and also decreasing the complexity for some gate 

circuit logic-based hardware functionalities [1].  

In [2], a new secure system´s architecture was presented 

based on Xtratum, which is used to implement the test 

architecture in this paper, it also presented the current use 

cases of virtualization technologies in the industry and the 

possible future implementations. Presently, MCS 

implementations are gaining popularity both in research and in 

the industrial design domains. As the computational demands 

are increasing, this offers multiple benefits by making the 

implementation of applications with different criticality levels 

into one system possible [2].  Nowadays, the embedded 

market is gradually willing to exploit the financial benefits 

that virtualization technology offers.  Embedded systems are 

not similar to traditional computers. They have a fixed purpose 

and are created precisely to achieve a particular task. 

Currently, many of the developments on virtualization are 

dedicated to desktop systems. Consequently, using these 

results on embedded systems is not a simple task. As 

virtualization technologies are actively expanding, with 

various competing technologies gradually becoming mature, 

the perfect solution is not defined yet. Security levels that are 

essential to embedded devices differ based on the device´s 

function [3]. MCS rely on temporal and spatial partitioning 

[3]. 

Currently, various digital platforms integrate embedded 

diagnostics applications that are executed repeatedly during 

the platform´s operating phases. Self-diagnostics applications 

are capable of testing multiple modules that are available in 

the platform [4]. In [5], the different authentication and access 

controls mechanisms were presented, including security 

concerns surrounding industrial systems. As stated in [5], for 

industrial computers, Availability is the primary security 

concern and self-diagnostics applications can be used to verify 

the internal status. The idea of developing self-diagnostics 

applications are based on the findings in [5].  This type of 

application is also able of guaranteeing the platform´s safety 

integrity. In this paper, both applications developed on the 

hardware and software level focus on verifying the availability 

of components. The main focus will be on techniques to 

ensure availability characteristics.  In [9], the architecture in 

[2] was further detailed with communication channels and 

communication path between partitions. A comparison 

between single core approaches and multicore was presented
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in that paper but only on the hardware level. This paper 

implemented the test architecture based on the information 

provided in that paper [9]. 

The remainder of this paper is structured as follows. Section 

II explains the different techniques used to implement MCS. 

Section III emphasizes the utility and implementation of Self-

diagnostics applications on the hardware level. In section IV, 

experimental results on the inter-partition communication 

channels, using single-core and multi-core approaches, 

including the self-test application on the software layer are 

analyzed. Section V concludes the paper with an outlook of 

the future work. 

II. MCS TECHNIQUES 

A. Separation Kernel 

 Separation Kernel was first introduced in 1981 by John 
Rushby [6], in order to create a secure environment by 
providing temporal and spatial isolation for applications. An 
additional intent was to guarantee a single access point to the 
system by verifying that there are no other unauthorized 
channels for information flows between partitions that were 
implemented other than those created. The separation kernel is 
characterized by its small size; this will allow formal 
verification of its accuracy. The approach used for a separation 
kernel is based on Multiple Independent Levels of 
Security/Safety (MILS) [7]. MILS is a high-assurance security 
architecture based on isolation [6] and a controlled information 
flow. Fig.1 shows an architecture based on the MILS concept. 
MILS offers ways to have multiple strongly isolated partitions 
with different security/safety levels on the same physical entity. 
A separation kernel is considered as a method that provides 
security at the OS kernel level [6] by simulating a distributed 
environment. It is seen as a solution which creates and verifies 
large and complex kernels that are intended to offer multilevel 
secure operations on systems.  Based on separation kernels, the 
system´s security is realized partially by physically isolating 
different modules and managing trusted functions which are 
executed within some modules. Separation kernel is expected 
to provide hosted applications with high-assurance partitioning 
and controlled information flows that are tamperproof and also 
non by-passable. 

 

Fig. 1.  MILS concept. 

