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DIOPHANTINE EQUATIONS WITH BALANCING-LIKE
SEQUENCES ASSOCIATED TO
BROCARD-RAMANUJAN-TYPE PROBLEM
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National Institute of Technology Rourkela, India

ABSTRACT. In this paper, we deal with the Brocard-Ramanujan-type
equations Ap, An, -+ Ap, £1 = Ay or Gy or ng where {An},>0 and
{Gm}m>0 are either balancing-like sequences or associated balancing-like
sequences.

1. INTRODUCTION

A positive integer B is a balancing number ([1]) if 14+24---+(B—1) =
(B+1)+---4+(B+ R) holds for some positive integer R. If B is a balancing
number, then 8B? + 1 is a perfect square and its positive square root is
known as a Lucas-balancing number ([18, 27]). The n-th balancing number
is denoted by B,, and the balancing numbers satisfy the binary recurrence
B,+1 = 6B, — B,_1 with initial terms By = 0,B; = 1. The n-th Lucas-
balancing number is denoted by C,, and the Lucas-balancing numbers satisfy
the same binary recurrence as that of balancing numbers with different initial
terms Cy = 1, = 3.

For any fixed positive integer A > 2, the sequence {z,}, defined recur-
sively as x,41 = Ax, — x,_1 with initial terms xqg = 0,27 = 1, is known
as a balancing-like sequence and for each n, Dz? + 1, where D = A24’4, is a
perfect rational square and its positive square root is known as the n-th Lucas-
balancing-like number. The Lucas-balancing-like sequence also satisfy a recur-
rence identical with that of balancing-like sequence, but with different initial
values ([19, 29]). We call the sequence {y,, } defined by y,, = /(42 — 4)z2 + 4,
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an associated balancing-like sequence. It is easy to see that the sequence {y, }
satisfies a binary recurrence identical with the balancing-like sequence but
with initial terms yo = 2,y1 = A. The Binet forms of the balancing-like and
the associated balancing-like sequences are

an_ﬂn

respectively, where o = Aty A?—4 V2A2*4 and g = 4=vA2—4d V2AL4. The Pell-like sequence
{pn} and the associated Pell-like sequence {g¢,, } corresponding to a balancing-
like sequence {z,} are defined by pa, = 2., peni1 = Tn+1 — Tn, G2n =
Il Bl Gont1 = Tni1 + Tn ([20]). We call the sequence s, = {2¢,}, the
Lucas-Pell-like sequence.

If A and B are fixed nonzero coprime integers, then the sequence {u, }n>0
defined recursively by u, 11 = Au, + Bu,_1 with initial terms ug = 0, u; = 1
is known as a Lucas sequence. The corresponding associated Lucas sequence
{vn }n>0 satisfies an identical recurrence relation with initial terms vy = 2 and
v1 = A. The Binet forms of these sequences are

,.Yn —_gn
)
respectively, where v = 4+VA+4B “32“5) and § = A=A H4B V‘;‘QHB. If B = —1, then the
sequences {u,} and {v,} coincide with the balancing-like sequence {z,,} and

the associated balancing-like sequence {y, } respectively.

The well-known Brocard-Ramanujan problem consists of finding all pos-
itive integer solutions of the Diophantine equation

(1.2) n!+1=m?

7yn:an+ﬁn

Uy = , Uy ="

This problem was posed by Brocard ([5, 6]) and independently by Ramanujan
([25, 26]), unknowing of Brocard’s query. The only known solutions of this
problem are (n,m) = (4,5),(5,11),(7,71) and it is still an open question
whether there exists any other solution of (1.2). Overholt ([17]) showed that
the fulfilment of weaker version of the abc-conjecture implies the finiteness of
number of solutions of (1.2). Berndt and Galway ([3]) did not find further
solutions of (1.2) for 8 < n < 10° and recently, Matson and Robert ([15])
improved the upper bound to 10'2.

