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Abstract. In this paper, we deal with the Brocard-Ramanujan-type
equations An1

An2
· · ·Ank

± 1 = Am or Gm or G2
m

where {An}n≥0 and
{Gm}

m≥0 are either balancing-like sequences or associated balancing-like
sequences.

1. Introduction

A positive integer B is a balancing number ([1]) if 1+2+ · · ·+(B− 1) =
(B+1)+ · · ·+ (B+R) holds for some positive integer R. If B is a balancing
number, then 8B2 + 1 is a perfect square and its positive square root is
known as a Lucas-balancing number ([18, 27]). The n-th balancing number
is denoted by Bn and the balancing numbers satisfy the binary recurrence
Bn+1 = 6Bn − Bn−1 with initial terms B0 = 0, B1 = 1. The n-th Lucas-
balancing number is denoted by Cn and the Lucas-balancing numbers satisfy
the same binary recurrence as that of balancing numbers with different initial
terms C0 = 1, C1 = 3.

For any fixed positive integer A > 2, the sequence {xn}, defined recur-
sively as xn+1 = Axn − xn−1 with initial terms x0 = 0, x1 = 1, is known

as a balancing-like sequence and for each n, Dx2
n + 1, where D = A2−4

4 , is a
perfect rational square and its positive square root is known as the n-th Lucas-
balancing-like number. The Lucas-balancing-like sequence also satisfy a recur-
rence identical with that of balancing-like sequence, but with different initial
values ([19, 29]). We call the sequence {yn} defined by yn =

√

(A2 − 4)x2
n + 4,
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an associated balancing-like sequence. It is easy to see that the sequence {yn}
satisfies a binary recurrence identical with the balancing-like sequence but
with initial terms y0 = 2, y1 = A. The Binet forms of the balancing-like and
the associated balancing-like sequences are

xn =
αn − βn

α− β
, yn = αn + βn(1.1)

respectively, where α = A+
√
A2−4
2 and β = A−

√
A2−4
2 . The Pell-like sequence

{pn} and the associated Pell-like sequence {qn} corresponding to a balancing-
like sequence {xn} are defined by p2n = 2xn, p2n+1 = xn+1 − xn, q2n =
xn+1−xn−1

2 , q2n+1 = xn+1 + xn ([20]). We call the sequence sn = {2qn}, the
Lucas-Pell-like sequence.

If A and B are fixed nonzero coprime integers, then the sequence {un}n≥0

defined recursively by un+1 = Aun +Bun−1 with initial terms u0 = 0, u1 = 1
is known as a Lucas sequence. The corresponding associated Lucas sequence
{vn}n≥0 satisfies an identical recurrence relation with initial terms v0 = 2 and
v1 = A. The Binet forms of these sequences are

un =
γn − δn

γ − δ
, vn = γn + δn

respectively, where γ = A+
√
A2+4B
2 and δ = A−

√
A2+4B
2 . If B = −1, then the

sequences {un} and {vn} coincide with the balancing-like sequence {xn} and
the associated balancing-like sequence {yn} respectively.

The well-known Brocard-Ramanujan problem consists of finding all pos-
itive integer solutions of the Diophantine equation

n! + 1 = m2.(1.2)

This problem was posed by Brocard ([5, 6]) and independently by Ramanujan
([25, 26]), unknowing of Brocard’s query. The only known solutions of this
problem are (n,m) = (4, 5), (5, 11), (7, 71) and it is still an open question
whether there exists any other solution of (1.2). Overholt ([17]) showed that
the fulfilment of weaker version of the abc-conjecture implies the finiteness of
number of solutions of (1.2). Berndt and Galway ([3]) did not find further
solutions of (1.2) for 8 ≤ n ≤ 109 and recently, Matson and Robert ([15])
improved the upper bound to 1012.