 Hardware Virtualization is an approach that can solve the 
issue of resources´ sharing. In such configurations, the 
hypervisor is considered as a secure and trusted element that 
manages all of the system´s resources [8]. The hypervisor is 

placed at the highest privilege level in the system and controls 
the access to system´s resources by virtual machines (VMs). A 
hypervisor can be seen as a container that comprises each VM 
in a separated environment and does not permit the propagation 
of errors, by this decreasing the surface of attack. Conversely, 
this signifies that the system´s security is as robust as the 
hypervisor itself. For this reason it is recommended to reduce 
the hypervisor´s size to simplify the process of verification and 
validation. Hypervisors can be divided into two categories [2]: 

1) Type I Hypervisors  
 Native or bare-metal hypervisors, they are executed 
directly on top of the hardware to control the hardware and to 
manage the guest OS. They are executed in a privileged 
processor mode, e.g. ring 0 or supervisor mode [8]. Therefore, 
supplementary overhead and security matters, which could be 
caused by an underlying OS, are not present. Instead, the 
Hypervisor manages the entire hardware, e.g., scheduling and 
resource´s allocation, so it might get complex.  Since it runs 
directly on the machine´s hardware, it is seen as an OS or a 
kernel that integrates features to support VMs [2]. Fig2. shows 
a Type 1 hypervisor´s architecture. This means that a   Type-1 
hypervisor can be much larger than a Type-2 hypervisor, 
because of the additional code that is needed to integrate these 
features. 

 

Fig. 2. Type 1 or Bare-metal Hypervisor Architecture. 

2) Type II Hypervisor 
 It is executed on top of an OS, so it can use all services 
that are available in the OS. One obvious drawback is the 
considerable overhead caused by the underlying OS and any 
present issue in that OS which can directly affect the VM [9]. 
A Type-2 hypervisor should be simpler than a Type-1 
hypervisor because the memory management, scheduling task 
, resource allocation, and hardware drivers of the used host OS 
are already implemented in it. Figure 3 shows the differences 
between these hypervisors´ architectures. A Type-2 hypervisor 
offers only virtualization support services. This type 
virtualizes the real machine even if the hypervisor is being 
executed as an application in the host OS [7].  The most 
efficient type of hypervisors to deploy depends on the use 
cases. Bare metal hypervisors offer higher performance, 
availability, and security than Type-2 hypervisors, because 
they do not rely on an OS layer [6]. One disadvantage, which 
is a Type-2 advantage, is that Type-1 hypervisor hardware 
support is restricted to exactly what the hypervisor was created 
for and to certain boards only, while Type-2 hypervisors 
utilize OS drivers to abstract any hardware [7]. Ease of use is 
also a problem, since Type-2 hypervisors are running over a 
familiar OS user interface. 
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Fig. 3. Type 2 or Hosted Hypervisors Architecture. 

III. SELF DIAGNOSTICS APPLICATIONS 

B. Self-diagnostic Application for I&C Systems 

 A built-in self-test (BIST) or a self-diagnostic application is 
a procedure, which allows a system to test itself. They were 
created to fulfill stringent requirements such as high 
availability, low latency in the operation cycle and low cost 
testing procedures during operation [10]. Multiple digital 
platforms integrate diagnostics applications that run on a 
continuous basis in the platform´s operating cycles [4]. These 
applications are able to test multiple system components as 
well as application parameters. They can be used to examine 
the internal calibration and define the health status. These 
diagnostics´ functions help with checking the platform´s 
integrity. Computer systems based on a fail-safe design that are 
vital to safety will certainly integrate on-board self-diagnostics 
applications to guarantee the timely detection of failures and 
errors. As indicated before, these on-board self-diagnostics 
applications are generally created to check the memory 
integrity, input/output abilities, processor´s availability, etc [4]. 
Diagnostic´s procedures are generally divided between the 
initialization phase that occurs before the start of control 
systems (called self-test during startup) and applications, and 
the diagnostic´s phase that is executed in parallel with the 
application code (called cyclic selftest) [1].  

 A self-diagnostic application would deliver a 
comprehensive analysis of the failure process inside boards. In 
the United Kingdom, on-board self-diagnostics are integrated 
inside protection systems for the advanced gas cooled reactor 
(AGC) fuel roads and the primary protection system (PPS) for 
Sizewell B NPPs [1]. The industry must gradually exploit these 
benefits from digital systems. Regulators still have a 
conservative position on this matter since only few applications 
have been integrated; consequently a deep understanding and 
confidence in digital abilities of computer based systems are 
not yet completely achieved. 