For A € Z, Dabrowski ([8]) generalized the Brocard-Ramanujan problem
and proved the finiteness of the integer solutions of n! + A = m?. Berend
and Harmse ([2]) studied the generalized version n! = P(x) of (1.2), where
P(z) is a polynomial, and showed that the later equation has only finitely
many solutions if P(x) has an irreducible factor of relatively large degree.
Dabrowski and Ulas ([9]) worked on an equation of the form y? = BU,, + A,
where U,, = f(1)f(2)--- f(n) and f is an increasing function from N to N.
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By replacing the consecutive natural numbers 1,2, ..., n of n! with terms
of a Lucas sequence {u, }, Luca and Shorey ([13]) proved that the Diophantine
equation

UnlUn g1 Unpho1+1 =1,
where t is not a perfect power, has finitely many solutions. Subsequently, Mar-
ques ([14]) proved that the Fibonacci version of Brocard-Ramanujan equation

FnFnJrl"'FnJrkfl‘i'l:Fgw

has no solution in positive integers m,n and k > 2. Generalizing the above
equation, Szalay ([31]) studied the Diophantine equation

H, Hy,, - H, +1=H?2,

where {H,} is either Fibonacci sequence or Lucas sequence or balancing
sequence. With a slight modification of the above equation, Pongsriiam
([23, 24]) solved the equations of the form

Ap Ay - Ap, £1 =A% or G2,

and
Ay, - Ap, £1=A,, or Gy,

where {4, }n>0 and {G,, }m>0 are either the Fibonacci or the Lucas sequence.
As an extension of the works of Marques ([14]), Szalay ([31]), Pongsriiam ([23])
and Pink and Szikszai ([21]) solved the Brocard-Ramanuja-type equations

2

Uy Uny = Uy, + 1 =1u;,

and
2

UpyUny * " Un,, + 1 =1},
except a certain case, where {uy, },>0 and {v, }n>0 are the Lucas and associ-
ated Lucas sequences corresponding to B = 41 respectively.

Motivated by the above works, we study the Brocard-Ramanuja-type
equation
Ap Ay, £1=A,, or G, or an,
where {A,}n>0 and {Gp, >0 are either balancing-like or associated balan-
cing-like sequences.

2. PRELIMINARIES

Let a and b be complex numbers, a + b = VR, ab = Q, R and Q are
coprime nonzero integers and 7 is not a root of unity. The Lehmer sequence
is defined as

a—b" :
— if n is odd,
(21) Un - { 717271

Sz ifniseven
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and its associated Lehmer sequence is

n n . .
a’+b if n is odd,

(2.2) vV, = { atb

a +b" if nis even.

Lehmer numbers are generalizations of Lucas numbers on the divisibility prop-
erties and was studied by Lehmer himself in 1930. One can observe that Lucas
numbers are also Lehmer numbers up to possible multiplication by a factor
a + b. In particular,

U, if n is odd,
Uy =
(a+b)U, if nis even.

Using the positive integer solutions of the quadratic Diophantine equation
(2.3) az® —by* =1,

([32]), Keskin and Siar ([10]) proved that if (u, v) is the fundamental solution
of (2.3), then all positive integer solutions of the (2.3) are (z,vy) = (u(zp+1 —
Zn), 0(Tpt1 + n)) where {z,} is a balancing-like sequence corresponding to
A = 4au® — 2. Thus, the positive solutions of (A + 2)x? — (4 — 2)y? = 4 are
given by (Zp41 — Tny Tpt1 + Zn), n > 0. Furthermore, it is easy to see that

w2n+l + Z2n+1

(2-4) Pon+1 = Tn+1 — Tn = w—+z’
2n+1 _ 2n+1
(2.5) Somi1 = 2@par ap) =2 2 EF
w—z
2n 2n
P2an w —Zz