For A ∈ Z, Dabrowski ([8]) generalized the Brocard-Ramanujan problem
and proved the finiteness of the integer solutions of n! + A = m2. Berend
and Harmse ([2]) studied the generalized version n! = P (x) of (1.2), where
P (x) is a polynomial, and showed that the later equation has only finitely
many solutions if P (x) has an irreducible factor of relatively large degree.
Dabrowski and Ulas ([9]) worked on an equation of the form y2 = BUn + A,
where Un = f(1)f(2) · · · f(n) and f is an increasing function from N to N.
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By replacing the consecutive natural numbers 1, 2, . . . , n of n! with terms
of a Lucas sequence {un}, Luca and Shorey ([13]) proved that the Diophantine
equation

unun+1 · · ·un+k−1 + t = yl,

where t is not a perfect power, has finitely many solutions. Subsequently, Mar-
ques ([14]) proved that the Fibonacci version of Brocard-Ramanujan equation

FnFn+1 · · ·Fn+k−1 + 1 = F 2
m,

has no solution in positive integers m,n and k ≥ 2. Generalizing the above
equation, Szalay ([31]) studied the Diophantine equation

Hn1
Hn2

· · ·Hnk
+ 1 = H2

m,

where {Hn} is either Fibonacci sequence or Lucas sequence or balancing
sequence. With a slight modification of the above equation, Pongsriiam
([23, 24]) solved the equations of the form

An1
An2

· · ·Ank
± 1 = A2

m or G2
m

and

An1
· · ·Ank

± 1 = Am or Gm,

where {An}n≥0 and {Gm}m≥0 are either the Fibonacci or the Lucas sequence.
As an extension of the works of Marques ([14]), Szalay ([31]), Pongsriiam ([23])
and Pink and Szikszai ([21]) solved the Brocard-Ramanuja-type equations

un1
un2

· · ·unk
+ 1 = u2

m

and

vn1
vn2

· · · vnk
+ 1 = v2m

except a certain case, where {un}n≥0 and {vn}n≥0 are the Lucas and associ-
ated Lucas sequences corresponding to B = ±1 respectively.

Motivated by the above works, we study the Brocard-Ramanuja-type
equation

An1
· · ·Ank

± 1 = Am or Gm or G2
m,

where {An}n≥0 and {Gm}m≥0 are either balancing-like or associated balan-
cing-like sequences.

2. Preliminaries

Let a and b be complex numbers, a + b =
√
R, ab = Q, R and Q are

coprime nonzero integers and a
b
is not a root of unity. The Lehmer sequence

is defined as

Un =

{

an−bn

a−b
if n is odd,

an−bn

a2−b2
if n is even

(2.1)
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and its associated Lehmer sequence is

Vn =

{

an+bn

a+b
if n is odd,

an + bn if n is even.
(2.2)

Lehmer numbers are generalizations of Lucas numbers on the divisibility prop-
erties and was studied by Lehmer himself in 1930. One can observe that Lucas
numbers are also Lehmer numbers up to possible multiplication by a factor
a+ b. In particular,

un =

{

Un if n is odd,

(a+ b)Un if n is even.

Using the positive integer solutions of the quadratic Diophantine equation

ax2 − by2 = 1,(2.3)

([32]), Keskin and Siar ([10]) proved that if (u, v) is the fundamental solution
of (2.3), then all positive integer solutions of the (2.3) are (x, y) = (u(xn+1 −
xn), v(xn+1 + xn)) where {xn} is a balancing-like sequence corresponding to
A = 4au2 − 2. Thus, the positive solutions of (A + 2)x2 − (A− 2)y2 = 4 are
given by (xn+1 − xn, xn+1 + xn), n ≥ 0. Furthermore, it is easy to see that

p2n+1 = xn+1 − xn =
w2n+1 + z2n+1

w + z
,(2.4)

s2n+1 = 2(xn+1 + xn) = 2 · w
2n+1 − z2n+1

w − z
,(2.5)

s2n = w2n + z2n,
p2n
2

=
w2n − z2n

w2 − z2
,(2.6)

where w =
√
A+2+

√
A−2

2 and z =
√
A+2−

√
A−2

2 . Since (w + z)2 and wz belong
to set of non-zero integers and are coprime, the Lehmer and the associated
Lehmer numbers corresponding to w and z are

U2n =
p2n
2

, U2n+1 =
s2n+1

2
,(2.7)

V2n = s2n, V2n+1 = p2n+1.(2.8)

