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ABSTRACT

In the modern electricity markets, negative prices and spike prices
coexist as a pair of opposite economic phenomena. This study
investigates how these extreme prices play as the determinants to
drive price fluctuations in the electricity market. We construct a
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two-stage analysis including a principal component analysis (PCA)
and a nonlinear autoregressive distributed lags model (NARDL).
We apply this analytical method to the wholesale Pennsylvania,
New Jersey and Maryland (PJM) electricity market. We find that
according to PCA, in the individual transmission lines, spike prices
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are determinants with largest explanatory power to the variation
of prices, while according to NARDL, from the standpoint of the
overall market, negative prices have a larger potential effect on
both the real-time market and the forward market. These results
are valuable and contributive to managers and operators in the
electricity markets for policy decision making.

C12; C22; G19; Q49

1. Introduction

The trend of modern electricity system reform in all major countries of the world is
market-oriented. The modern electricity system is no longer an electric transmission
grid only. It has been a wholesale energy market style with new multiple functions.
Besides energy production and transmission, the electricity market is also responsible
to secure reliable electricity supply, manage the energy prices and consequently
improve market efficiency.

The marketisation of the electricity system brings more market phenomena. The
original transmission organisation has become a wholesale market where the whole-
sale price of electricity is matched between generators and demanders. Like the finan-
cial markets, the electricity market takes the electricity prices to reflect the energy
demand and supply. Along with the development of the wholesale electricity market
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restructuring and the adoption of auction mechanisms, like the financial markets,
large fluctuations of electricity price have been observed frequently. The growth of
price fluctuations in the electricity markets gains attention from academia, and these
‘extreme price swings’ have been viewed as a symbolic feature of electricity markets
(Engle & Patton, 2001; Hadsell, Marathe, & Shawky, 2004; Knittel & Roberts, 2005;
Xiao, Colwell, & Bhar, 2015; Zareipour, Bhattacharya, & Canizares, 2007).

Previous studies regarding the price swings generally focus on the prevalence of
spike prices, that is, the extremely high prices (Carlton, 1977; Crew & Kleindorfer,
1976; Hadsell & Shawky, 2006; Joskow & Wolfram, 2012; Nguyen, 1976; Spees &
Lave, 2008; Wenders, 1976). Spike prices generate high marginal costs for the excess
demand and thus enlarge the price uncertainty in the peak load scenarios. Therefore,
spike prices are usually considered as the cause of price fluctuations.

But recently, an increasing number of negative prices appear in the electricity mar-
ket as another type of extreme prices, which quickly becomes a distinctive feature of
the electricity market. The occurrence of negative pricing arises because certain types
of generators (e.g., nuclear, hydroelectric, and wind energy) pay demanders to take
power instead of lowering their output due to technical and economic factors, even
when demand is insufficient to absorb their output ( U.S. Energy Information
Administration, 2012a, 2012b ). As the opposite situation of spike prices, negative pri-
ces represent the extreme over-supply of electric power, which is not a good signal
for market equilibrium (Baradar & Hesamzadeh, 2014; Barbour, 2014; Genoese,
Genoese, & Wietschel, 2010; Sioshansi, Denholm, Jenkin, & Weiss, 2009; Zhou
et al. 2016).

Although many previous studies suggest the price swings in the electricity market
as a critical research target, however, most studies focus on one type of extreme pri-
ces only. According to economics, the negative price and the spike price are a pair of
opposite phenomena. The negative price implies the over-supply while the spike price
implies the over-demand. Both types of extreme prices are constituent of price
swings. Therefore, it is necessary to understand how the large price swing is formed,
which price behaviour is the primary factor of the extreme price swing, and how the
price swing impacts the electricity market.

This study observes both spike and negative prices in the wholesale electricity mar-
ket, and explores how they contribute to the price fluctuations of the market. The
purpose of this study is important, because assessing the two opposite prices and the
economic phenomena behind them can help the managers and operators of the elec-
tricity markets better know about the market status and thus let them make the cor-
rect and reasonable decision for market stability.