C. Xtratum 

Xtratum is a bare-metal or type 1 hypervisor, that was 
designed to realize temporal and spatial separation for safety 
critical applications.  It was created by the Universidad 
Politécnica de Valencia in Spain with contributions from the 
Lanzhou University in China [11]. Xtratum offers 
virtualization services to partitions. It runs in supervisor 
processor mode and virtualizes the Central Processing Unit 
(CPU), memory, interrupts, and other available peripherals. It 
was designed precisely to fulfill safety critical demands. 
Iinitially, it was created to run on an x86 processor architecture 
(version 2.0), then it has been fully altered to run on a SPARC 

version 8 architecture, to be precise for the LEON2 and 
LEON3 processors. Currently, a new version has been 
uploaded that is compatible with Advanced RISC Machine 
(ARM) processors. The present version consists of the features 
needed to develop safety critical systems built on ARINC 653, 
AUTOSTAR and other standards [2]. Used for the aerospace 
sector, Xtratum is capable of creating software blocks on 
board, and managing payloads units in aerospace. Xtratum 
implements an ARINC 653 scheduling policy, it provides 
partition management, inter-partition communication, health 
monitoring and traces, so it adheres to the ARINC standard´s 
specification. The hypervisor is configured using an eXtensible 
Markup Language (XML) configuration file, where system´s 
resources are allocated statically [9][12].  

D. Implementation at the Hardware and Software Level 

 A self-test application was implemented on the board based 
on the tutorial in [10], which was modified in order to be able 
to run on a Cortex A9 processor and also to be able to run tests 
every minute. Fig 4 shows the execution of the Universal 
Asynchronous Receiver/Transmitter (UART) test. Multiple 
tests are performed on the Processing System (PS) or cortex 
A9: 

1) PS UART Test 

This test case executes a local loopback and checks that 

data can be sent and received.  

 

2) PS I2C Test 

This test case is dedicated to the Inter-Integrated Circuit 

(I2C) component. In case the test was successful, the 

device will be reset. 

 

3) PS Timer Test 

This test frees the timer enabled bit in the control 

register, writes in the timer load register and verifies if 

the read value equals the value written. Then, it restores 

the control register along with the timer load register. 

 
4) PS Snoop Control Unit/Generic Interrupt Controller      

(SCU/GIC) Test 

This test reads the ID registers and then compares them. 

 
5) PS Device Configuration Interface (DCFG) Test 

It does a self-test on the Device Configuration device and 

the xdevcfg driver. The purpose is to demonstrate the use 

of the xdevcfg driver. 

 
6) PS Double Data Rate Type3 (DDR3) Test 

It tests memory regions, memory controller, sizes    and     

regions that are specified.  

 

7) PS Interrupt Test 
It checks if the SCU Private WDT driver and hardware in 

Timer mode are still functioning through interrupts. 

 
8) PS Watchdog Timer Test 

It does a basic test on the watchdog timer device and 

driver. The purpose of this function is to show how the 

watchdog Timer driver can be used. 
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9) PS  Light Emitting Diode (LED) Test 

It uses an application that tests if LEDs blinks on the 

board. 

 
10) PS General Purpose Input/Output (GPIO) Switch Test 

It includes an example for using GPIO hardware and 

driver. For this example, it considers that a UART device 

or standard input output (STDIO) device is present in the 

hardware system.  
 

 

Fig. 4.  The execution of the UART Test. 

 In order to implement the self-test application on the 
software layer, the compatible version of Xtratum with ARM 
processors was installed [11] running on Ubuntu 15.4. This 
implementation was based on the architecture shown in Fig. 5. 
A self-test application on Xtratum is capable of detecting if 
applications inside partitions are still responding or not, 
meaning that it checks the partition´s internal status. To 
implement this self-test application on Xtratum, the Xtratum 
Abstraction Layer (XAL) API’s XM get partition status () was 
used, it returns the current state of the system. In case 
applications inside partitions are not responding, it shuts down 
the partition and restarts it again. A partition is considered not 
responding when the function XM get partition status () returns 
a negative value. 

 First, the XML file had to be configured. System partitions 
and user partitions had to be specified; also the path for 
communication channels and the scheduling plan of these 
partitions had to be included in the XML file.  In this case, the 
schedule plan provided in Table 1 was followed. Xtratum 
defines two types of partitions: User and System [2]. Fig.6 
shows the configuration of the XML file for the single core 
approach. System partitions are permitted to manage and 
control the state of the system along with other partitions. 
System partition´s rights are related to the ability of managing 
the system, but not the ability to access directly the native 
hardware neither to break the isolation. A system partition is 
scheduled in the same way as a user partition; and it is allowed 
to only use the resources allocated to it in the XML 
configuration file. In any system, applications communicate 
between them and to the outside world as well. In this example, 
only inter-partition communication mechanisms were 
considered. Xtratum offers two types of inter-communication 
channels [2][9][13]:  

1) Queuing Channel 

It is deployed for buffered unicast inter-communication. 