A prime number p is a primitive prime divisor of the Lucas number un if
p divides un, but does not divide (γ − δ)2u2 · · ·un−1. In Lehmer sequence, p
is a primitive prime divisor of Un if p | Un and p ∤ (a2− b2)2U2 · · ·Un−1. Since
u2n = unvn by Lemma 2.3(1), it follows that a primitive prime divisor of u2n

is also a primitive prime divisor of vn.
The following two lemmas deal with the existence conditions for the prim-

itive prime divisors in the Lucas and the Lehmer sequences. These lemmas
will be required in the main results of this paper.
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Lemma 2.1 ([7]). Suppose γ and δ are real numbers such that γ+δ and γδ
are nonzero coprime integers and γδ−1 is not a root of unity. If n 6= 1, 2, 6,
then un has a primitive prime divisor except when n = 12, γ + δ = 1 and

γδ = −1.

Lemma 2.2 ([33]). If a and b are real numbers and n > 18, then Un has

a primitive divisor.

To explore the solutions of some Brocard-Ramanuja-type equations, we
need to use some properties of Lucas and associated Lucas sequences, which
are given in the following lemma.

Lemma 2.3. If m and n are natural numbers, then

1. u2n = unvn, U2n = UnVn,
2. v2n − (A2 − 4B)u2

n = 4(αβ)n,
3. um|un if and only if m|n,
4. vm|vn if and only if m|n and n

m
is odd,

5. if m = 2cm′ and n = 2dn′, m′ and n′ are odd, then

(um, vn) =

{

v(m,n) if c > d,

1 or 2 if c ≤ d.

For the proofs of the assertions (1)-(4), see [28] and for the proof of (5)
see [16].

To establish the main results of this paper, we also need certain factoriza-
tion properties of balancing-like and associated balancing-like numbers. The
following lemma is important in this regard.

Lemma 2.4. The balancing-like sequence {xn}n≥0 and associated balan-

cing-like sequence {yn}n≥0 corresponding to any A > 2 satisfy

1. x2
n − 1 = xn−1xn+1, y

2
n − 1 = x3n

xn
,

2. xn + 1 =

{

xn+1

2

yn−1

2

if n is odd,
1
2pn−1sn+1 if n is even,

3. xn − 1 =

{

xn−1

2

yn+1

2

if n is odd,
1
2pn+1sn−1 if n is even,

4. yn + 1 =

{ x3n

xn

if n is even,
s3n
sn

if n is odd,

5. yn − 1 =

{ y3n

yn

if n is even,
p3n

pn
if n is odd.

The above assertions can be proved using (1.1), (2.4), (2.5) and (2.6).
The following Lemma, which is also important for the development of

main results, provides conditions under which balancing-like numbers are ex-
pressible as products of associated balancing-like numbers.
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Lemma 2.5. For m ≥ 5, the m-th balancing-like number xm corresponding

to some A > 2 can be written as

xm = yn1
yn2

· · · ynk
,(2.9)

where yni
is ni-th associated balancing-like number, 0 ≤ n1 ≤ n2 ≤ · · · ≤ nk,

only if m = 2l, l ≥ 3 or m = 3 · 2l, l ≥ 1.

Proof. If m ≥ 5 is odd, then in view of Lemma 2.1, there exists an odd
primitive prime divisor p of xm. By virtue of Lemma 2.3(5), p does not divide
any associated balancing-like number and therefore, xm cannot be expressed
as a product of associated balancing-like numbers.

Now letm ≥ 5 be even. Then we can writem asm = m1·2l, l ≥ 1, m1 ≥ 1
is odd. If m1 ≥ 5, then by Lemmas 2.1 and 2.3(5), there exists a prime p such
that p|xm1

, but p does not divide any associated balancing-like number. Since
m1|m, by Lemma 2.3(3) p|xm and this implies that p|yni

for some 1 ≤ i ≤ k,
which contradicts the fact that p does not divide any associated balancing-like
number. Hence, for m1 ≥ 5, xm is not expressible as product of associated
balancing-like numbers. Thus, m1 = 1 or 3 and consequently m = 2l, l ≥ 3 or
m = 3 · 2l, l ≥ 1.

If m = 2l and l ≥ 3, then

x2l = y2l−1y2l−2 · · · y2x2 = y2l−1y2l−2 · · · y2y1,(2.10)

and in this case, x2l is product of associated balancing-like numbers. Further-
more, if m = 3 · 2l and l ≥ 1, then

x3·2l = y3·2l−1y3·2l−2 · · · y6y3x3.