This study explores the price fluctuation in a multi-area and multiple transmission
line environment. Existing studies regarding price fluctuation usually focus on a sin-
gle area with one single series of data (Hadsell et al., 2004; Hadsell & Shawky, 2006;
Holland & Mansur, 2006). However, since electricity markets were restructured in the
last decade, the modern electricity market usually include a large number of transmis-
sion lines across diverse geographic areas. Following the market reform, we choose
the wholesale Pennsylvania, New Jersey and Maryland (PJM) electricity market as our
research target. The PJM market is the oldest electricity transition system and the
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second largest wholesale electricity market in the world. It coordinates the movement
of power in 13 states and the District of Columbia, including over 240,000 square
miles of territory, 84,000 miles of transmission lines and 65 millions of people. It
includes over 11,000 transmission lines with hourly updated electricity prices.
Findings from the PJM market can provide valuable lessons and experiences for other
electricity markets.

Inspired by a series of recent literature, this study designs a two-step research pro-
cedures. First, following (Baek, Cursio, & Cha, 2015; Chakrabarty & Tyurin, 2011; Li,
Cursio, & Sun, 2018) we construct a Principal Component Analysis (PCA) model to
explore the negative and spike prices in each individual transmission line from PJM
market, and see how the two types of prices affect the price fluctuation from the
dimension of individual transmission lines. This micro-level analyses can bring latent
insights to the managers and operators of the electricity markets. Second, we con-
struct the nonlinear autoregressive distributed lags model (NARDL), and use it to
assess the determinant of price fluctuation from the angle of the overall electricity
market. Results from the NARDL model can shed light on market supervision and
help market operators make decisions on the policy making and regulation
adjustments.

Through the results of PCA we select six components and interpret their implica-
tion related to the covariates. We find that components with the largest explanatory
power to the variation of prices are highly related to spike LMPs and the position
and the extent of concentration of the overall LMPs. Therefore, in the dimension of
the individual transmission lines, there exists over-demand with a high frequency.
Different from PCA, results of the NARDL model suggest that the negative prices
have a larger potential effect on both the real-time market and the forward market.
As an implication, this finding confirms the contribution of the renewable energy
incentive mechanisms, and believes that the renewable energy will fulfil the energy
demand and help balance the energy equilibrium in the future.

The remainder of this paper is organised as follows. Section 2 introduces previous
literature and research methodology. Section 3 describes the PJM market, data and
covariates. Section 4 presents results of the PCA and NARDL models and implica-
tions. Section 5 concludes.

2. Literature review and methods
2.1. Literature review

As a special type of energy, electricity cannot be stored in large quantities. Therefore,
the electricity market is widely viewed as the most difficult market to balance between
supply and demand. For example, He and Victor (2017) study the electricity system
in China after Chinese government provided access to electricity to its entire popula-
tion in 2015. They summarise lessons and experiences about electricity supply in this
large emerging countries and figure out that the power equilibrium is too hard to
achieve. Yang (2017) also takes Chinese electricity system as the target and points out
that the power equilibrium and efficiency are not achieved yet even after installing
advanced metering infrastructure. Li, Cursio, Jiang, and Liang (2019) study the U.S.
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smart grid electricity system and find that the abnormal price movement in the elec-
tricity market, which is viewed as a signal of the inequilibrium between supply and
demand, is relevant to calendar issues with significance.

Thus, previous studies have widely acknowledged that it is extremely challenging
for electricity generators (especially those with unstable output) to fulfil the demand
with a fixed amount of supply. As stated by existing studies (Bilitewski, 2012;
Frommel, Han, & Kratochvil, 2014; Yuan, Bi, & Moriguichi, 2006) , a stable price
level is a signal of inequilibrium between power supply and demand. Reduction in
price swings is an achievement of both market efficiency and resource efficiency.
Therefore, many studies pay attention to price swings, and contribute to its reduction
from aspects of methodologies and phenomena.

Many studies focus on the extreme price values in the electricity market, and try
to explore their trend and patterns. These studies can be sorted in two groups. One
group of studies focus on the extremely high price records, which are usually called
spike prices. They attribute the price swings to the prevalence of spike price. For
example, Hadsell and Shawky (2006) focus on the high prices during peak hours, and
examine the volatility characteristics of the New York Independent System Operator
(NYISO) electricity markets. They find evidence that links the occurrence of spike
prices and market price volatility. Joskow and Wolfram (2012), Dutta and Mitra
(2017) introduce the progress of spike pricing in the electricity market, and discuss
candidate technologies which could reduce spike pricing and thus control the prolif-
eration of time-varying electricity pricing.

