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ON THE EXISTENCE OF S-DIOPHANTINE QUADRUPLES

Volker Ziegler

University of Salzburg, Austria

Abstract. Let S be a set of primes. We call an m-tuple (a1, . . . , am)
of distinct, positive integers S-Diophantine, if for all i 6= j the integers
si,j := aiaj + 1 have only prime divisors coming from the set S, i.e. if all
si,j are S-units. In this paper, we show that no S-Diophantine quadru-
ple (i.e. m = 4) exists if S = {3, q}. Furthermore we show that for all
pairs of primes (p, q) with p < q and p ≡ 3 mod 4 no {p, q}-Diophantine
quadruples exist, provided that (p, q) is not a Wieferich prime pair.

1. Introduction

An m-tuple (a1, . . . , am) of positive, distinct integers is called Diophan-
tine, if

(1.1) aiaj + 1 = �

for i 6= j. Diophantine m-tuples have been studied since ancient times by
several authors. It was for a long time an open problem whether Diophan-
tine quintuples exist and many mathematicians such as Fermat, Euler and in
modern times Baker and Davenport ([1]), Pethő and Dujella ([8]) and Dujella
([7]) investigated this problem. Only recently this problem was finally settled
by He et.al. ([10]) who showed that no Diophantine quintuples exist.

Also several variants of Diophantine tuples were considered by several
authors. For instance, Bugeaud and Dujella ([2]) considered the case where
� is replaced by a k-th power in (1.1) and Luca and Szalay ([14]) considered
the case where � is replaced by Fibonacci numbers. For an overview of all
variants see [6]. In this paper we consider the following variant of Diophantine
tuples. Let S be a fixed (usually finite) set of primes. We call an m-tuple
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(a1, . . . , am) of distinct, positive integers S-Diophantine, if for all i 6= j the
integers si,j := aiaj + 1 have only prime divisors coming from the set S, i.e.
if all si,j are S-units. In view of classical Diophantine tuples the following
question arises.

Problem 1.1. Let S be a fixed finite set of primes. How large can a
S-Diophantine tuple get?

This question has already been studied in a series of papers by Szalay
and the author ([17, 18, 19]) and it is planed to continue this investigations
in this paper.

In a slightly other context this problem was already studied by Győry,
Sárközy and Stewart ([9]) who considered products of the form

Π(A,B) =
∏

a∈A,b∈B

(ab+ 1),

where A and B are given sets of positive integers. They found lower bounds for
the number of prime factors of Π(A,B) in terms of |A| and |B|. In particular,
they showed that the number of prime factors of Π(A,A) exceeds C log |A|,
where C is a positive, effectively computable constant, provided that |A| ≥ 3.
They also conjectured that the largest prime factor of (ab+1)(ac+1)(bc+1)
tends to infinity as max{a, b, c} → ∞. A weaker form, namely that the largest
prime factor of

(ab+ 1)(ac+ 1)(bd+ 1)(cd+ 1)

tends to infinity as max{a, b, c, d} → ∞, was proved by Stewart and Tijde-
man ([16]) and the full conjecture was proved independently by Corvaja and
Zannier ([5]) and Hernández and Luca ([11]). In the context of S-Diophantine
tuples the results of Corvaja, Zannier, Hernández and Luca imply that for a
fixed, finite set of primes S only finitely many S-Diophantine triples exist.

Of course for large, finite sets of primes S also S-Diophantinem-tuples will
exist for large m. Thus the following function introduced in [17] is of special
interest. Let s(k) be the smallest integer m such that for all sets of primes
S with |S| = k no S-Diophantine m-tuple exists. The results due to Győry
et.al. ([9]) implies that such an m exists for all k. In particular, their result
[9, Theorem 1 resp. Corollary 2] yields the upper bound s(k) < exp(Ck),
where C is an effectively computable absolute constant. On the other hand
it is easy to show that s(1) = 3 (see e.g. Lemma 3.1 below). But, the exact
values for s(2) or any other s(k) are yet unknown. However we conjecture
that s(2) = 4. In other words we conjecture the following.

Conjecture 1.1. Let p < q be primes and S = {p, q}. Then no S-
Diophantine quadruple exists.

The author together with Szalay have solved several instances of this
conjecture in a series of papers [17, 18, 19]. In particular, they proved the
following statement.
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Theorem (Szalay and Ziegler). Let S = {p, q} be a set of two primes.
Then the following holds:

• If p2 ∤ qordp(q) − 1, q2 ∤ pordq(p) − 1, and q < pξ holds for some ξ > 1.
Then there exists an effectively computable constant C = C(ξ) such
that for all such primes p, q > C no S-Diophantine quadruple exists
(see [17]).

• No S-Diophantine quadruple exists, if p ≡ q ≡ 3 mod 4 (see [18]).
• No S-Diophantine quadruple exists, if p = 2 and q ≡ 3 mod 4 (see

[19]).
• No S-Diophantine quadruple exists, if p = 2 and q < 109 (see [19]).
• No S-Diophantine quadruple exists, if p, q < 105 (see [19]).

The next step toward proving Conjecture 1.1 is to prove the conjecture for
small but fixed p. For instance, let S = {3, q} and we may ask whether there
exists such a S-Diophantine quadruple. Indeed we can show the following.

Theorem 1.2. Let q > 3 be a prime and S = {3, q} or S = {2, q}. Then
no S-Diophantine quadruple exists.

Unfortunately the cases p = 2, 3 are somehow special and with our current
method we cannot extend Theorem 1.2 to other fixed primes p. However as it
was shown in [18] the case that p ≡ q ≡ 3 mod 4 is rather easy. Therefore it
is reasonable to investigate the case that either p ≡ 3 mod 4 or q ≡ 3 mod 4.
Unfortunately we can exclude the existence of S-Diophantine quadruples in
this case only under the additional assumption that p and q form a Wieferich
pair1. Indeed even a weaker form is sufficient.

Definition 1.3. Let p < q be primes. We call (p, q) an extreme Wieferich
pair if

(1.2) vq(p
q−1 − 1) ≥ 2 and vp(q

p−1 − 1) ≥ max

{

2,
log q

log p

}

,

where vp(x) and vq(x) denote the p-adic and q-adic valuation of x, respectively.

It is obvious that every extreme Wieferich pair is also an ordinary Wief-
erich pair, i.e. a pair of primes satisfying vq(p

q−1−1) ≥ 2 and vp(q
p−1−1) ≥ 2.

It is also obvious that in case that p < q < p2 every ordinary Wieferich pair
is also extreme. Up to now there are only seven known Wieferich pairs (p, q),
but non of which is extreme and satisfies q > p2.

However with this notation we can prove the following theorem:

Theorem 1.4. Let p < q be primes and assume that p ≡ 3 mod 4. Then
a {p, q}-Diophantine quadruple exists only if (p, q) is an extreme Wieferich
pair, i.e. satisfies (1.2).