Since (x3, yn) = 1 or 2 for all n by Lemma 2.3(5), x3 is expressible as product
of associated balancing-like numbers only if x3 = A2 − 1 = 2r for some r ≥ 3
since A > 2. Hence, (2.9) holds only when m = 2l, l ≥ 3 or m = 3 · 2l, l ≥ 1.

3. Main Results

In this section, we study some Brocard-Ramanujan-type equations that
involve balancing-like and associated balancing-like numbers. These results
are variants of the works done in [14, 31, 23, 24, 21] for other sequences.
In the proof of our main results, we use factorizations of balancing-like and
associated balancing-like numbers, some results from [7, 33] on the existence
of primitive prime divisors of Lucas and Lehmer numbers and Lemma 2.5.

Throughout this section, {xn}n≥0 and {yn}n≥0 denote the balancing-
like and associated balancing-like sequences respectively, m, n1, n2, . . . , nk

are nonnegative integers such that n1 ≤ n2 ≤ · · · ≤ nk and k is a natural
number.
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Theorem 3.1. If A 6= 3, then the equation

xn1
xn2

· · ·xnk
+ 1 = y2m(3.1)

holds only if k = 1, n1 = 3 and m = 1. Moreover, if A = 3, then (3.1) holds

only if k = 1, n1 = 3, m = 1 or k = 1, n1 = 2, m = 0.

Proof. Using Lemma 2.4, (3.1) can be written as

xn1
· · ·xnk

xm = x3m.(3.2)

If m > 2, then by Lemma 2.1, x3m has a primitive prime divisor p that does
not divide xk for k < 3m and hence, if nk < 3m, then p does not divide any
term on the left hand side of (3.2). If nk > 3m, then there exists a primitive
prime divisor of xnk

that does not divide x3m. Therefore, 3m = nk and hence
(3.2) reduces to

xn1
· · ·xnk−1

xm = 1,

which is not possible since m > 2. If m = 1, y2m − 1 = A2 − 1 = x3 and for
m = 0, y2m − 1 = 22 − 1 = 3, which holds only if A = 3. If m = 2, then (3.1)
reduces to

xn1
xn2

· · ·xnk
= y22 − 1 = A4 − 4A2 + 3.(3.3)

One can check that A4 − 4A2 + 3 < x5 and hence, nk cannot exceed 4.
But the only xi, 2 ≤ i ≤ 4 that divides A4 − 4A2 + 3 is x3 = A2 − 1 and
A4 − 4A2 + 3 = x3(A

2 − 3). Furthermore, (A2 − 3) < x3 and is divisible by
x2 = A only if A = 3 and in this case A4 − 4A2 + 3 = 2x3x2 and 2 is not a
balancing-like number. Hence (3.3) cannot hold for any k.

Theorem 3.2. The Diophantine equation

yn1
· · · ynk

+ 1 = x2
m(3.4)

has no solution for m > 5. If m ≤ 5, then for each A > 2, (3.4) has at most

a finite number of solutions.

Proof. If m = 3, then x2
3− 1 = x2x4 = y21y2, which is a solution of (3.4)

corresponding to k = 3, n1 = n2 = 1, n3 = 2. If m ≤ 5, then it is easy to see
that for each A > 2, (3.4) has at most 5(25− 1) = 155 solutions. Now assume
that m > 5. Using Lemma 2.4, (3.4) can be written as

yn1
· · · ynk

= xm+1xm−1.(3.5)

Since yn = x2n

xn

, applying Lemma 2.3 to (3.5), we get

x2n1
· · ·x2nk

= xm+1xm−1xn1
· · ·xnk

.(3.6)

Ifm+1 > 2nk, then by Lemma 2.1, no primitive prime divisor of xm+1 divides
any term on the left hand side of (3.6). If m + 1 < 2nk, then no primitive
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prime divisor of x2nk
divides any term on the right hand side of (3.6). Hence,

2nk = m+ 1 which reduces (3.6) to

x2n1
· · ·x2nk−1

= xm−1xn1
· · ·xnk

.