Another group of studies focus on negative pricing, which is the distinctive phe-
nomenon in the electricity market other than the other financial markets. The occur-
rence of negative pricing arises because certain types of generators (e.g., nuclear,
hydroelectric, and wind energy) pay demanders to take power instead of lowering
their output due to technical and economic factors, even when demand is insufficient
to absorb their output ( U.S. Energy Information Administration, 2012a, 2012b).
Genoese et al. (2010) find that negative pricing has an increasing trend and unbal-
anced distribution in German markets, and it enlarges the price volatility. Barbour,
(2014) state that negative pricing is the key factor to the energy efficiency and directly
affects the development of relevant technologies, such as energy storage. Therefore,
like spike prices, negative prices are also critical factors to the price swings in the
electricity market.

Some existing studies suggest that the electricity market is driven by specific fac-
tors with dominant power. For example, Simanaviciene, Virgilijus, and Simanavicius
(2017) investigate the psychological factors and their influences on energy efficiency
in households, in order to identify and track individual’s energy consumption behav-
iour. Therefore, we consider exploring the factors with dominant effects on electricity
market price swings by using factor-related methods. One candidate method is
NARDL, in which nonlinearities are introduced via positive and negative partial sum
decompositions of the explanatory variables (Shin, Yu, & Greenwood-Nimmo, 2013).
A number of studies show that NARDL is an ideal tool to examine prices relations
(Ibrahim, 2015; Jammazi, Lahiani, & Nguyen, 2015; Nusair, 2017; Shin et al., 2013).
For example, Ibrahim (2015) examines the relations between food and oil prices for
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Malaysia using a nonlinear ARDL model. Jammazi et al. (2015) use a wavelet-based
NARDL to investigate the fluctuations in the exchange rates and its impact on crude
oil prices.

Another method is PCA, which is considered as one of the most widely used tech-
niques in multivariate statistical inference. Recent studies summarise the advantages
of PCA into three aspects: (1) PCA reduces the dimensionality of the multivariate
statistical problems, replacing a number of variables a smaller number of PCs which
effectively summarise a previously large part of the variation of the data (Baek et al,
2015; Bai, 2003; Bai & Ng, 2002; Stock & Watson, 1998, 2002); (2) PCA is a prefer-
able approach for studies with large data sizes (Ait-Sahalia & Xiu, 2019; Cao &
Huang, 2007; Skiadopoulos, Hodges, & Clewlow, 2000); (3) PCA constructs latent
common structure of factors and discovers the structural meaning (Chakrabarty &
Tyurin, 2011; Forni, Hallin, Lippi, & Reichlin, 2000, 2004; Forni & Lippi, 2001). In
this study, we follow the structure of method in Li, Cursio, and Sun (2018) and build
our PCA model.

Following the existing studies, in this paper we plan to explore both spike and
negative prices. It is new by comparison with the previous studies which focus on
one type of extreme prices only. From the perspective of economics, spike prices
reflect the over demand while negative prices reflect over supply. The managers and
operators of the electricity markets need to know about the patterns and trends of
the market prices movement, and consequently have appropriate preparations for dif-
ferent types of extreme cases. Moreover, the existing studies suggest that the factor-
related analytical methods are powerful tools for studies with big data. Therefore, as
another research target, in this paper we use the NARDL and PCA methods as the
effective tools to explore the price fluctuations in the electricity market. This paper is
an extension of the previoius study (Li, Cursio, & Sun, 2018).

2.2. NARDL framework

In this study we use the NARDL approach proposed by Shin et al. (2013). The basic
model is described as follow:

j=1

q q
yi= 2 O+ 3 0+ ) 0% +e )
=0 =0

Where the dependent variable y; and its lag length y,_; are scalar variable, x;r_j
and x,_; are decomposed independent variables.

The NARDL model has advantages for large data since it yields valid results
regardless of whether the underlying variables are integrated of order one, zero, or a
combination of both (Pesaran, Shin, & Smith 2001). According to Shin et al. (2013),
Jammazi et al. (2015) and Nusair (2017), in the NARDL model the existence of a
long-run relationship among a set of variables can be tested without any prior know-
ledge about the order of integration of the individual variables, which avoids prob-

lems associated with unit roots pre-testing. Moreover, both the dependent variable
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and independent variables can be introduced in the model with lags, which makes
the test procedure more flexible than the other methods.