As a result, each port has a queue to store messages 

until they are delivered to the destination partition. The 

delivery of these messages is ensured by a First in First 

out (FIFO) mechanism. 

 

 

Fig. 5.  System´s architecture. 

TABLE  I. 
SCHEDULE PLAN 

Partition Type Duration 

P0 User 1 ms 

P1 User  1  ms 

P2 User 1 ms  

P3 System  1 ms 

   

 

2) Sampling Channel 

It is implemented for broadcast, multicast or unicast 

inter-communications. This channel does own a queue. 

Consequently, messages stay in the source port until 

they are read or overwritten by a new instance. This 

feature is mandatory in case the destination partition 

needs information about the current situation. 

 

 
 

Fig. 6.  XML Configuration file for the single-core approach. 

 

Fig. 7.  Self-test code in Xtratum. 
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 To implement this test architecture, a Sampling Channel 
between partitions P0 (source), P1 (destination), P2 
(destination) and P3 which is the self-test application were 
created. For Queuing Channels, one channel between P0 
(source) and P1 (destination) was implemented. For this 
implementation, P0 owns a write access to Port Q (Queuing 
Port) and Port S (Sampling Port). P1 owns only a read access to 
Port Q (Queuing Port), to Port S (Sampling Port) and has 
access to the Shared Memory. P2 has a read access to Port S 
(Sampling Port) and to the Shared Memory. Fig.7 shows a part 
of the self-test code. The compilation of partitions is done 
using the command “make”. The result of this command 
includes an image of the resident software (RSW) that has to be 
put on top of the board and the container [13]. 

E. Experimental Results 

11) Single-core Approach  
 

XAL API’s XM_get_time() is a method provided by 

Xtratum that measures time performance. It returns the 

hypervisor’s internal incremental clock in microseconds (us) 

as a 64 bit unsigned integer. It was declared before and after a 

message´s transfer. The difference was calculated and used as 

the transfer’s delay. In this implementation only bare ANSI C 

applications were implemented. 10 messages were sent using 

methods provided by Xtratum for inter-partitions 

communication. The message size is 128 bytes. For Queuing 

messages, the Queue depth was 16 messages deep. 

 
TABLE  II 

TOTAL  DELAY ON  XAL SAMPLING AND QUEUING PORTS USING A SINGLE-
CORE APPROACH 

Number of 
messages 

Sampling 

Messages Delay 

(us) 

Queuing Messages 
Delay  (us) 

0 4028 6793 
1 4028 10142 

2 4028 11540 

3 4028 6783 
4 4028 6793 

5 4028 11540 

6 4028 11525 
7 4028 11515 

8 4028 7975 

9 4028 6786 

Minimum 4028 6783 

Maximum 4028 11540 

Average  4028 9139,2 
   

 

 
 
Fig. 8.  Delays on Sampling and Queuing ports using the single-core 

approach. 

Table 2 presents sampling and queuing message delays of 

each message. This implementation was made on a Xilinx ZC 

706 board. As Table 2 and figure 8 demonstrate, Sampling 

Messages are faster than Queuing Messages; this delay is 

caused by the internal structure of ports and the procedure 

used for sending messages. For Queuing Messages, each port 

is connected to a queue where messages are stored until they 

are delivered to the destination partition. Transmission of 

messages is done in a First-in First-out (FIFO) order [13]. This 

is the reason behind delays in Queuing Messages, because it 

must access a FIFO rather than a direct memory place.  For 

Sampling Messages, they stay in the source port until they are 

transferred over the channel or are overwritten by a new 

message. The recipient then enters the specified memory, 

configured in an XML File, and reads messages. 