1That is p2|qp−1 − 1 and q2|pq−1 − 1. Note that some authors call this a double
Wieferich prime pair.
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In other words if p < q, p ≡ 3 mod 4 and if (p, q) is not an extreme
Wieferich pair, then no {p, q}-Diophantine quadruple exists.

2. Strategy of the paper

Before we explain the strategy of the paper we start with some notations.
Therefore let S = {p, q} be a set of two distinct primes with p < q and let
(a, b, c, d) be a hypothetical S-Diophantine quadruple satisfying a < b < c < d.
These two assumptions will be kept throughout the paper and it will be stated
explicitly if we do not assume them (this happens mainly in Section 5 where
we will drop the assumption that p < q holds). Then we write:

ab+ 1 =pα1qβ1 := s1, bc+ 1 =pα4qβ4 := s4,

ac+ 1 =pα2qβ2 := s2, bd+ 1 =pα5qβ5 := s5,

ad+ 1 =pα3qβ3 := s3, cd+ 1 =pα6qβ6 := s6.

Moreover, we let A = maxi=1,...,6{αi} and B = maxi=1,...,6{βi}. If we com-
pute

abcd = (s1 − 1)(s6 − 1) = (s2 − 1)(s5 − 1) = (s3 − 1)(s4 − 1)

in different ways we obtain the following three non-linear S-unit equations

s1s6 − s1 − s6 =s2s5 − s2 − s5,

s3s4 − s3 − s4 =s2s5 − s2 − s5,

s1s6 − s1 − s6 =s3s4 − s3 − s4.

(2.1)

A thorough study of this system of S-unit equations will yield Theorems 1.2
and 1.4. Let us give a rough overview of the ideas that allow us to derive our
main results from (2.1).

In the next section we will gather all auxiliary results which are essential
in proving our main Theorems 1.2 and 1.4. In Section 4 we will prove upper
bounds for the exponents α1, . . . , α6 and β1, . . . , β6. In particular, the main
result of Section 4 is that

max{A log p,B log q} < 52038 logp log q,

provided that p ≡ 3 mod 4 or q ≡ 3 mod 4. In Section 5 we show that if
p ≡ 3 mod 4 or q ≡ 3 mod 4, then the exponents α1, . . . , α6 and β1, . . . , β6

have to fulfill rather restrictive relations (see Table 1). These restrictions
allow us to show in Section 6 that under the assumption that p ≡ 3 mod 4
and q is large, i.e. q > 700393, no S-Diophantine quadruple exists, if the
p-adic Wieferich condition

vp(q
p−1 − 1) < max

{

2,
log q

log p

}

is fulfilled. An almost immediate consequence of this result is that no {3, q}-
Diophantine quadruple exists and with a little bit more effort we can also show
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that no {2, q}-Diophantine quadruple exists. This is subject to Section 7. In
Section 8 we are interested in the case that the q-adic Wieferich condition
vq(p

q−1 − 1) = 1 is fulfilled. In particular, we show that no S-Diophantine
quadruple exists, if the q-adic Wieferich condition is fulfilled, p ≡ 3 mod 4
and q is large, i.e. q > 700393. This proves Theorem 1.4 in the case that
q is large and we are left with the case that p < q ≤ 700393. However
these finitely many instances can be resolved by an algorithm due to Szalay
and Ziegler ([19]) and we will discuss the implementation of the algorithm in
Section 9. In the final section we discuss further possible results and open
problems.

3. Auxiliary results

We start with some lemmas that have been established already in [17,
18, 19]. We start with the following simple divisibility condition which was
proved in [17, Lemma 2.1].

Lemma 3.1. Let (a, b, c) be a S-Diophantine triple, with a < b < c, then
s ∤ t with s = ac+ 1 and t = bc+ 1.

Let us note that Lemma 3.1 implies that {p}-Diophantine triples do not
exist, i.e. s(1) = 3. An immediate consequence of Lemma 3.1 is that we can
exclude the following relations between exponents:

α2 = α4, α3 = α5, α3 = α6, α5 = α6

β2 = β4, β3 = β5, β3 = β6, β5 = β6.

On the other hand we have the following lemma (cf. [17, Proposition 1] or
[19, Lemma 2.1]). This lemma is obtained by considering the equations of
system (2.1) and applying p-adic and q-adic valuations after we transformed
them into a suitable form.

Lemma 3.2. The smallest two exponents of the quadruples (α2, α3, α4, α5),
(α1, α2, α5, α6) and (α1, α3, α4, α6) coincide, respectively. The same state-
ment holds also with α replaced by β.

Also the following lemma proves to be useful and yields some elementary
upper bounds for a, b, c and d.

Lemma 3.3. We have

a| gcd
(

s2 − s1
gcd(s2, s1)

,
s3 − s1

gcd(s3, s1)
,

s3 − s2
gcd(s3, s2)

)

,

b| gcd
(

s4 − s1
gcd(s4, s1)

,
s5 − s1

gcd(s5, s1)
,

s5 − s4
gcd(s5, s4)

)

,

c| gcd
(

s4 − s2
gcd(s4, s2)

,
s6 − s2

gcd(s6, s2)
,

s6 − s4
gcd(s6, s4)

)

,
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d| gcd
(

s5 − s3
gcd(s5, s3)

,
s6 − s3

gcd(s6, s3)
,

s6 − s5
gcd(s6, s5)

)

.

Proof. A proof can be found in [17, Lemma 3].

Another useful lemma is the following:

Lemma 3.4. Let (a, b, c, d) ∈ Z4 be an S-Diophantine quadruple, such
that a < b < c < d. Then

gcd(s4, s2) gcd(s4, s1) < s4,

gcd(s5, s3) gcd(s5, s1) < s5,

gcd(s6, s3) gcd(s6, s2) < s6,

gcd(s6, s5) gcd(s6, s4) < s6.

Proof. A proof can be found in [17, Lemma 4] for the first inequality.
By adjusting the proof it is easy to obtain the other inequalities.

The next lemma can be seen as a summary of the results obtained in [18,
Sections 2 and 3] (for the general case) and [19, Section 2] (for the special
case p = 2):

Lemma 3.5. Let p, q be primes (not necessarily p < q) and assume that
p ≡ 3 mod 4 (resp. that p = 2). Then one of the following statements holds.

• α1 = α6 = 0 (resp. α1 = α6 = 1),
• α2 = α5 = 0 (resp. α2 = α5 = 1),
• α3 = α4 = 0 (resp. α3 = α4 = 1).

Unfortunately neither in [18] nor in [19] the statement of Lemma 3.5 is
proved in this form. Therefore we give a proof for the sake of completeness.

Proof. We start with the case that p ≡ 3 mod 4. Let us assume for the
moment that α1, α2, α4 > 0. Then we have

(abc)2 = (pα1qβ1 − 1)(pα2qβ2 − 1)(pα4qβ4 − 1) ≡ −1 mod p.