Since nk = m+1
2 < m − 1, using the above argument repeatedly, one can

conclude that m − 1 = 2nk−1, nk = 2nk−2 and nk−1 = 2nk−3, which imply
that m+ 1 = 2nk = 4nk−2 and m− 1 = 2nk−1 = 4nk−3. Therefore, 4|m− 1
and 4|m+1, which leads to 4|(m+1)− (m− 1) = 2, which is a contradiction.
Hence, (3.4) has no solution for m > 5.

Theorem 3.3. The Diophantine equation

(3.7) xn1
xn2

· · ·xnk
− 1 = xm

has no solution for m > 19. If 0 ≤ m ≤ 19, then for each A > 2, (3.7) can

have at most finitely many solutions.

Proof. If m = 0, then x0 +1 = x1 and if m = 3, then x3 +1 = A2 = x2
2

leading to the solutions of (3.7). For 0 ≤ m ≤ 19, using simple combinatorial
argument, it is easy to see that (3.7) cannot have more than 20(218 − 1)
possible solutions. Now, let m > 19. If m is odd, then by virtue of Lemma
2.4, (3.7) can be written as

xn1
xn2

· · ·xnk
= xm + 1 = xm+1

2

ym−1

2

.(3.8)

Lemma 2.3(1) makes (3.8) equivalent to

xn1
xn2

· · ·xnk
xm−1

2

= xm+1

2

xm−1.(3.9)

By Lemma 2.1, xn has a primitive prime divisor for all n > 6. If m− 1 < nk,
then there exists a prime divisor p such that p|xnk

, but p does not divide
xm+1

2

and xm−1. If m− 1 > nk, there exists a prime p that divides xm−1, but

does not divide any xni
for 1 ≤ i ≤ k. Hence, m− 1 = nk which reduces (3.9)

to

xn1
xn2

· · ·xnk−1
xm−1

2

= xm+1

2

.(3.10)

Since m+1
2 > m−1

2 , using the similar argument as above we conclude that
m+1
2 = nk−1 and therefore, (3.10) takes the form

xn1
xn2

· · ·xnk−2
xm−1

2

= 1.

Using the above equation, we get

1 = xn1
xn2

· · ·xnk−2
xm−1

2

≥ xm−1

2

> A,

which contradict our assumption A > 2. If m is even, then using Lemma 2.4,
(3.7) can be written as

xn1
xn2

· · ·xnk
= xm − 1 =

1

2
pm+1sm−1.
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In view of (2.3) and (2.4), the above equation can be written in terms of
Lehmer and associated Lehmer numbers as

U2n1
U2n2

· · ·U2nk
= Vm+1Um−1,

and in view of Lemma 2.3(1), the last equation is equivalent to

U2n1
U2n2

· · ·U2nk
Um+1 = U2m+2Um−1.(3.11)

Since, by Lemma 2.2, the Lehmer number Un has a primitive prime divisor
for n > 18, it follows that 2m+2 = 2nk, and using Lemma 2.2 once more, we
get m− 1 = 2nk−1. Now, we conclude from (3.11) that

1 = U2n1
U2n2

· · ·U2nk−2
Um+1 ≥ Um+1 > U3,

which is not possible and hence, (3.7) has no solution for m > 19.

Theorem 3.4. The Diophantine equation

xn1
xn2

· · ·xnk
+ 1 = xm(3.12)

has no solution for m > 17 and (3.12) may be solvable for m ≤ 17 depending

on the values of A.

Proof. If m = 1, then x1 − 1 = x0, which is a solution of (3.12). If
m ≤ 17, it is easy to check the possible solutions of (3.12) for different values
of A. Now assume that m > 17. If m is odd, then using Lemma 2.4 to (3.12),
we get

xn1
xn2

· · ·xnk
= xm−1

2

ym+1

2

.

Using Lemma 2.3(1), the above equation can be written as

xn1
xn2

· · ·xnk
xm+1

2

= xm−1

2

xm+1.(3.13)

In view of Theorem 2.1, m+ 1 = nk and hence (3.13) reduces to

xn1
xn2

· · ·xnk−1
xm+1

2

= xm−1

2

,

which is not possible since the left hand side is greater than right hand side.
If m is even, then application of Lemma 2.4, (3.12) results in

xn1
xn2

· · ·xnk
=

1

2
pm−1sm+1.