2.3. PCA framework

In this section we briefly review the mathematical mechanism of PCA. Principal
Component Analysis is one of the most widely used techniques in multivariate statis-
tical inference. From the perspective of mathematics, if there are a series of variables
that are related, PCA can transform them into the same number of uncorrelated new
variables. Suppose we have a column vector of n random variables x =
[x1, x2, ...,xn]T and its mean vector is a zero vector (E[x] = 0). Since these n random
variables x = [x1, X2, ..., xn]T are suspiciously related, we need to transform them into
normalized linear combinations and find which combination explains most of the
total variability. In mathematics, we look for a non-zero column vector B =
[bi,bs... bn]T which satisfies BB = 1, in order to maximize the variance of the linear
combination, B’x. The variance of B’x can be written as

;12
VarlB'x] = EIB x| = E[(blxl +byxy + ...+ b,,x,,)z] 2)

Since the covariance matrix of x is C, the variance of B’x can be written as
Var|B'x] = B CB (3)

To find B, we solve the following Lagrange function
L = BCB-\(B'B-1) (4)

where ) is a Lagrange multiplier. As the first order condition (FOC), the vector of
partial derivative is

g—,l; = 2CB-2\B = 2(C-\I)B =0 (5)

We can simplify the FOC into the equation CB = AB, which conforms to the
expression of the eigenvalue. Therefore, A is the eigenvalue to the covariance matrix
C, and B is the corresponding eigenvector. To each A; (i = 1,2, ...n), the correspond-
ing eigenvector B; has the explanatory power of the total variability. Bjx, the linear
combination, is the principal component (PC) of x with variance equal to A;.

Finally, we have a total of n PCs, which are independent to each other, as the sub-
stitution of x to explain the variability.

PC] = B,}x = b11x1 + b12x2 + ...+ blnxn
PC, = B,x = by1x1 + bpxa + ...+ bapxy ©6)

PC,, = B/nx = bnlxl + bnz.Xz +...+ bm,x,,

The PCs keep most of the important information contained in the original varia-
bles x. PCA enables us to identify the PCs as a new set of orthogonal factors.
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3. PJM, data and covariates
3.1. PJM market

In this section we introduce the PJM electircity market. PJM was established in 1927
and is currently the leading electricity transition system in the world. Early in 1962,
PJM installed its first online computer to control generation and then established the
first energy management system (EMS). In 1997, PJM opened its first bid-based
energy market and evolved into the largest deregulated wholesale electricity market in
the world. In 2013, PJM launched a new stage smart-grid development and imple-
mented the Advanced Control Center in order to ensure uninterrupted operation of
the electric system and maintain the steadiness of the electric market.

More importantly, PJM serves as a clearing house of electricity power. Market par-
ticipants, including the power generators and consumers, offer and bid for electricity
on a real-time basis. PJM matches bids and offers and gives the market-clearing price
within minutes of the spot trade. Then electricity will be generated and transmitted
to each service area. PJM is not only an electric system, it conveys more functions
like the financial markets, as discussed by Bessembinder and Lemmon (2002), Geman
and Roncoroni (2006), Longstaff and Wang (2004), and Seifert and Uhrig-
Homburg (2007).

Today, PJM is the biggest regional transmission organisation (RTO) of power in the
United States, and coordinates the movement of power in 13 states and the District of
Columbia. Areas served by PJM are divided by the transmission lines which are
referred to as the pricing nodes (Pnode). The market-clearing price is referred to as
the locational marginal price (LMP) and updated hourly. LMP is the sum of the cost
of energy, the marginal cost of transmission loss, and the marginal cost of congestion,
which are the leading contributors to volatility in electricity prices. It represents the
incremental value of an additional MW of power transported to a particular Pnode.

Thus, in this study we take PJM as the research target and treat it as a market
from the perspective of finance and economics. Findings from PJM will shed light on
the efficient management on electricity markets.

3.2. Data and covariates

We use the hourly LMP data during 2013-2016 including distinct 11,574 Pnodes.
Table 1 presents the descriptive statistics of LMPs. There are about 392 million LMP
records on these Pnodes. We identify all the non-positive LMP records as the nega-
tive pricing. There are over two million negative LMPs, which count for about the
bottom 1% of the total LMPs. Likewise, we distinguish the spike LMPs as the top 1%
LMPs for each Pnode as a consistency of previous studies (Walawalkar, Blumsack,
Apt, & Fernands, 2008). The mean of negative LMPs is —$26.22 and the mean of the
spike LMPs is $326.21. The standard deviation of negative LMPs is 47.37 while the
standard deviation of spike LMPs is 240.14. The overall ranges of both groups are
wide: negative LMPs spread between —$2240.3 and 0 whereas the spike LMPs spread
between $175.96 and $4643.74. The distribution of negative and spike LMPs are
depicted in Figure 1.
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Table 1. Descriptive statistics of LMPs.