Thus −1 is a quadratic residue modulo p which is impossible since p ≡ 3
mod 4. Thus at least one of α1, α2 or α4 is zero. Repeating the same argument
with (abc)2 replaced by (abd)2, (acd)2 and (bcd)2 respectively we obtain the
following statements:

• 0 ∈ {α1, α2, α4},
• 0 ∈ {α1, α3, α5},
• 0 ∈ {α2, α3, α6},
• 0 ∈ {α4, α5, α6}.

In view of the first statement we distinguish between the three cases α1 = 0
(Case A), α2 = 0 (Case B) and α4 = 0 (Case C).

First, assume that Case A holds, i.e. α1 = 0. Then the third statement
implies that either α2 = 0 or α3 = 0 or α6 = 0. Note that if α6 = 0 we are
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done. Thus we may assume that α6 6= 0. Hence, either α2 = 0 or α3 = 0.
Assume for the moment that α2 = 0 and consider the fourth statement. Since
α2 = α4 = 0 is not possible due to Lemma 3.1 we arrive at α2 = α5 = 0
and we are done, again. Now, assume that α3 = 0 and we consider again
the fourth statement. Since α3 = α5 = 0 is not possible due to Lemma 3.1
we arrive at α3 = α4 = 0. This shows that assuming Case A implies the
statement of the lemma.

Now we consider Case B, i.e. α2 = 0, and due to the previous paragraph
we may assume that α1 6= 0. Considering the second statement we have that
either α3 = 0 or α5 = 0. In the case that α2 = α5 we are done and therefore
we may assume that α3 = 0. Let us consider the fourth statement. But since
we already assume that α2 = α3 = 0 none of α4, α5 or α6 can be zero due to
Lemma 3.1.

Thus we finally may assume that α4 = 0 (Case C), but α1, α2 6= 0. Thus
due to the second statement we have that either α4 = α3 = 0 or α4 = α5 = 0.
In case that α3 = 0 we are done and therefore we may assume that α4 =
α5 = 0 and α3 6= 0. But then the third statement yields a contradiction. This
proves the lemma in the case that p ≡ 3 mod 4.

In the case that p = 2 we know by [18, Lemma 2.5] that up to permu-
tations the remainders of (a, b, c, d) modulo 4 are (1, 1, 3, 3). Let us assume
that (a, b, c, d) ≡ (1, 1, 3, 3) mod 4, then s1 = ab + 1 ≡ s6 = cd + 1 ≡ 2
mod 4 while si ≡ 0 mod 4 for i = 2, 3, 4, 5. Thus we obtain α1 = α6 = 1 and
α2, α3, α4, α5 > 1. The other 5 permutations of possible values of (a, b, c, d)
modulo 4 yield the other cases. We leave this easy verification to the reader.

In their proof that no {p, q}-Diophantine quadruple exists, provided that
p ≡ q ≡ 3 mod 4, Szalay and Ziegler showed that the following system has
no solution (see [18, Section 4])

ab+ 1 = qβ1 , bc+ 1 = pα4qβ4 ,

ac+ 1 = pα2 , bd+ 1 = pα5 ,

ad+ 1 = pα3qβ3 , cd+ 1 = qβ6 .

(3.1)

This was proved without the assumptions that p < q and a < b < c < d.
That is they proved the following lemma.

Lemma 3.6. Let p < q be odd primes and assume that (a, b, c, d) is a
{p, q}-Diophantine quadruple, with a < b < c < d. Then the following two
statements

α1 = α6 = 0 or α2 = α5 = 0 or α3 = α4 = 0

and

β1 = β6 = 0 or β2 = β5 = 0 or β3 = β4 = 0
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cannot hold simultaneously.

Proof. The proof of the lemma is more or less the content of [18, Section
4]. Also note that the case that α∗ = β∗ = 0 would imply that s∗ = 1, with
∗ ∈ {1, . . . , 6}, which also yields a contradiction.

For the next lemma let us introduce the following notation for a fixed pair
of primes (p, q), with p < q. We write

up = vp(q
p−1 − 1) and uq = vq(p

q−1 − 1).

Lemma 3.7. Let p, q be odd primes (not necessarily p < q) and assume
that z = vq(p

x − 1). Then z ≤ uq +
x

log q
. Moreover, if 2|ordq(p) and z =

vq(p
x + 1), then z ≤ uq +

x
log q

. If 2 ∤ ordq(p), then z = 0.

Proof. The lemma is elementary and some related versions can be found
in [4, Lemma 2.1.22]. In particular, it is proved that vq(s

n − 1) = vq(s− 1)+
vq(n) if s ≡ 1 mod q. Putting s = pq−1 we obtain the first statement of the

Lemma by noting that vq(n) <
logn
log q

.

To prove the second statement we note that Z/qZ is cyclic and therefore

px ≡ −1 mod q holds if and only if ordq(p) is even and
ordq(p)

2 |x. The second
statement is now obtained by a slight modification of the proof given in [4,
Lemma 2.1.22].

One can see Lemma 3.7 as a lower bound for a very special linear form of
two q-adic logarithms (cf. Yamada’s work [21] on upper bounds for vp(x

p−1−
1)). However, we will also use lower bounds for linear forms in complex
logarithms. In particular, we will apply the very sharp bounds due to Laurent
([13]) for linear forms in two logarithms.

Lemma 3.8 (Laurent 2008). Assume that γ1, γ2 be two positive, real, mul-
tiplicatively independent elements in a number field of degree D over Q. More-
over, assume that also log γ1 and log γ2 are positive and real. For i = 1, 2, let
ai > 1 be a real numbers satisfying

log ai ≥ max{h(γi), | log γi|/D, 1/D}.
Further, let b1 and b2 be two positive integers. Define

b′ =
b1

D log a2
+

b2
D log a1

and log b = max {log b′ + 0.38, 12/D, 1} .

Then

|b2 log γ2 − b1 log γ1| ≥ exp
(
−23.4D4(log b)2 log a1 log a2

)
.

Proof. Choose m = 12 in [13, Corollary 2].

The next lemma is part of the results derived in [19].
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Lemma 3.9. If there exists a {p, q}-Diophantine quadruple, then

max{p, q} > 105.

Proof. This is part of Theorem 1.3 in [19].

Finally we want to discuss the so-called L-notation (see also [12, Section
3.1]) which is an exact form of the O-notation. Let c be a real number, assume
that f(x), g(x) and h(x) are real functions and h(x) > 0 for |x| < c. We will
write

f(x) = g(x) + Lc(h(x))

if

g(x)− h(x) ≤ f(x) ≤ g(x) + h(x)

holds for all |x| < c. The use of the L-notation is like the use of the O-
Notation but with the advantage to have an explicit bound for the error
term. The following lemma is obvious from the definition of the L-notation
and the geometric series expansion.