Using (2.3) and (2.4), the above equation can be written in terms of Lehmer
and associated Lehmer numbers as

U2n1
U2n2

· · ·U2nk
= Vm−1Um+1.

An application of Lemma 2.3(1) makes the last equation equivalent to

U2n1
U2n2

· · ·U2nk
Um−1 = U2m−2Um+1.(3.14)
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Applying Lemma 2.2 to (3.14), we get 2m− 2 = 2nk. Using Lemma 2.2 once
more, we get m+ 1 = 2nk−1, and this reduces (3.14) to

U2n1
U2n2

· · ·U2nk−2
Um−1 = 1,(3.15)

which is not possible since Um−1 > 1 for m > 17. Hence, (3.12) has no
solution for m > 17.

Theorem 3.5. The Diophantine equation

yn1
yn2

· · · ynk
− 1 = ym(3.16)

has no solution for m > 12.

Proof. If m > 12 is even, then using Lemma 2.4, (3.16) can be written
as

yn1
yn2

· · · ynk
xm

2
= x 3m

2
.(3.17)

In view of Lemma 2.3(1), (3.17) is equivalent to

x2n1
x2n2

· · ·x2nk
xm

2
= x 3m

2
xn1

xn2
· · ·xnk

.(3.18)

An application of Lemma 2.1 to (3.18) results in 3m
2 = 2nk and (3.18) is now

reduced to

x2n1
x2n2

· · ·x2nk−1
xm

2
= xn1

xn2
· · ·xnk

.(3.19)

Since 7 ≤ m
2 = 2nk

3 < nk, similar to the last case, one can use Lemma 2.1 to
obtain nk = 2nk−1 and hence, nk−1 = nk

2 and (3.19) further reduces to

yn1
yn2

· · · ynk−2
xm

2
= xnk−1

.

But, nk−1 = 3m
8 < m

2 implies that yn1
yn2

· · · ynk−2
xm

2
< xm

2
which is absurd.

If m > 12 is odd, then using Lemma 2.4, (3.16) can be written as

yn1
yn2

· · · ynk
=

p3m
pm

.

Since yn = s2n, the above equation leads to

s2n1
s2n2

· · · s2nk
pm = p3m,

which, in terms of Lehmer and associated Lehmer numbers, can be written as

V2n1
V2n2

· · ·V2nk
Vm = V3m.(3.20)

An application of Lemma 2.2 to (3.20) gives 3m = 2nk and reduces (3.20) to

V2n1
V2n2

· · ·V2nk−1
Vm = 1,

which implies that 1 ≥ Vm > V12 as m > 12. But, this is not possible. Hence,
(3.16) has no solution for m > 12.
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Theorem 3.6. The Diophantine equation

yn1
yn2

· · · ynk
+ 1 = ym(3.21)

has no solution for m > 18.

Proof. If m > 18 is even, then using Lemma 2.4, (3.21) can be written
as

yn1
yn2

· · · ynk
ym

2
= y 3m

2
.(3.22)

By the help of Lemma 2.1, (3.22) gives 3m
2 = nk and thus, (3.22) reduces to

yn1
yn2

· · · ynk−1
ym

2
= 1,

which gives 1 ≥ ym

2
> y9. But, this is not possible.

If m > 18 is odd, then using Lemma 2.4 in (3.21), we get

yn1
yn2

· · · ynk
=

s3m
sm

.(3.23)

Since yn = s2n, (3.23) is equivalent to

s2n1
s2n2

· · · s2nk
sm = s3m

and converting in terms of Lehmer and associated Lehmer numbers, the last
equation is equivalent to

V2n1
V2n2

· · ·V2nk
Um = U3m.(3.24)

Applying Lemma 2.3(1) in (3.24), we get

V2n1
V2n2

· · ·V2nk−2
U4nk−1

U4nk
Um = U3mU2nk

U2nk−1
.(3.25)

An application of Lemma 2.2 in (3.25) gives 3m = 4nk and hence, 2nk =
3m
2 > m > 18. Using Lemma 2.2 in (3.25) once more, we get 2nk = 4nk−1

and (3.25) reduces to

V2n1
V2n2

· · ·V2nk−2
Um = U2nk−1

.(3.26)

Since 2nk−1 = nk = 3m
4 < m, the left hand side of (3.26) is greater than right

hand side, which contradicts (3.26). Hence, no solution of (3.21) exists for
m > 18.