 

12) Multi-core Approach 
 

Generally, multicore processors comprise two or more 

cores that work in parallel in order to read and execute 

instructions. These computational units or cores are integrated 

on a single processor. One obvious advantage of multicore 

processors is that they offer similar or better performance as 

compared to a single processor but with lower power 

consumption and at a reduced clock frequency by executing 

more instructions in parallel [14]. This processing rapidity is 

the result of the internal composition in processors; a multi-

core processor consists of numerous cores that execute 

simultaneously instructions, with a lower frequency than a 

processor featuring a single core would process [9]. Using the 

same clock frequency, a multicore processor will execute 

more tasks than the single core processor would do. 

Furthermore, multicore processors offer better performance 

and execute more instructions, thus consuming less power as 

compared to single core processors; this can be a fundamental 

aspect for devices like mobile phones or laptops that work 

with batteries [15]. In this section, a multicore configuration 

was used in Xtratum to analyze the implications it will have 

on inter-partitions communication performance. 

For Xtratum´s configuration, two approaches can be used, 

either a single core approach or a dual-core approach. With the 

single core approach, only one virtual core was used in 

Xtratum [16]. With the multi-core approach in Xtratum, only 2 

virtual cores can be used. Virtual cores´ configuration is done 

internally, in the XML configuration file as shown in Fig.9. 

For this implementation, [P0, P1] are integrated in core1 and 

[P2, P3] are integrated in another separated core. Fig.10 shows 

the selected architecture for this dual core implementation.  

Xtratum has been used in multiple EU projects such as 

DREAMS [17] and OVERSEE [18]. 

In this implementation, the previous scheduling policy 

shown in Table 1 related to the single core implementation 

was used. As shown in Table 3, the total delay of Sampling 

and Queuing channels was reduced. The delay on sampling 

channels was reduced by 0.03%. On the other hand, the delay 

on queuing channels was reduced by 24.6%. In the single core 

architecture, Xtratum is responsible of virtualizing physical 

CPUs in the hardware to partitions. A partition uses the virtual 

CPU (vCPU) to execute the code inside the partition. 
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Fig.  9  XML Configuration file for the multi-core approach. 
 

TABLE  III 
TOTAL  DELAY ON  XAL SAMPLING AND QUEUING PORTS USING A MULTI-

CORE APPROACH 

Number of 

messages 

Sampling 

Messages Delay 
(us) 

Queuing Messages 

Delay  (us) 

0 4026 6889 

1 4027 6888 

2 4028 6887 
3 4026 6889 

4 4027 6888 

5 4028 6896 
6 4028 6889 

7 4027 6896 

8 4026 6889 

9 4026 6897 

Minimum 4026 6886 

Maximum 4028 6897 
Average  4026,9 6890,8 

   

 

Then, the hypervisor initializes the CPU, and after the 

initialization phase the scheduling plan will be started. In the 

multicore approach, Xtratum virtualizes all available physical 

CPUs offering to partitions vCPUs (virtual CPUs). A partition 

is capable of using one or more vCPUs to execute the code 

inside partitions. In this version, which is compatible with 

ARM processors, the maximum number of vCPUs was 2. This 

experiment proves that multicore approaches offer better 

performances for communication between partitions in 

Xtratum. 

 

 
Fig.  10  Multi core test architecture. 

 

These tests were executed 10 times to get a stable value. 

Different scheduling policies were also tested but the one 

followed in this implementation seemed to be more stable 

where no messages were lost. Different frequencies were 

tested as well on Xtratum, but in some cases it did not 

influence the results only in the case 600 MHz where some 

messages were lost. At first different emplacement of 

partitions was used, putting P0 and P2 for example in one core 

or P1 and P2 in one core but messages were not received so 

the emplacement used was the most stable and messages were 

all received. 

IV. CONCLUSION 

 Virtualization offers multiple advantages for embedded 
systems especially for time critical systems. Even though 
hypervisors used for embedded systems are more likely to be 
much optimized to adhere to critical schedules requirements, 
their performance must not be affected. Several modern 
embedded systems are complex computing entities that execute 
critical tasks, and security in these devices is a critical task. In 
this paper the importance of self-diagnostics applications on the 
hardware level and also on the software layer was emphasized. 
A performance analysis of inter partitions channels found in 
Xtratum on a cortex A9 processor was provided. Without 
effective self-diagnostics, designed and configured for the 
Mixed Criticality Systems, any undetected hardware failure can 
reduce the system reliability with and impact on safety and 
security. In the future, a General Purpose Operating System 
(GPOS) will be ported on Xtratum with Authentication and 
Access Control applications. 
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