Lemma 3.10. For some integer n ≥ 0 and some real number 0 < c < 1
we have that

1

1− x
= 1 + · · ·+ xn + Lc

(
1

1− c
xn+1

)

.

In all instances we will apply Lemma 3.10 only in the case that x is of
the form x = 1

pαqβ
, with β > 0. In view of Lemma 3.9 we have that x < 10−5

and by dropping the index of the L-notation we have

1

1− x
= 1 + x+ L(1.001x2).

4. An upper bound for the exponents

The purpose of this section is to derive sharp upper bounds for A and B
under the assumption that at least one of p and q is≡ 3 mod 4. However most
of the intermediate results of this section remain true for general prime pairs
(p, q). To be as general as possible we formulate and prove these intermediate
results without assuming that p or q is ≡ 3 mod 4. However we start with
the following lemma.

Lemma 4.1. Let p < q and assume that a {p, q}-Diophantine quadruple
exists. Moreover let

A1 := 24.92

(

log

(
4.001A

log q

))2

and B1 := 24.92

(

log

(
4.001B

log p

))2

.

If we assume that B > 27826 logp, then we have

β1, β2 < B1 log p and α1, α2 < B1 log q.
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If we assume that A > 27826 log q, then we have

β1, β2 < A1 log p and α1, α2 < A1 log q.

Proof. We will only prove the first statement, since the second state-
ment is obtained by exchanging the roles of p and q.

As already Stewart and Tijdeman ([16]) observed, estimating the quantity
T = s1s6

s3s4
proves to be useful. In particular, we obtain

T = pA
′

qB
′

=
(ab+ 1)(cd+ 1)

(ad+ 1)(bc+ 1)
= 1 +

(d− b)(c− a)

abcd+ ad+ bc+ 1

<1 +
1

ab
≤ 1 +

3

2
· 1

ab+ 1

(4.1)

with A′ = α1 +α6 −α3 −α4 and B′ = β1 + β6 − β3 − β4. Moreover, we know
that ab ≥ 2 and therefore 1/2 < pA

′

qB
′

< 3/2. This implies the following
inequalities:

|A′| ≤ 2B log q + log(3/2)

log p
and |B′| ≤ 2B.

We want to apply Lemma 3.8 with

γ1 = p, γ2 = q, b1 = |A′|, b2 = |B′|,
D = 1, log a1 = log p, log a2 = log q,

and therefore we estimate

b′ =
b1

D log a2
+

b2
D log a1

≤ 4B

log p
+

log(3/2)

log p log q
<

4B

log p
+ 0.117.

Now Lemma 3.8 yields

log | logT | > − 23.4 logp log q

(

log

(
4B

log p
+ 0.117

)

+ 0.38

)2

> − 24.91 logp log q

(

log

(
4.001B

log p

))2
(4.2)

provided that log
(

4B
log p

+ 0.117
)

+ 0.38 > 12, i.e. that B > 27826 logp.

On the other hand we know that | log(1 + x)| < 2|x| provided that |x| <
1/2 and therefore inequality (4.1) yields

(4.3) log | logT | < log

(
3

pα1qβ1

)

< log 3− β1 log q.

Comparing the lower bound (4.2) with the upper bound (4.3) we obtain

β1 < 24.91 logp

(

log

(
4.001B

log p

))2

+
log 3

log q
< 24.92 logp

(

log

(
4.001B

log p

))2

.
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We obtain the inequality for β2 by considering instead of T the quantity

T ′ = pA
′′

qB
′′

=
(ac+ 1)(bd+ 1)

(ad+ 1)(bc+ 1)
= 1 +

(d− c)(b − a)

abcd+ ad+ bc+ 1

<1 +
1

ac
≤ 1 +

3

2
· 1

ac+ 1

with A′′ = α2+α5−α3−α4 and B′′ = β1+β6−β3−β4. Similar computations
as above yield the same upper bound for β2.

The upper bound for α1 is obtained by noting that instead of (4.3) one
can use the upper bound

log | logT | < log

(
3

pα1qβ1

)

< log 3− α1 log p.

A slight modification finally yields an upper bound for α2.

Our next step is to show that with ab + 1 and ac + 1 also bc + 1 stays
small. To be more precise we prove

Lemma 4.2. Let p < q and assume that a {p, q}-Diophantine quadruple
exists. If we assume that B > 27826 logp, then we have

β4 < 4B1 log p and α4 < 4B1 log q.

If we assume that A > 27826 log q, then we have

β4 < 4A1 log p and α4 < 4A1 log q.

Proof. We only prove the upper bound for β4 in the case that B >
27826 logp. All other instances are obtained by slight modifications of the
argument. However, the upper bound for β4 is obtained by the following
inequality

exp(β4 log q) ≤ bc+1 < (ab+1)(bc+1) = pα1+α2qβ1+β2 < exp(4B1 log p log q).

The Lemmas 4.1 and 4.2 show that the exponents β1, β2, β4 and α1, α2, α4

are rather small and therefore also the S-units s1, s2, s4 stay small. The next
lemma shows that if one further S-unit is small, then all exponents are small.

Lemma 4.3. Let ∗ ∈ {3, 5, 6} and assume that the following two inequal-
ities hold

• β∗ ≤ max{β1, β2, β4} and
• α∗ ≤ max{α1, α2, α4}.

Then B < 34990 logp and A < 34990 log q.

Proof. We start with proving the inequality for B. Therefore we may
assume that B > 27826 logp and we obtain the inequality

d < s∗ = pα∗qβ∗ < exp(8B1 log p log q).
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This implies

qB ≤ cd+ 1 < d(ac+ 1) < exp(10B1 log p log q)

and we obtain the inequality

B < 249.2 logp

(

log

(
4.001B

log p

))2

.

Let us write x = 4.001B
log p

, then we obtain the inequality x < 249.2·4.001(logx)2
which yields x < 139993. Thus we obtain B < 34990 logp.

The inequality for A is obtained by exchanging the roles of p and q.

The next lemma shows that there cannot be a single large exponent out
of β1, . . . , β6 or α1, . . . , α6 respectively.

Lemma 4.4. Let ∗ < † ∈ {3, 5, 6} and assume that at least one out of the
two following inequalities holds

• β∗, β† ≤ max{β1, β2, β4} or
• α∗, α† ≤ max{α1, α2, α4}.

Then B < 52038 logp and A < 52038 log q.

Proof. We only prove the inequality for B since the inequality for A can
be shown by the same way of reasoning. In view of the content of the lemma
we may assume that B ≥ 27826 logp and due to Lemmas 4.1 and 4.2 we have
that

α1, α2 < B1 log q, α4 < 4B1 log q,

β1, β2 < B1 log p, β4 < 4B1 log p.

However, let us start with the following claim.