Theorem 3.7. The Diophantine equation

xn1
xn2

· · ·xnk
+ 1 = ym(3.27)

has no solution for m > 6 and it can have at most finite number of solutions

for m ≤ 6 for each A.
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Proof. If m = 0, then x1 + 1 = y0, which is a solution of (3.27) cor-
responding to k = 1 and n1 = 1. One can check that (3.27) has at most
6(25 − 1) = 186 solutions if m ≤ 6 for each A. Now assume that m > 6. If m
is even, then using Lemma 2.4, (3.27) can be written as

xn1
xn2

· · ·xnk
ym

2
= y 3m

2
.(3.28)

Lemma 2.3(1) makes (3.28) equivalent to

xn1
xn2

· · ·xnk
xmx 3m

2
= x3mxm

2
.(3.29)

Lemma 2.1 applied to (3.29) gives 3m = nk and this reduces (3.29) to

xn1
xn2

· · ·xnk−1
xmx 3m

2
= xm

2
,(3.30)

which is not possible since the left hand side is greater than the right side.
If m is odd, then with the help of Lemma 2.4, (3.27) can be written as

xn1
xn2

· · ·xnk
=

s3m
sm

,

which, in terms of Lehmer and associated Lehmer numbers, is equivalent to

Un1
Un2

· · ·Unk
Um = U3m.(3.31)

Using Lemma 2.2 in (3.31), we obtain nk = 3m and (3.31) reduces to

Un1
Un2

· · ·Unk−1
Um = 1,

which is not true since Um > 1 because of our assumption m > 6. Hence,
(3.27) has no solution for m > 6.

Theorem 3.8. The Diophantine equation

xn1
xn2

· · ·xnk
− 1 = ym(3.32)

has no solution for m > 4 and for each A, it has at most finite number of

solutions if m ≤ 4.

Proof. If m = 2, then x3 − 1 = y2 leading to a solution of (3.32)
corresponding to k = 1, n1 = 3 and for m ≤ 4, it is easy to see the finiteness
of solutions for each A. Now assume that m > 4. If m is even, then using
Lemma 2.4, (3.32) can be written as

xn1
xn2

· · ·xnk
xmxm

2
= x 3m

2
.(3.33)

Now applying Lemma 2.1 to (3.33), we get that 3m
2 = nk and this reduces

(3.33) to

xn1
xn2

· · ·xnk−1
xmx 3m

2
= 1,

which is not possible since x 3m
2

> 1 for m > 4.

If m is odd, then using Lemma 2.4, we can write (3.32) as

xn1
xn2

· · ·xnk
=

p3m
pm

,
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and this equation can be written in terms of Lehmer and associated Lehmer
numbers as

Un1
Un2

· · ·Unk
Vm = V3m.

Since Vn = U2n/Un from Lemma 2.3(1), the above equation takes the form

Un1
Un2

· · ·Unk
U2mU3m = UmU6m.(3.34)

Using Lemma 2.2 in (3.34), we get nk = 6m and (3.34) reduces to

Un1
Un2

· · ·Unk−1
U2mU3m = Um,

which does not hold since the left hand side is greater than the right hand
side. Hence, (3.32) has no solution for m > 4.

Theorem 3.9. If m > 18, then the Diophantine equation

yn1
yn2

· · · ynk
− 1 = xm(3.35)

is solvable only if m = 2l+1 − 1, l ≥ 4 or 3 · 2l+1 − 1, l ≥ 2. If m < 18, then
for each A, (3.35) has only finite number of solutions.

Proof. For m = 1, y0−1 = x1, which is a solution of (3.35) correspond-
ing to k = 1, n1 = 0 and it is easy to check the finiteness of solutions of (3.35)
when m < 18. Now assume that m > 18. If m is odd, then using Lemma 2.4,
(3.35) can be written as

yn1
yn2

· · · ynk
= xm+1

2

ym−1

2

and with the help of Lemma 2.3, the above equation takes the form

yn1
yn2

· · · ynk−1
x2nk

xm−1

2

= xm+1

2

xnk
xm−1.(3.36)

Applying Lemma 2.1 to (3.36), we get nk = m−1
2 and (3.36) reduces to

yn1
yn2

· · · ynk−2
ynk−1

= xm+1

2

.(3.37)

But, in view of Lemma 2.5, (3.37) holds only if m = 2l+1 − 1, l ≥ 4 or
3 · 2l+1 − 1, l ≥ 2.