2.6 — 2n 2n _
( ) Son w +z ) 2 w2 — 22 )

where w = YAEZEVAZ2 anq » = VAL VAZZ Gince (w + 2)? and wz belong

to set of non-zero integers and are coprime, the Lehmer and the associated
Lehmer numbers corresponding to w and z are

(2.7) Uap, = p%’ Usny1 = 527;1,
(28) ‘/277, = S2n, ‘/2n+1 = P2n+1-

A prime number p is a primitive prime divisor of the Lucas number wu,, if
p divides u,,, but does not divide (y — §)?uz - - u,_1. In Lehmer sequence, p
is a primitive prime divisor of U, if p | U,, and p { (a? —b?)?Uy - - - U,,_1. Since
Uy = Upvy by Lemma 2.3(1), it follows that a primitive prime divisor of uay,
is also a primitive prime divisor of v,,.

The following two lemmas deal with the existence conditions for the prim-
itive prime divisors in the Lucas and the Lehmer sequences. These lemmas
will be required in the main results of this paper.



DIOPHANTINE EQUATIONS WITH BALANCING-LIKE SEQUENCES 259

LEMMA 2.1 ([7]). Suppose v and & are real numbers such that v+ and v
are nonzero coprime integers and ¥6 ' is not a root of unity. If n # 1,2,6,
then u, has a primitive prime divisor except when n = 12, v+ 6 = 1 and
v = —1.

LEMMA 2.2 ([33]). If a and b are real numbers and n > 18, then U, has
a primitive divisor.

To explore the solutions of some Brocard-Ramanuja-type equations, we
need to use some properties of Lucas and associated Lucas sequences, which
are given in the following lemma.

LEMMA 2.3. If m and n are natural numbers, then
U2n = UnUn, U2n = Unvn;

02 — (A%~ 4B)u2 = 4(af)",

U |ty if and only if m|n,

Um|vn if and only if m|n and = is odd,

if m=2°m’ and n = 2%/, m’ and n' are odd, then

() = {’U(m,n) ifc>d,

AR S

lor2 ife<d.

For the proofs of the assertions (1)-(4), see [28] and for the proof of (5)
see [16].

To establish the main results of this paper, we also need certain factoriza-
tion properties of balancing-like and associated balancing-like numbers. The
following lemma is important in this regard.

LEMMA 2.4. The balancing-like sequence {x,}n>0 and associated balan-
cing-like sequence {yn}n>0 corresponding to any A > 2 satisfy

2 _ 2 _z
1.z —1l=xp12p41, Yy, — 1 = z%:‘,

TntlYn—1 if n is odd,

Tpn+1l=4q ;72 "7z . )
5Pn—15n+1 if mis even,
Tn-1Ynti if n is odd,

3. xp, — 1= 1.2 2 . .
5Pn+18n—1 if mis even,

A - l;ﬁ if n is even,
- Yn+ 1= S3n. @f nis Odd,

. |- Zj‘—" if nis even,
cYn T T b if nis odd.

2.

The above assertions can be proved using (1.1), (2.4), (2.5) and (2.6).

The following Lemma, which is also important for the development of
main results, provides conditions under which balancing-like numbers are ex-
pressible as products of associated balancing-like numbers.
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LEMMA 2.5. Form > 5, the m-th balancing-like number x,, corresponding
to some A > 2 can be written as

(29) Tm = Yn1Yno = " Yny

where Yn, 15 ni-th associated balancing-like number, 0 < np < ng < - <y,
only ifm=21>3 orm=3-21>1.

PRrROOF. If m > 5 is odd, then in view of Lemma 2.1, there exists an odd
primitive prime divisor p of 2;,,. By virtue of Lemma 2.3(5), p does not divide
any associated balancing-like number and therefore, x,, cannot be expressed
as a product of associated balancing-like numbers.