Variable Negative LMP Spike LMP Overall
Number of Occurrence 2,067,194 3,943,996 392,216,015
mean —26.22 326.21 35.62
Std. Dev. 47.37 240.14 42.61
skewness —7.06 4.05 17.15
kurtosis 135.88 2299 545.14
min —2240.30 175.96 —2240.30
p5 —107.05 179.70 14.88
p25 —30.48 202.72 23.43
p50 —9.54 250.75 28.46
p75 =27 351.66 36.45
p95 0 689.57 72.68
max 0 4643.74 4643.74

Negative LMPs 2013-16

60 80

Percent

20

o

T T T T T
-2500 -2000 -1500 -1000 -500 0
LMP

Spike LMPs 2013-16

40

Percent
30

20

o

T T T T T
1000 2000 3000 4000 5000
LMP

Figure 1. Histogram for the occurrence of negative and spike LMPs.
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Table 2. Covariates of PCA.

variable Negative LMPs Spike LMPs Overall
Percentage of Occurrence Neg_Per Peak_Per

mean Neg_Mean Peak_Mean Mean
Std. Dev. Neg_Std Peak_Std

skewness Neg_Sku Peak_Sku Skewness
kurtosis Neg_Kur Peak_Kur Kurtosis
min Neg_Min Peak_Min

max Peak_Max

We sort the three categories of LMPs, overall, negative and spike, by their Pnode
IDs. For the overall LMPs of each Pnode, we calculate the mean, skewness and kur-
tosis. For the other categories in each Pnode, we calculate the descriptive statistics,
including mean, standard deviation, skewness, kurtosis, minimum, and maximum.
We also calculate the percentage of occurrence for each group across Pnodes. For
Pnode i, the percentage of negative LMPs is defined as

Number of Occurrence of negative LMPs

7
Total Number of LMPs for i @

Neg_Per; =

And the percentage of spike LMPs is defined as

Peak Number of Occurrence of Peak Load Spike LMPs ®)
eak_Per; =
’ Total Number of LMPs for i

For further analyses we use the 16 covariates listed in Table 2. These covariates are
categorised into three categories of LMPs. We exclude the maximum of negative
LMPs because it is zero in all Pnodes.

4. Results and implication

In this section, we give our analyses and results in two steps. First, following Li et al.
(2018), we use PCA model to explore the determinants of electricity prices across
Pnodes. The results are from the standpoint of individual transmission lines (Pnodes)
to observe the price swings. Second, we use NARDL model to see how these extreme
prices and the energy inequilibrium behind them affect the stability of the whole
market. The results are from the standpoint of the overall electricity market, which
can bring more insights for market managers and operators.

4.1. PCA results

Table 3 presents the variation explained by the eigenvalues of PCA. PC1, the compo-
nent that has the largest eigenvalue 5.67, contributes 35% explanatory power to the
variation of data. PC2 has the second largest eigenvalue (3.36) and explains 21% of
the variation. The cumulative explanatory contribution by PC1 and PC2 has reached
56% as shown in the cumulative column. Including the first six components, the
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Table 3. Variations explained by the eigenvalues of PCA.

Component Eigenvalue Difference Proportion Cumulative
PC1 5.67 231 0.35 35%
PC2 3.36 0.28 0.21 56%
PC3 3.08 1.1 0.19 76%
PC4 1.98 1.10 0.12 88%
PC5 0.88 0.22 0.06 94%
PC6 0.67 0.55 0.04 98%
PC7 0.12 0.03 0.01 99%
PC8 0.09 0.04 0.01 99%
PC9 0.05 0.01 0.00 99%
PC10 0.04 0.02 0.00 100%
PC11 0.02 0.01 0.00 100%
PC12 0.01 0.00 0.00 100%
PC13 0.01 0.00 0.00 100%
PC14 0.01 0.00 0.00 100%
PC15 0.00 0.00 0.00 100%
PC16 0.00 . 0 100%

cumulative explanatory contribution by PC1 - PC6 already reaches up to 98%.
Therefore, PCA helps reduce the dimensionality.