Claim 1. If β∗, β† ≤ max{β1, β2, β4}, then

|α∗ − α†| ≤ 12B1 log q +
log(3/2)

log p
.

If α∗, α† ≤ max{α1, α2, α4}, then

|β∗ − β†| ≤ 12B1 log q +
log(3/2)

log q
.

Proof of Claim 1. We consider the quantity T∗ = s∗s7−∗

s†s7−†
and obtain

an estimate similar to inequality (4.1)

T∗ = pα∗−α†+α7−∗−α7−†qβ∗−β†+β7−∗−β7−† <
3

2

which yields

p|α∗−α†| <
3

2
qβ∗+β7−∗p|α7−∗−α7−†| <

3

2
exp(12B1 log p log q)
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and therefore we obtain the first claim. The second claim is obtained by a
similar argument.

We continue the proof of Lemma 4.4. Claim 1 shows that in any case we
have the inequality

max{|α∗ − α†| log q, |β∗ − β†| log p} < 12B1 log p log q + log(3/2).

Next we observe that due to Lemma 3.1 we have s∗ ∤ s†, that is either

• α∗ < α† and β† < β∗, or
• β∗ < β† and α† < α∗.

Now we apply Lemma 3.3 and obtain that d| s†−s∗
gcd(s†,s∗)

. Hence, we have

d ≤ s†
gcd(s†, s∗)

= max
{
pα†−α∗ , qβ†−β∗

}
≤ 3

2
exp(12B1 log p log q).

But, we also have

qB ≤ cd+ 1 < d(ac+ 1) <
3

2
exp(14B1 log p log q)

which yields the inequality

B < 348.89 logp

(

log
4.001B

log p

)2

.

If we substitute x = 4.001B
log p

, we obtain the inequality x < 4.001 ·348.89(logx)2
which implies that x < 209283, hence B < 52038 logp.

Lemmas 4.3 and 4.4 result in many restrictions on the exponents α1, . . . ,
α6 and β1, . . . , β6 and in combination with Lemmas 3.1 and 3.2 it is possible
to prove the main result of this section:

Proposition 4.5. Let p < q be primes and assume that there exists a
{p, q}-Diophantine quadruple. Then either

max{A log p,B log q} < 52038 logp log q

or one of the following two cases holds:

Case I α1 = α2 = α3 < α4 < α6 < α5 and β1 = β4 = β5 < β2 < β6 <
β3, or

Case II α1 = α4 = α5 < α2 < α6 < α3 and β1 = β2 = β3 < β4 < β6 <
β5.

Proof. In view of the content of the proposition, we assume that

max{A log p,B log q} ≥ 52038 logp log q

and we will show that either Case I or II holds.
We start by applying Lemma 3.2 and deduce that the two smallest expo-

nents of the quadruple (β2, β3, β4, β5) coincide. Since by Lemma 3.1 we may
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exclude the case that β2 = β4 and β3 = β5 and in combination with Lemma
4.4 and the fact that A or B is large we are left with the following four cases:

1. β2 = β3 < β4 < β5,
2. β2 = β5 < β4 < β3,
3. β3 = β4 < β2 < β5,
4. β4 = β5 < β2 < β3.

Considering α instead of β we obtain the same list of cases with β replaced
by α. Let us have a closer look on each individual case.

We start with Case (1). Since Lemma 4.3 we deduce that α3 is not
minimal. Moreover α2 < α4 is not possible, since otherwise s2|s4 which
contradicts Lemma 3.1. Therefore the only possibility left for the α-exponents
is α4 = α5 < α2 < α3.

In Case (2) we conclude by Lemma 4.3 that α5 cannot be minimal and by
Lemma 3.1 we have α4 < α2. Thus α4 = α3 < α2 < α5. Note that α5 ≤ α2

can be excluded due to Lemma 4.4.
In Case (3) we have that α3 is not minimal (Lemma 4.3), α2 < α4 (Lemma

3.1) and α4 < α3 (Lemma 4.4). Thus we obtain α2 = α5 < α4 < α3.
Finally in Case (4) we have that α5 is not minimal (Lemma 4.3), α2 < α4

(Lemma 3.1) and α4 < α5 (Lemma 4.4). Thus we obtain α2 = α3 < α4 < α5.
Therefore we have to distinguish between the following four cases:

1. β2 = β3 < β4 < β5 and α4 = α5 < α2 < α3,
2. β2 = β5 < β4 < β3 and α4 = α3 < α2 < α5,
3. β3 = β4 < β2 < β5 and α2 = α5 < α4 < α3,
4. β4 = β5 < β2 < β3 and α2 = α3 < α4 < α5.

Next, we apply again Lemma 3.2 and deduce that the two smallest expo-
nents of the quadruple (β1, β2, β5, β6) coincide. Note that β6 cannot be min-
imal because of Lemma 4.4. Otherwise two out of β3, β5, β6 would be small
in any of the above discussed cases. Therefore either β2 = β5 or β1 = β2 or
β1 = β5 is minimal.

Let us start with discussing the case that β2 = β5 is minimal. The only
case that admits β2 = β5 is Case (2). We want to apply Lemma 3.2 to the
quadruple (α1, α2, α5, α6). Since already α3 is small neither α5 nor α6 can be
minimal, because otherwise this would contradict Lemma 4.4. Therefore we
conclude that α1 = α2 < α5, α6 and in combination with Case (2) we obtain

β2 = β5 < β4 < β3 and α4 = α3 < α1 = α2 < α5, α6.

Once again we apply Lemma 3.2 and conclude that the two smallest exponents
of the quadruple (β1, β3, β4, β6) must coincide. Since the minimality of β3

or β6 would yield that two exponents out of β3, β5, β6 would be small, we
conclude that β1 = β4. On the other hand we have that α4 < α1 and therefore
we get s4 < s1 an obvious contradiction and the case that β2 = β5 is minimal
cannot occur.
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Next we consider the case that β1 = β2 is minimal. Since the minimality
of β2 = β5 has been excluded in the previous paragraph, we deduce that
β2 < β5 and that either Case (1) or Case (3) holds. Let us assume for the
moment that Case (1) holds. Since β3 is small we deduce that β6 cannot be
small because of Lemma 4.4 and we deduce that

β1 = β2 = β3 < β4 < β5, β6 and α4 = α5 < α2 < α3.

However Lemma 3.2 tells us that the two smallest exponents out of the quadru-
ple (α1, α2, α5, α6) must coincide. Again Lemma 4.4 shows that α6 cannot be
minimal. Therefore we have either α1 = α2 or α1 = α5 or α2 = α5 is minimal.
But α1 = α2 is impossible, since otherwise s1 = s2, an obvious contradiction.
Also α2 = α5 is impossible, since this would imply α2 = α4 = α5 and s2|s4
which contradicts Lemma 3.1. Therefore we have α1 = α5 and we conclude
that

β1 = β2 = β3 < β4 < β5, β6 and α1 = α4 = α5 < α2 < α3, α6.