Now let m > 5 be even. Then we can write masm =m-24, 1> 1, mq > 1
is odd. If my > 5, then by Lemmas 2.1 and 2.3(5), there exists a prime p such
that p|a,, , but p does not divide any associated balancing-like number. Since
mq|m, by Lemma 2.3(3) p|z,, and this implies that p|y,, for some 1 <1i < k,
which contradicts the fact that p does not divide any associated balancing-like
number. Hence, for m; > 5, z,, is not expressible as product of associated
balancing-like numbers. Thus, m; = 1 or 3 and consequently m = 2¢,1 > 3 or
m=3-2L1>1.

If m =2 and [ > 3, then

(210) Tol = Yol—1Ygl—2 *+ - Y2T2 = Yol—-1Ygi—2 ** Y21,

and in this case, x4 is product of associated balancing-like numbers. Further-
more, if m=3-2" and [ > 1, then

T3.00 = Y3z.21-1Y3.91-2 - Y6Y3T3-

Since (x3,yn) = 1 or 2 for all n by Lemma 2.3(5), x3 is expressible as product
of associated balancing-like numbers only if x3 = A% — 1 = 2" for some r > 3
since A > 2. Hence, (2.9) holds only when m = 20l >30orm=3-2L1>1.

O

3. MAIN RESULTS

In this section, we study some Brocard-Ramanujan-type equations that
involve balancing-like and associated balancing-like numbers. These results
are variants of the works done in [14, 31, 23, 24, 21] for other sequences.
In the proof of our main results, we use factorizations of balancing-like and
associated balancing-like numbers, some results from [7, 33] on the existence
of primitive prime divisors of Lucas and Lehmer numbers and Lemma 2.5.

Throughout this section, {z,}n>0 and {y,}n>0 denote the balancing-
like and associated balancing-like sequences respectively, m, ni,no, ..., ng
are nonnegative integers such that ny < ng < --- < mi and k is a natural
number.
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THEOREM 3.1. If A # 3, then the equation
(3.1) Ty T+ Ty, + 1 =2,
holds only if k = 1,n1 = 3 and m = 1. Moreover, if A = 3, then (3.1) holds
onlyifk=1n =3, m=1ork=1n =2, m=0.
PRrROOF. Using Lemma 2.4, (3.1) can be written as
(3.2) Ty Ty Ty, = T3

If m > 2, then by Lemma 2.1, x3,, has a primitive prime divisor p that does
not divide xj, for k < 3m and hence, if n; < 3m, then p does not divide any
term on the left hand side of (3.2). If ny > 3m, then there exists a primitive
prime divisor of x,, that does not divide x3,,. Therefore, 3m = n; and hence
(3.2) reduces to
Tny = Tpge_ 1 Tm = 17

which is not possible since m > 2. If m =1, y2, — 1 = A2 — 1 = 23 and for
m =0, y2, —1 =22 —1=3, which holds only if A= 3. If m = 2, then (3.1)
reduces to

(3.3) Ty Ty - Ty, = Y5 — 1 = AT — 4A% 4 3.

One can check that A* — 442 + 3 < 25 and hence, n; cannot exceed 4.
But the only z;,2 < ¢ < 4 that divides A* —4A4% +3is 3 = A2 — 1 and
A — 4A% + 3 = 23(A? — 3). Furthermore, (4% — 3) < x3 and is divisible by
9 = A only if A = 3 and in this case A* — 442 4+ 3 = 22325 and 2 is not a
balancing-like number. Hence (3.3) cannot hold for any k. O

THEOREM 3.2. The Diophantine equation
(34) Yni** Yny, + 1= :E?n

has no solution for m > 5. If m <5, then for each A > 2, (3.4) has at most
a finite number of solutions.