If m is even, then using Lemma 2.4, (3.35) can be written as

yn1
yn2

· · · ynk
=

1

2
pn−1sn+1.

An use of Lemma 2.3, transforms the above equation to

x2n1
x2n2

· · ·x2nk
= pm−1sm+1xn1

xn2
· · ·xnk

(3.38)

and (3.38) can be written in terms of Lehmer and associated Lehmer numbers
as

U4n1
U4n2

· · ·U4nk
= Vm−1Um+1U2n1

U2n2
· · ·U2nk

.(3.39)

With the help of Lemma 2.3, (3.39) takes the form

U4n1
U4n2

· · ·U4nk
Um−1 = U2m−2Um+1U2n1

U2n2
· · ·U2nk

.(3.40)



268 M. K. SAHUKAR AND G. K. PANDA

By the use of Lemma 2.2 to (3.40) gives 2m− 2 = 4nk and reduces (3.40) to

U4n1
U4n2

· · ·U4nk−1
= Um+1U2n1

U2n2
· · ·U2nk−1

and Lemma 2.3 reduces the above equation to

V2n1
V2n2

· · ·V2nk−1
= Um+1.(3.41)

Sincem+1 is odd, using Lemma 2.2 form > 17, we can ascertain the existence
of a primitive prime divisor of Um+1 that does not divide any associated
Lehmer number corresponding to that Lehmer sequence {Un}, a contradiction
to (3.41).

Theorem 3.10. If m > 8, then the Diophantine equation

yn1
yn2

· · · ynk
+ 1 = xm(3.42)

is solvable if m = 2l + 1, l ≥ 3 or 3 · 2l + 1, l ≥ 2. If m ≤ 8, then for each A,
(3.42) has at most finitely many solutions.

Proof. If m = 3, y2 + 1 = x3, which corresponds to a solution of (3.42)
with k = 1, n1 = 2. For each A, it is easy to see that (3.42) has only finitely
many solutions when m ≤ 8. Now let m > 8. If m is odd, then using Lemma
2.4, (3.42) can be written as

yn1
yn2

· · · ynk
= xm−1

2

ym+1

2

.

Lemma 2.3 makes the above equation equivalent to

yn1
yn2

· · · ynk−1
x2nk

xm+1

2

= xm−1

2

xnk
xm+1.(3.43)

By virtue of Lemma 2.1, (3.43) holds only if nk = m+1
2 and consequently,

(3.43) reduces to

yn1
yn2

· · · ynk−1
= xm−1

2

.(3.44)

Using Lemma 2.5, one can see that (3.44) hold if m = 2l + 1, l ≥ 3 or
3 · 2l + 1, l ≥ 2.

If m is even, applying Lemma 2.4 to (3.42), we get

yn1
yn2

· · · ynk
= pm+1sm−1

and using Lemma 2.3, the above equation can be written as

x2n1
x2n2

· · ·x2nk
= pm+1sm−1xn1

xn2
· · ·xnk

.(3.45)

Writing (3.45) in terms of the Lehmer and the associated Lehmer numbers,
we get

U4n1
U4n2

· · ·U4nk
= Vm+1Um−1U2n1

U2n2
· · ·U2nk

.(3.46)

The relation U2n = UnVn makes it possible to write (3.46) as

U4n1
U4n2

· · ·U4nk
Um+1 = U2m+2Um−1U2n1

U2n2
· · ·U2nk

.(3.47)
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Applying Lemma 2.2 to (3.47), we get 2nk = m+ 1 and now (3.47) takes the
form

U4n1
U4n2

· · ·U4nk−1
= Um−1U2n1

U2n2
· · ·U2nk−1

and using Lemma 2.3, we can reduce the above equation to

V2n1
V2n2

· · ·V2nk−1
= Um−1.(3.48)

Since m− 1 > 18 is odd, Lemma 2.2 guarantees the existence of a primitive
prime divisor p of Um−1, which does not divide any associated Lehmer number,
a contradiction to (3.48).
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