We extract the first six components. They are constructed as linear combinations
of covariates so that they have orthonormal loading coefficients. Table 4 presents
how these PCs relate to our covariates and lists the coefficients of covariates for each
PC in the columns. For example, PC1 is expressed as the linear combination of our
original covariates by the following equation:

PC1 = 0.3697Mean — 0.3410Skewness — 0.37Kurtosis — 0.0947Neg_Per
— 0.0347Neg_Min — 0.0925Neg_Mean + 0.0926 Neg_Std + 0.0639Neg_Sku
— 0.0810Neg_Kur + 0.3177Peak_Per + 0.3704Peak_Min + 0.3742Peak_Mean
+ 0.1286Peak_Std — 0.3020Peak_Sku — 0.2868Peak_Kur + 0.0641Peak_Max

)

In Equation (9), among the covariates, four of them have significantly larger coeffi-
cients: Peak_Mean (0.3742), Peak_Min (0.3704), Kurtosis (-0.37) and Mean (0.3697).
These covariates are the dominant power to constitute PC1. They represent the pos-
ition of spike LMPs (Peak_Mean and Peak_Min), and the position and the extent of
concentration of the overall LMPs (Kurtosis and Mean).

Similarly, in PC2, we find that two covariates have significantly larger absolute
values of coefficients: Peak_Std (0.4198) and Peak_Max (0.4160). Both covariates
are different from the dominant covariates for PC1, and are from the spike LMP
group. Similar to PC1, PC2 can be interpreted as the distribution and dispersion of
spike LMPs.

For PC3, three covariates are dominant as observed in Table 4: Neg Min
(—0.4527), Neg_Std (0.4240) and Neg_Mean (—0.3811). PC3 can be interpreted as the
position and distribution of negative spike LMPs. Similarly, PC4’s dominant covari-
ates are also the skewness and kurtosis of negative LMPs (Neg Sku and Neg Kur). So
PC4 is also a representative of negative LMP group. But compared with PC2, both
PC3 and PC4 have less explanatory power.
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Table 4. Covariate coefficients of six PCs.

Covariate PC1 PC2 PC3 PC4 PC5 PC6

Mean 0.3697 0.1928 0.0934 0.0365 0.2326 —0.0640
Skewness —0.3410 0.2816 0.1046 0.0804 —0.0714 —0.0012
Kurtosis —0.3700 0.1999 0.1216 0.0742 —0.0197 —0.0134
Neg_Per —0.0947 —0.3074 0.1834 —0.0022 0.1819 0.8583
Neg_Min —0.0347 0.2896 —0.4527 0.1104 0.0767 0.0454
Neg_Mean —0.0925 0.2929 —0.3811 —0.2543 0.2246 0.1397
Neg_Std 0.0926 —0.2810 0.4240 0.1003 —0.2452 —0.2561
Neg_Sku 0.0639 —0.0759 —0.1459 0.6509 —0.0667 0.1845
Neg_Kur —0.0810 —0.0217 0.2285 —0.6219 0.1353 0.0175
Peak_Per 0.3177 0.0361 0.1899 0.1168 0.5363 0.0058
Peak_Min 0.3704 0.1905 0.0920 0.0368 0.2328 —0.0624
Peak_Mean 0.3742 0.2081 0.0676 —0.0577 —0.1353 0.1449
Peak_Std 0.1286 0.4198 0.1842 —0.0573 —0.4019 0.2727
Peak_Sku —0.3020 0.2032 0.2681 0.1658 0.2431 —0.0696
Peak_Kur —0.2868 0.1511 0.2822 0.1924 0.3669 —0.0996
Peak_Max 0.0641 0.4160 0.3064 0.0565 —0.2298 0.1533

There is only one covariate that dominates in PC5 and PC6 respectively. In PC5, the
only covariate is Peak_Std (—0.4019), and in PC6 it is Neg Per (0.8583). As shown in
Table 3, PC5 and PC6 have less explanatory power. They are supplementary variation.

In summary, through the result of PCA we select six components and interpret
their implication related to the covariates. We find that components with the largest
explanatory power to the variation of prices are highly related to spike LMPs and the
position and the extent of concentration of the overall LMPs. Therefore, in the next
part, we further examine the determinants from the perspective of the overall electri-
city market.

4.2. NARDL results

Results from PCA suggest that features from the overall market are critical to inter-
pret the variation of electricity market prices. In this part, we further examine how
these extreme prices and the energy inequilibrium behind them affect the stability of
the whole market. Different from the PCA results which focus on the variation across
the transmission lines, here our standpoint is from the overall electricity market and
we examine the overall market’s price movement from a time series perspective. It is
new by comparison of previous studies that focused on the individual transmission
lines only ((Hadsell et al., 2004; Hadsell & Shawky, 2006; Holland & Mansur, 2006;
Simanaviciene et al., 2017; Li et al., 2018).