Since s3 ∤ s6 and s5 ∤ s6 we finally arrive at Case II of the proposition.
Now let us assume that β1 = β2 is minimal and that Case (3) holds.

Similar as in the paragraph above we deduce that

β1 = β2 < β3 = β4 < β5, β6 and α2 = α5 < α4 < α3.

But this immediately implies s2|s4, which contradicts Lemma 3.1.
Therefore we are left with the case that β1 = β5 is minimal. Since due

to the previous cases we may exclude that β2 = β5. Therefore only Case (4)
may hold and we obtain

β1 = β4 = β5 < β2 < β3, β6 and α2 = α3 < α4 < α5.

Once again we utilize Lemma 3.2 and use the fact that the two smallest
exponents of the quadruple (α1, α2, α5, α6) must coincide. Since already α3 is
small neither α5 nor α6 can be minimal and we obtain that α1 = α2 is minimal.
Moreover, α6 < α4 would contradict Lemma 4.4. Putting everything together
we obtain

β1 = β4 = β5 < β2 < β3, β6 and α1 = α2 = α3 < α4 < α5, α6.

By noting that s5 ∤ s6 and s3 ∤ s6 we obtain Case I of the proposition.

In what follows the following consequence of Proposition 4.5 will be useful.

Corollary 4.6. Let p < q be primes not both ≡ 1 mod 4 and assume
that there exists a {p, q}-Diophantine quadruple. Then we have

max{A log p,B log q} ≤ 52038 logp log q.

Proof. Let us assume that p 6≡ 1 mod 4. Then due to Lemma 3.5 we
have that either α1 = α6 or α2 = α5 or α3 = α4. But, if also Case I or II
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of Proposition 4.5 holds, then this yields a contradiction to the content of
Lemma 3.1. Thus we obtain the claimed upper bound.

In the case that q 6≡ 1 mod 4 a similar argument can be applied to obtain
the corollary.

In the case that p = 2 or p = 3 we immediately obtain the following
absolute upper bounds for B:

Corollary 4.7. Let q 6= 2, 3 be a prime and assume that there exists a
{2, q}-Diophantine quadruple or a {3, q}-Diophantine quadruple. Then B ≤
36070 and B ≤ 57170 respectively.

Remark 4.8. We want to stress out that the key to obtain rather small
upper bounds for A and B is that we can show that Cases I and II cannot
hold unless p ≡ q ≡ 1 mod 4. The author does not see how to obtain such
small bounds in the case that p ≡ q ≡ 1 mod 4. However, let us mention
that due to the method of Stewart and Tijdeman ([16]) one can show that

max{A log p,B log q} ≪ (log p log q)3 (log log p+ log log q)
4
.

This upper bound can be obtained by applying [17, Lemma 7] (see also [19,
Section 4]) together with a result due to Pethő and de Weger ([15]) on the
upper bound for solutions to x = u+ v(log x)h.

5. The presence of a prime 6≡ 1 mod 4

In this section we want to derive some consequences from the fact that
p ≡ 3 mod 4. However to keep our results as general as possible we drop
the assumption that p < q in this section, but keep the assumption that
a < b < c < d. However, we prove the following proposition, which is also the
main result of this section.

Proposition 5.1. Let p, q be odd, distinct primes (not necessarily p < q),
with p ≡ 3 mod 4. If there exists a {p, q}-Diophantine quadruple, then one
of the four cases in Table 1 holds.

Table 1. Restrictions to the exponents

Case The α exponents The β exponents

I 0 = α1 = α6 < α4 = α5 < α2 < α3 β1 = β2 = β3 < β4 < β5 < β6

II 0 = α1 = α6 < α2 = α5 < α3, α4 β3 = β4 < β1 = β2 < β5 < β6

III 0 = α2 = α5 < α1 = α3 ≤ α4 < α6 β1 = β6 < β3 = β4 < β2 < β5

IV 0 = α3 = α4 < α1 = α2 < α5 < α6 β1 = β6 < β2 = β5 < β3, β4

Since p ≡ 3 mod 4 we may apply Lemma 3.5 and we have to distinguish
between the three cases α1 = α6 = 0, α2 = α5 = 0 and α3 = α4 = 0. We
prove Proposition 5.1 in each of these three individual cases.
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5.1. The case that α1 = α6 = 0. If α1 = α6 = 0, then we deduce that
β1 < β6 and in view of Lemma 3.2 applied to the quadruple (β1, β2, β5, β6)
we have to distinguish between the following three subcases:

Case A β1 = β2 ≤ β5 < β6;
Case B β1 = β5 ≤ β2 < β6;
Case C β2 = β5 ≤ β1 < β6.

Note that since α6 = 0 the exponent β6 is the largest exponent among
β1, . . . , β6.

5.1.1. Case A. In this case we apply Lemma 3.2 to the quadruple (β1, β3,
β4, β6) and since β1 < β6 we have that one of the following three options
holds:

• β1 = β3 ≤ β4 < β6;
• β1 = β4 ≤ β3 < β6;
• β3 = β4 ≤ β1 < β6.

The second option can be dismissed since otherwise we would have β1 = β2 =
β4 which implies s2|s4, a contradiction to Lemma 3.1. Moreover, we may
assume for the other options that β1 < β4.

Let us consider the first option. This yields

β1 = β2 = β3 < β4, β5 < β6 and 0 = α1 = α6.

Since Lemma 3.1 we cannot have s3|s5 and s2|s4, i.e. we have α4 < α2 and
α5 < α3. Therefore Lemma 3.2 applied to the quadruple (α2, α3, α4, α5) we
have α4 = α5 < α2, α3. Let us note that β4 < β5, since α4 = α5 and s4 < s5
holds, and let us note that α2 < α3 since β2 = β3 and s2 < s3 holds. Putting
everything together, we obtain

0 = α1 = α6 < α4 = α5 < α2 < α3 and β1 = β2 = β3 < β4 < β5 < β6

and get Case I in Table 1.
The argument for the third case, i.e. for the case that

β3 = β4 < β1 = β2 ≤ β5 < β6 and 0 = α1 = α6

is similar. First, note that due to size restrictions (i.e. s2 < s4) and Lemma
3.1 we have that α2 < α4 and α5 < α3, i.e. α2 = α5 < α3, α4. Further size
and divisibility restrictions (Lemma 3.1) yield Case II in Table 1.

5.1.2. Case B. Similarly as in Case A we deduce that one of the three op-
tions from Case A holds. But this time the first option cannot hold, since this
would imply β1 = β3 = β5 and therefore s3|s5, which contradicts Lemma 3.1.
Also the third option yields a contradiction. Note that under the hypothesis
of the third option we have β3 = β4 < β1 = β5 ≤ β2 < β6. But since s2 < s5
we have α2 < α5 and since s3 ∤ s5 we have α5 < α3 and Lemma 3.2 applied to
the quadruple (α2, α3, α4, α5) yields α2 = α4, a contradiction to Lemma 3.1.