PROOF. If m = 3, then 23 — 1 = zox4 = y?y2, which is a solution of (3.4)
corresponding to k = 3,11 = ng = 1,n3 = 2. If m < 5, then it is easy to see
that for each A > 2, (3.4) has at most 5(2° — 1) = 155 solutions. Now assume
that m > 5. Using Lemma 2.4, (3.4) can be written as

(35) Yni " Ynp = Tm+1Tm—1-
Since y, = 2=, applying Lemma 2.3 to (3.5), we get
(3.6) Ton, "+ Ton, = Tyl Tm—1Tn,y *** Tny -

If m+1 > 2ng, then by Lemma 2.1, no primitive prime divisor of x,,1 divides
any term on the left hand side of (3.6). If m + 1 < 2ny, then no primitive
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prime divisor of xg,, divides any term on the right hand side of (3.6). Hence,
2ny = m + 1 which reduces (3.6) to

Tony """ X2y — Tm—1Tny " " Tny, -
Since ny = T'H < m — 1, using the above argument repeatedly, one can
conclude that m — 1 = 2ng_1, N = 2ni_o and ni_1 = 2n,_3, which imply
that m +1 = 2n, = 4ng_o and m — 1 = 2n;_1 = 4ny_3. Therefore, 4|m — 1
and 4|m + 1, which leads to 4|(m +1) — (m — 1) = 2, which is a contradiction.
Hence, (3.4) has no solution for m > 5. O

THEOREM 3.3. The Diophantine equation
(3.7) Ty Ty * Ty, — 1 = Xy

has no solution for m > 19. If 0 < m < 19, then for each A > 2, (3.7) can
have at most finitely many solutions.

PROOF. If m = 0, then 29 + 1 = x1 and if m = 3, then 23+ 1 = A% = 23
leading to the solutions of (3.7). For 0 < m < 19, using simple combinatorial
argument, it is easy to see that (3.7) cannot have more than 20(2'® — 1)
possible solutions. Now, let m > 19. If m is odd, then by virtue of Lemma
2.4, (3.7) can be written as

(3.8) Ty Ty * Ty, = T + 1 = Tmprym_i.

Lemma 2.3(1) makes (3.8) equivalent to

(3.9) Ty Ty * Ty Tt = Tl Ty

By Lemma 2.1, x,, has a primitive prime divisor for all n > 6. If m — 1 < ny,
then there exists a prime divisor p such that p|z,,, but p does not divide
Tmi1 and x,,—1. If m—1 > ny, there exists a prime p that divides x,,_1, but

does not divide any z,,, for 1 <14 < k. Hence, m — 1 = ny which reduces (3.9)
to

(3.10) Ty Ty Ty Tt = T

m—+1 > m—1

Since ™5 5=, using the similar argument as above we conclude that

mtl — ny_1 and therefore, (3.10) takes the form
Ty Ty Loy, Tmo1 = 1.

Using the above equation, we get

1=z, 2n, Ty, Tm > Tm_1 > A,

which contradict our assumption A > 2. If m is even, then using Lemma 2.4,
(3.7) can be written as

LTy Ly * " Tny, = Tm — 1= §pm+18m—l-
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In view of (2.3) and (2.4), the above equation can be written in terms of
Lehmer and associated Lehmer numbers as

U2n1 U2n2 T []271;c = Vm+1 Um—17
and in view of Lemma 2.3(1), the last equation is equivalent to
(3.11) UonUsny - Uopy U1 = Uy 2Up—1.

Since, by Lemma 2.2, the Lehmer number U,, has a primitive prime divisor
for n > 18, it follows that 2m + 2 = 2ny, and using Lemma 2.2 once more, we
get m — 1 = 2n;_1. Now, we conclude from (3.11) that

1=Us,,Uzny - Uspy_ U1 > Upyp1 > Us,

which is not possible and hence, (3.7) has no solution for m > 19. O

THEOREM 3.4. The Diophantine equation
(3.12) Ty Ty * Ty, + 1= Ty

has no solution for m > 17 and (3.12) may be solvable for m < 17 depending
on the values of A.

PrROOF. If m = 1, then #; — 1 = x¢, which is a solution of (3.12). If
m < 17, it is easy to check the possible solutions of (3.12) for different values
of A. Now assume that m > 17. If m is odd, then using Lemma 2.4 to (3.12),
we get

T Tny =" Tp,y, = .’L'm;l ym2+1.