The current PJM market system offers two basic types of markets in which partici-
pants may trade electricity. The first functions as a real-time market. In this market,
participants can enter sale offers and purchase bids for electricity on a real-time basis,
and depending on circumstances, electricity can often be generated and transmitted
within minutes of the spot trade. The second market in the PJM system is a one-day-
ahead forward market. In this market, participants submit offers to sell and bids to
purchase electricity for delivery during the subsequent day.

According to this market structure, we combine the hourly LMP data into the
daily level. For 24 hours in day f, we calculate the standard deviation of the overall
market as STD;, and the average hourly LMP as MEAN,. We include percentage of
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negative LMPs (Neg_Per,) and percentage of spike LMPs (Peak_Per;). Using the pair
of variables about negative and spike LMPs, we can analyze and compare their effects
on the market fluctuation.
We use the NARDL approach on the basis of previous studies (Jammazi et al.,
2015; Nusair, 2017; Shin et al., 2013). The basic model is described as follow:
0 P
!

0 (;MEAN,_; + ZO 0" Peak _Per;

= =

N
STD; = » (;STD, ; +
=1 j

, (10)
+ ; Ojf/Nng)er;_j + &
Jj=

Table 5 presents the results of NARDL. According to the two-level market structure,
the lengths of lags (N, O, P, and Q) are set as 1 because the one-day-ahead market at
day t—1 can affect the subsequent day t. We examine the aspects of negative and spike
prices and compare their impacts on the standard deviation of the overall market.

We first compare the percentage of negative LMPs (Neg_Per;) and percentage of
spike LMPs (Peak_Per;). Since both extreme prices are components of the overall
market price records, at day t, both Neg_Per; and Peak_Per; have positive effects on
the market fluctuation (STD;). But the coefficient of Neg_Per, (0.5347) is larger than
that of Peak_Per; (0.1194), indicating that occurrence of negative prices has a larger
influence on the market fluctuation. Similar situations also appear between the one-
lag variables Neg_Per, | and Peak_Per, |. The coefficient of Neg_Per, | is —0.1848. It
implies that the occurrence of negative pricing in the previous day will alert the mar-
ket managers and make them adjust the real-time market in the subsequent day to
reduce the market fluctuation. By contrast, the coefficient of Peak_Per,” | is —0.0011
and not statistically significant, implying that spike pricing does not have such an
influence on the market fluctuation in the subsequent day as negative pricing.

The results from the NARDL model bring new insights from the overall market
level. Different from PCA which focuses on the changes in the individual transmis-
sion lines, the NARDL model suggests that the negative prices have a larger potential
effect on both the real-time market and the forward market.

4.3. Implications

In the modern world, the electricity system has evolved to be a market for power
trading and the primitive power-transmission function has also been diversified. The

Table 5. NARDL results.

STD; Coefficient Standard Deviation t

STD;_4 0.3758 0.0262 14.35
MEAN, 0.8608 0.0264 32,62
MEAN;_, —0.3922 0.0342 —11.47
Neg_Per; 0.5347 0.0001 8.75
Neg_Per,_, —0.1848 0.0001 —2.97
Peak_Per; 0.1194 0.0001 234
Peakl—’er::1 —0.0011 0.0001 —0.02

constant —11.5231 1.2389 —9.3
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modern electricity market not only takes charge of the maintenance of software, net-
works, and hardware units, but focuses more on the establishment and enforcement
of the regulations and protocols for market participants, and the management of mar-
ket-clearing settlement prices (Hélyette & Roncoroni, 2006; Longstaft & Wang, 2004).
The feature of marketisation forces the managers and operators to switch their ori-
ginal impression to the electricity system and study the new market from the perspec-
tive of economics.

According to economics, the foremost mission of the market operators and man-
agers is to balance the power supply and demand, maintain the wholesale electricity
price and avoid the frequent occurrence of extreme prices. So they must supervise
negative LMPs and spike LMPs, the signal of economic inequilibrium between supply
and demand. But different from the other markets, the electricity markets have a dis-
tinctive feature, the negative pricing. Negative pricing is an outcome of boosting
renewable energy sources. In the United States, the government has launched a series
of policies to promote diverse types of renewable energy. For example, the wind
power is one of the renewable energy that the U.S. government is advertising (Deng,
Hobbs, & Renson, 2015; Zhao & Wu, 2014). The wind power generators receive large
tax credits as the subsidy from the government to encourage continuous production.