Therefore we are left to consider the second option, which yields

β1 = β4 = β5 < β2, β3 < β6 and 0 = α1 = α6.
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Due to size and divisibility restrictions we conclude that α2 < α4 and α3 < α5,
thus α2 = α3 < α4, α5 by an application of Lemma 3.2. Further size and
divisibility restrictions yield

0 = α1 = α6 < α2 = α3 < α4 < α5 and β1 = β4 = β5 < β2 < β3 < β6.

Let us write α := α2 = α3 and β := β1 = β4 = β5. Now we apply Lemma 3.3
and deduce that

d

∣
∣
∣
∣

s5 − s3
gcd(s5, s3)

=
pα5qβ − pαqβ3

pαqβ

and therefore we have that d < pα5−α. But, in view of s5 = bd + 1 = pα5qβ

we get b > pαqβ which is impossible since b < s1 = ab+ 1 = pαqβ .
5.1.3. Case C. We have the same options as in Cases A and B respec-

tively. The first option together with the hypotheses of Case C yields

β2 = β5 < β1 = β3 ≤ β4 < β6 and 0 = α1 = α6.

Size and divisibility restrictions yield α4 < α2 and α3 < α5, i.e. α3 = α4 <
α2 < α5 due to Lemma 3.2. Thus the first option leads to

0 = α1 = α6 < α3 = α4 < α2 < α5 and β2 = β5 < β1 = β3 ≤ β4 < β6.

We aim to show that this cannot hold. Let us write α := α3 = α4, β := β2 =
β5 and β′ := β1 = β3. Note that due to Lemma 3.6 we have β > 0. By using
the L-notation (see Lemma 3.10) and since s4 > 105 we compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
s1s2
s4

+
s1s2

s4(s4 − 1)
− s2

s4 − 1
− s1

s4 − 1
+

1

s4 − 1

=
pα2−α

qβ4−β−β′ + L

(

1.001 ·
(

qβ+β′

pα2

q2β4p2α
+

pα2−α

qβ4−β
+

1

qβ4−β′pα
+

1

qβ4pα

))

It is easy to see that each summand in the L-term is less than 1
5qβ4−β−β′

provided that qβ
′

> 1
5p

α2−α. Therefore we obtain

a2 =
pα2−α

qβ4−β−β′ + L

(
0.9

qβ4−β−β′

)

.

Thus we conclude that pα2−α

qβ4−β−β′ has to be an integer, if qβ
′

> 1
5p

α2−α. In

other words we have shown that β4 > β + β′ implies pα2−α ≥ 5qβ
′

. However
Lemma 3.4 yields

qβ
′ · pαqβ = gcd(s1, s4) gcd(s2, s4) < s4 = qβ4pα,

hence β4 > β + β′. Thus we may deduce that indeed pα2−α ≥ 5qβ
′

. But
considering the inequality s2 < s3 reveals that pα2qβ < pαqβ

′

and therefore
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we have the inequality

qβ
′−β > pα2−α ≥ 5qβ

′

,

which cannot hold.
The second option yields

0 = α1 = α6 and β2 = β5 < β1 = β4 ≤ β3 < β6.

By similar size and divisibility restrictions we obtain

0 = α1 = α6 < α3 = α4 < α2 < α5 and β2 = β5 < β1 = β4 ≤ β3 < β6.

However we have gcd(s1, s4) = pα1qβ4 and gcd(s2, s4) = pα4qβ2 which yields
in view of Lemma 3.4 the inequality

pα1qβ4 · pα4qβ2 = gcd(s1, s4) gcd(s2, s4) < s4 = pα4qβ4 .

Thus the second option cannot hold.
If we consider the third option we obtain the following two possibilities

0 = α1 = α6 and β2 = β5 < β3 = β4 ≤ β1 < β6

or
0 = α1 = α6 and β3 = β4 < β2 = β5 ≤ β1 < β6

respectively. By applying Lemma 3.2 to the quadruple (α2, α3, α4, α5) and
taking size and divisibility considerations into account we obtain

0 = α1 = α6 < α3 = α4 < α2 < α5 and β2 = β5 < β3 = β4 ≤ β1 < β6

or

0 = α1 = α6 < α2 = α5 < α3, α4 and β3 = β4 < β2 = β5 ≤ β1 < β6

respectively. But both possibilities yield a contradiction, if we apply Lemma
3.4. Indeed we obtain

qβ4 · pα4qβ2 = gcd(s1, s4) gcd(s2, s4) < s4 = pα4qβ4

or
qβ5 · pα5qβ3 = gcd(s1, s5) gcd(s3, s5) < s5 = pα5qβ5

respectively.

5.2. The case that α2 = α5 = 0. In this case we have that β2 < β5

and by applying Lemma 3.2 to the quadruple (β2, β3, β4, β5) we obtain that
β3 = β4 < β2 < β5. Indeed as noted β5 cannot be minimal, but also β2 cannot
be minimal since 0 = α2 < α4 and we would obtain that s2|s4, a contradict
to Lemma 3.1. Therefore we obtain

0 = α2 = α5 and β3 = β4 < β2 < β5.

Now we apply Lemma 3.2 to the quadruple (β1, β2, β5, β6). But β5 cannot
be minimal since otherwise we would obtain s5|s6 contradicting Lemma 3.1
and β2 cannot be minimal since otherwise we would obtain s2 < s1 also
an obvious contradiction. Since neither β2 nor β5 can be minimal we have
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β1 = β6 < β2 < β5. Once again we apply Lemma 3.2, this time to the
quadruple (α1, α3, α4, α6). Since β1 = β6 we conclude that α1 < α6 and that
α6 cannot be minimal. This leaves us with the following three options:

• α1 = α3 ≤ α4, α6;
• α1 = α4 ≤ α3, α6;
• α3 = α4 ≤ α1 < α6.

The first option combined with the previous found restriction

0 = α2 = α5 and β3 = β4, β1 = β6 < β2 < β5

yields Case III after taking further size and divisibility restrictions into ac-
count.

The second option yields in view of our usual size and divisibility restric-
tions

0 = α2 = α5 < α1 = α4 ≤ α3 < α6 and β1 = β6 < β3 = β4 < β2 < β5.

However this yields

pα4qβ1 · pα2qβ4 = gcd(s4, s1) gcd(s4, s2) > s4 = pα4qβ4

which contradicts Lemma 3.4.
For the third option we deuce that

0 = α2 = α5 < α3 = α4 < α1 < α6 and β1 = β6 < β3 = β4 < β2 < β5

by size and divisibility restrictions. But this yields a contradiction since by
Lemma 3.4 we have

pα4qβ1 · pα2qβ4 = gcd(s4, s1) gcd(s4, s2) < s4 = pα4qβ4 .