Using Lemma 2.3(1), the above equation can be written as

(3.13) Ty Ty * Ty Tl = Lot Ty g1
In view of Theorem 2.1, m + 1 = nj, and hence (3.13) reduces to

Ty Lny '.Inkill‘wng»l = Iwn;l y

which is not possible since the left hand side is greater than right hand side.
If m is even, then application of Lemma 2.4, (3.12) results in

1

Tn1Tny """ Tny, = ZPm—1Sm+1-

2

Using (2.3) and (2.4), the above equation can be written in terms of Lehmer
and associated Lehmer numbers as

U2n1 U2n2 T []271;c = Vm—1 Um+1-
An application of Lemma 2.3(1) makes the last equation equivalent to

(3.14) UznyUzny - U2p Up—1 = Uzim—2Unm 1.
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Applying Lemma 2.2 to (3.14), we get 2m — 2 = 2ny. Using Lemma 2.2 once
more, we get m + 1 = 2ny_1, and this reduces (3.14) to

(315) U2n1 U2'n,2 e U2'n,k,2 Umfl = 17
which is not possible since U,,—1 > 1 for m > 17. Hence, (3.12) has no
solution for m > 17. O

THEOREM 3.5. The Diophantine equation

(3.16) Yot - Y — 1 = U

has no solution for m > 12.

PRrROOF. If m > 12 is even, then using Lemma 2.4, (3.16) can be written
as
(317) YniYno * " Ynp Lgp = Tim .
In view of Lemma 2.3(1), (3.17) is equivalent to

(3.18) Ton, Toy * ** T2n,, B = Tam Ty Ty " ** Ty

An application of Lemma 2.1 to (3.18) results in 3% = 2ny, and (3.18) is now
reduced to

(3.19) Topy Tony * T2ny_ Tm = Ty Ty Ty -

Since 7 < 7 = 2% < nyg, similar to the last case, one can use Lemma 2.1 to
obtain ny = 2n;_1 and hence, ny_; = % and (3.19) further reduces to

YniYny * ynkfgx% = Tny_q-

But, ng_1 = BT’” < % implies that ¥, Yn, - - Yny Tz < Tz which is absurd.
If m > 12 is odd, then using Lemma 2.4, (3.16) can be written as

y y .« . y o Z)B—m
nyJdng ng pm .
Since y,, = s2,, the above equation leads to
S2n152n9 ** * S2n, Pm = P3m,
which, in terms of Lehmer and associated Lehmer numbers, can be written as
An application of Lemma 2.2 to (3.20) gives 3m = 2n;, and reduces (3.20) to
‘/in‘/2n2 te ‘/2nk,1vm - 15

which implies that 1 > V;;, > V12 as m > 12. But, this is not possible. Hence,
(3.16) has no solution for m > 12. a
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THEOREM 3.6. The Diophantine equation

has no solution for m > 18.

PROOF. If m > 18 is even, then using Lemma 2.4, (3.21) can be written
as

(3.22) YniYny = YnpYm = Yom.

2

By the help of Lemma 2.1, (3.22) gives 22* = ny, and thus, (3.22) reduces to
y’ﬂly’ﬂz T ynk,ly% = 17

which gives 1 > y= > yo. But, this is not possible.
If m > 18 is odd, then using Lemma 2.4 in (3.21), we get

S3m,
(323) YniYny =" Ynyy = -

Sm
Since y, = San, (3.23) is equivalent to
S2n152ng ** S2n, Sm = S3m

and converting in terms of Lehmer and associated Lehmer numbers, the last
equation is equivalent to

Applying Lemma 2.3(1) in (3.24), we get
(3'25) ‘/271,1 ‘/277,2 e ‘/277,]672 U4nk,1 U4:’I7,]c Um = U3mU2nk U2’ﬂk71 N