However, our results show that the efforts of the government do not significantly
accomplish the foremost mission by reducing the occurrence of extreme prices in the
electricity market. The emergence of renewable energy does not reduce the spike pri-
ces, but incurs the negative prices coexisted in the market. Figure 2 depicts the distri-
bution of negative and spike LMPs in 24 hours. There is a reciprocal relationship
between the numbers of negative and spike LMPs. However, the majority of negative
LMPs appear between the midnight and the early morning during which the large
amount of energy is definitely not needed. In the daytime and especially the working
hours, the number of spike LMPs is far larger than the number of negative LMPs.
Figure 2 confirms the dominant place of spike prices and the results from the PCA
model. It further suggests that the current electricity market is still facing the shortage
of energy, even after the adoption of renewable energy incentive mechanisms.

Number of occurrence: negative and spike LMPs
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Figure 2. Distribution of negative and spike LMPs in one day.
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Although the appearance of negative prices has limited power to reduce the over-
demand situation and the accompanied spike prices, promoting the renewable energy
is still a promising and meaningful policy for the long-term development of the elec-
tricity market. The NARDL model provides new insights from a new angle of view.
Results of the NARDL model are from the overall market level rather than the
regional level, and indicate that the negative prices have a significant effect to main-
tain the fluctuation of both the real-time market and the forward market. Developing
diverse renewable energy will eventually the large demand and consequently facilitate
the market price stability.

The concurrent production of renewable energy is tightly driven by the time-
related factors. For example, the wind power is determined by the seasonality of
wind, which makes the wind power fail to become a steady supplier. In addition, the
limitations of transmission capacity are also a critical factor to cause the geographical
energy imbalance. As the practical resolutions, the development of electrical energy
storage (EES) can save the excessive energy during the over-supply period and release
during the over-demand period. It may help reduce and remove the extreme prices
in both types (Liu, Woo, & Zarnikau, 2017; Sioshansi et al., 2009). As another pos-
sible resolution, upgrading the transmission capacity may also help reduce the power
inequilibrium. According to U.S. Energy Information Administration (2012a, 2012b),
transmission loss and congestion are causes to incur the daily price fluctuations.
Upgrading the transmission line can provide a smoother power transmission from
over-supply regions to over-demand regions and consequently solve the spatial power
inequilibrium.

5. Conclusion

As two frequently observed phenomena and the constituents of extreme values, spike
and negative prices have opposite economic meanings. Negative prices indicate over-
supply while spike prices indicate over-demand. This study assesses the impact of
negative pricing and spike pricing on the price fluctuation. We evaluate the price
fluctuation by the standard deviation of prices for each transmission line. We analyze
the price data from the PJM electricity market including over 11,000 transmission
lines with hourly updated records. For both negative and spike price groups, we cal-
culate 16 relevant covariates by transmission lines. These covariates capture the distri-
butions of spike prices and negative prices respectively.

To compare the effects on price fluctuations between negative prices and spike pri-
ces, we employ a two-stage analyses with a PCA model and a NARDL model.
Through the result of PCA we select six components and interpret their implication
related to the covariates. We find that components with the largest explanatory power
to the variation of prices are highly related to spike LMPs and the position and the
extent of concentration of the overall LMPs. Therefore, in the dimension of the indi-
vidual transmission lines, there exists over-demand with a high frequency. Different
from PCA, results of the NARDL model suggest that the negative prices have a larger
potential effect on both the real-time market and the forward market. As an implica-
tion, our finding confirms the contribution of the renewable energy incentive
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mechanisms, and believes that the renewable energy will fulfill the energy demand
and help balance the energy equilibrium in the future.

In summary, our results indicate that in the current electricity market, although
types of renewable energy generators have already been participating and making
contribution, the over-demand and energy shortage are still the big issues. The time-
varying inequilibrium between power supply and demand are common in any area.
From the perspective of policy makers, developing EES and upgrading the transmis-
sion capacity should be the resolution to reduce the market price fluctuations.

Additionally, our results suggest that PCA and NARDL are efficient tools for elec-
tricity market analyses. Using PCA, we can reduce the dimensionality of multivariate
analysis, and discover the structural meaning of factors by constructing latent com-
mon structures. The NARDL model enables us to take a comprehensive picture of
the overall market, and figure out the determinants of price fluctuations.
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