An application of Lemma 2.2 in (3.25) gives 3m = 4n; and hence, 2n;, =

37’” > m > 18. Using Lemma 2.2 in (3.25) once more, we get 2n; = 4ng_1

and (3.25) reduces to
(3.26) Van, Vony -+ Vang U = Usny s -

Since 2nj_1 = ny = 3Tm < m, the left hand side of (3.26) is greater than right
hand side, which contradicts (3.26). Hence, no solution of (3.21) exists for
m > 18. 0

THEOREM 3.7. The Diophantine equation

has no solution for m > 6 and it can have at most finite number of solutions

for m <6 for each A.
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PRrOOF. If m = 0, then z; + 1 = yg, which is a solution of (3.27) cor-
responding to k = 1 and ny = 1. One can check that (3.27) has at most
6(25 — 1) = 186 solutions if m < 6 for each A. Now assume that m > 6. If m
is even, then using Lemma 2.4, (3.27) can be written as

(3.28) Ty Tng *** Tny Yz = Yam.

Lemma 2.3(1) makes (3.28) equivalent to

(3.29) Ty Tny * " Ty T am = T3 T -

Lemma 2.1 applied to (3.29) gives 3m = ny, and this reduces (3.29) to

)

(3.30) Ty Tny ** " Ty TmTam =T

w3

which is not possible since the left hand side is greater than the right side.
If m is odd, then with the help of Lemma 2.4, (3.27) can be written as

S3m
T Tny " Ty, = —,
Sm
which, in terms of Lehmer and associated Lehmer numbers, is equivalent to
(3.31) Un,Uny -+ - Up, Uy, = Usyy,.

Using Lemma 2.2 in (3.31), we obtain n; = 3m and (3.31) reduces to
UnUpy - Upp Upy =1,

which is not true since U,, > 1 because of our assumption m > 6. Hence,
(3.27) has no solution for m > 6. O

THEOREM 3.8. The Diophantine equation
(3.32) Ty Ty =+ Ty, — 1 = Y

has no solution for m > 4 and for each A, it has at most finite number of
solutions if m < 4.

PROOF. If m = 2, then 3 — 1 = ys leading to a solution of (3.32)
corresponding to £k = 1, n; = 3 and for m < 4, it is easy to see the finiteness
of solutions for each A. Now assume that m > 4. If m is even, then using
Lemma 2.4, (3.32) can be written as
(3.33) Ty Tng *** Ty TmT = Tap.

Now applying Lemma 2.1 to (3.33), we get that P’Tm = ny and this reduces
(3.33) to

Tpy Ty " Ty TmT3m = 1,

2
which is not possible since Tam > 1 for m > 4.
If m is odd, then using Lemma 2.4, we can write (3.32) as

_p3m
xnlxng o ':Enk -

Pm
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and this equation can be written in terms of Lehmer and associated Lehmer
numbers as

UniUn, Uy Vin = Vam.
Since V,, = Us, /U, from Lemma 2.3(1), the above equation takes the form
(3.34) Un,Un, - - Un UsnUsin = U Uss.
Using Lemma 2.2 in (3.34), we get ni, = 6m and (3.34) reduces to
Un Upy - Up, Uz Uy, = Upp,

which does not hold since the left hand side is greater than the right hand
side. Hence, (3.32) has no solution for m > 4. O

THEOREM 3.9. If m > 18, then the Diophantine equation
(3.35) YniUns * Unyp — 1 = T

is solvable only if m =241 — 1,1 >4 or 3-241 —1,1> 2. If m < 18, then
for each A, (3.35) has only finite number of solutions.

PROOF. For m =1, yo— 1 = 21, which is a solution of (3.35) correspond-
ing to k = 1, n; = 0 and it is easy to check the finiteness of solutions of (3.35)
when m < 18. Now assume that m > 18. If m is odd, then using Lemma 2.4,
(3.35) can be written as

YnilYng *°  Yny = xm%ly%

and with the help of Lemma 2.3, the above equation takes the form

(3.36) Y Yns Yy D2y Tmt = Tt Ty T+
Applying Lemma 2.1 to (3.36), we get nj, = 21 and (3.36) reduces to
(337) y’ﬂly’ﬂz e ynk,gynk,l = Tm41.

2

But, in view of Lemma 2.5, (3.37) holds only if m = 2+ — 1,1 > 4 or
3.2+ 171> 2.
If m is even, then using Lemma 2.4, (3.35) can be written as
1

Yn1Yny * - ynk = gpnflanrl-

An use of Lemma 2.3, transforms the above equation to
(338) T2n1 L2ng ** * T2n), = Pm—1Sm+1Tn,; Tng *** Ty,

and (3.38) can be written in terms of Lehmer and associated Lehmer numbers
as

(339) U4n1 U4n2 e []477,;C - mflUm+1U2n1 U2n2 e U2nk-
With the help of Lemma 2.3, (3.39) takes the form
(340) U4n1 U4n2 e U4nk Umfl - U2m72Um+1U2n1 U2n2 e U2nk .
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By the use of Lemma 2.2 to (3.40) gives 2m — 2 = 4ny, and reduces (3.40) to
UinUsny -+ Usny y = Upg1Uop Uany -+ Uy,

and Lemma 2.3 reduces the above equation to

(3.41) Von, Vany *+* Vane_y = U1

Since m+1 is odd, using Lemma 2.2 for m > 17, we can ascertain the existence
of a primitive prime divisor of U,,+; that does not divide any associated
Lehmer number corresponding to that Lehmer sequence {U,, }, a contradiction
to (3.41). O

THEOREM 3.10. If m > 8, then the Diophantine equation

is solvable if m =2 +1,1>3 or3-2' +1,1> 2. If m <8, then for each A,
(3.42) has at most finitely many solutions.

PrOOF. If m = 3, yo + 1 = x3, which corresponds to a solution of (3.42)
with k = 1, ny = 2. For each A, it is easy to see that (3.42) has only finitely
many solutions when m < 8. Now let m > 8. If m is odd, then using Lemma
2.4, (3.42) can be written as

YniYny = " Ynyp = me*lymT“
Lemma 2.3 makes the above equation equivalent to

(3.43) Y Yns * Yy Loy Tl = Tt Ty T 1

By virtue of Lemma 2.1, (3.43) holds only if nj; = mT'H and consequently,
(3.43) reduces to

(3.44) YniYUns " Ynpy = Tm—1.

2

Using Lemma 2.5, one can see that (3.44) hold if m = 2/ + 1, I > 3 or
3-2041,1>2.
If m is even, applying Lemma 2.4 to (3.42), we get
YniYns * Ynp = Pm+1Sm—1
and using Lemma 2.3, the above equation can be written as
(345) L2ny L2ny * * * L2ny, = Pm+41Sm—1Tn; Tny = Ty, -

Writing (3.45) in terms of the Lehmer and the associated Lehmer numbers,
we get

(346) U4n1 U4n2 e []471;c = Vm+1 Um—lU2n1 U2n2 T []271;c .
The relation Us,, = U, V,, makes it possible to write (3.46) as
(347) U4n1 U4n2 e []477,;C Uerl = U2m+2UmflU2n1 U2n2 e U2nk .
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Applying Lemma 2.2 to (3.47), we get 2ny, = m + 1 and now (3.47) takes the
form

U47l1 U47l2 e U4nk,1 = m—lU2n1 U2n2 e Uz’ﬂk71
and using Lemma 2.3, we can reduce the above equation to

(348) ‘/2711 ‘/2712 e ‘/27%—1 = Um-—1-

Since m — 1 > 18 is odd, Lemma 2.2 guarantees the existence of a primitive
prime divisor p of Uy, —1, which does not divide any associated Lehmer number,
a contradiction to (3.48). O
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