5.3. The case that α3 = α4 = 0. We consider the quadruple (β2, β3, β4, β5)
and note that β3 cannot be minimal since otherwise s3|s5 (a contradiction to
Lemma 3.1) and that β4 cannot be minimal since otherwise s4 < s2, again a
contradiction. Thus we have

0 = α3 = α4 and β2 = β5 < β3, β4.

Next, we consider the quadruple (β1, β3, β4, β6) and similar as above we
have that β3 cannot be minimal since otherwise s3|s6 and β4 cannot be min-
imal since otherwise s4 < s1. Thus we have β1 = β6 < β3, β4.

Finally, we consider the quadruple (α1, α2, α5, α6) and obtain that α2 <
α5 since β2 = β5 and α1 < α6 since β1 = β6. Therefore Lemma 3.2 yields
α1 = α2 < α5, α6. Putting all pieces together we obtain Case IV in Table 1.

We have chased down all possible cases and found no other possibilities
for the exponents than those described in Table 1. Therefore Proposition 5.1
is proved.
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5.4. The case that p = 2. By similar arguments we can also deal with the
case that p = 2. In particular we obtain the following proposition:

Proposition 5.2. Let q > 2 be a prime and assume that a {2, q}-
Diophantine quadruple exists. Then one of the four cases in Table 2 holds.

Table 2. Restrictions to the exponents

Case The α exponents The β exponents

I 1 = α1 = α6 < α4 = α5 < α2 < α3 β1 = β2 = β3 < β4 < β5 < β6

II 1 = α1 = α6 < α2 = α5 < α3, α4 β3 = β4 < β1 = β2 < β5 < β6

III 1 = α2 = α5 < α1 = α3 ≤ α4 < α6 β1 = β6 < β3 = β4 < β2 < β5

IV 1 = α3 = α4 < α1 = α2 < α5 < α6 β1 = β6 < β2 = β5 < β3, β4

Proof. By [19, Lemma 2.4] we know that, if (a, b, c, d) is a {2, q}-Dioph-
antine quadruple, then a, b, c, d are all odd. Thus all S-units s1, . . . , s6 are
even, hence 1 ≤ α1, . . . , α6. Now the same chase of cases yields the same
result, but with 0 replaced by 1.

6. The p-adic Wieferich condition

In this section we want to investigate the case that vp(q
p−1 − 1) <

max
{

2, log q
log p

}

. In view of our main Theorem 1.4 we would like to prove

that under this p-adic divisibility assumption no {p, q}-Diophantine quadru-
ple exists. In this section we prove such a result provided that q is large
enough.

Proposition 6.1. Let p < q be odd primes such that p ≡ 3 mod 4 and

assume that vp(q
p−1−1) < max

{

2, log q
log p

}

. If there exists a {p, q}-Diophantine

quadruple, then q ≤ 700393. To be more precise, if there exists a {p, q}-
Diophantine quadruple, then

p < q < 52038 logp.

In order to prove Proposition 6.1 we have to consider each case of Table
1 individually. However, before we start with the proof of Proposition 6.1 let
us state the following lemma which will be frequently used throughout this
section.

Lemma 6.2. Let p < q be odd primes such that p ≡ 3 mod 4 and let ∗, † ∈
{0, 1, 2, 3, 4, 5, 6}. Moreover, set β0 = 0 and assume that q ≥ 52038 logp. If

vp(q
p−1 − 1) < max

{

2, log q
log p

}

, then we have

pvp(q
|β∗−β†|±1) < q2.
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Proof. Since Proposition 4.5 we know that |β∗ − β†| < 52038 logp. Due

to Lemma 3.7 and our assumption that up < max
{

2, log q
2 log p

}

we obtain

vp

(

q|β∗−β†| − 1
)

= up + vp(|β∗ − β†|)

<max

{

2,
log q

log p

}

+
log(52038 logp)

log p

≤2 log q

log p
,

provided that 52038 logp ≤ q, which implies immediately the statement of
the lemma.

Let us assume that Proposition 6.1 is false and that q ≥ 52038 logp, i.e.

Lemma 6.2 applies and pvp(q
|β∗−β†|±1) < q2. We will show that under this

assumption we obtain a contradiction in each case described in Proposition
5.1 (see Table 1).

6.1. Case I. In this case we have

ab+ 1 =qβ , bc+ 1 =pαqβ4 ,

ac+ 1 =pα2qβ , bd+ 1 =pαqβ5 ,

ad+ 1 =pα3qβ , cd+ 1 =qβ6 ,

with 0 < α < α2 < α5 and β < β4 < β5 < β6. Note that we may assume that
β > 0 since otherwise s1 = ab + 1 = 1 would yield an obvious contradiction.
We consider the second equation of system (2.1) and obtain after dividing
through the common denominator pαqβ the equation

(6.1) qβ4−β
(
qβ5−β4 − 1

)
= pα2qβ5 − pα3qβ4 + pα3−α − pα2−α.

That is pα2−α|qβ5−β4 − 1 and Lemma 6.2 implies that pα2−α < q2.
Next, we observe that since Lemma 3.4 we have

qβ · pαqβ = gcd(s1, s4) gcd(s2, s4) < s4 = pαqβ4 ,

i.e. 2β < β4. On the other hand we have that (ab + 1)(ac + 1) > bc+ 1 and
obtain

pα2q2β > pαqβ4 .

Therefore we obtain that 2β + 2 > β4, since pα2−α < q2, hence β4 = 2β + 1.
Next we compute a2. Using the L-notation and Lemma 3.10 we obtain:

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
s1s2
s4

+
s1s2

s4(s4 − 1)
− s2

s4 − 1
− s1

s4 − 1
+

1

s4 − 1
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=
pα2−α

q
+

pα2−α

q(pαq2β+1 − 1)
− pα2−α

qβ+1 − 1
qβ

− 1

pαqβ+1 − 1
qβ

+
1

pαq2β+1 − 1

=
pα2−α

q
+ L

(

1.001 ·
(

pα2−α

pαq2β+2
+

pα2−α

qβ+1
+

1

pαqβ+1
+

1

pαq2β+1

))

=
pα2−α

q
+ L

(

1.001 ·
(

1

pαq2β
+

1

qβ−1
+

1

pαqβ+1
+

1

pαq2β+1

))

.

To obtain the last inequality we used the fact that pα2−α < q2. Let us assume
for the moment that β ≥ 3. Then we obtain

a2 =
pα2−α

q
+ L

(
4.004

q2

)

.

Obviously pα2−α

q
is not an integer. But the distance to the nearest integer is at

least 1
q
. Thus we deduce that a2 cannot be an integer, hence a contradiction.

Therefore we may assume that 0 < β ≤ 2. Let us discuss the case that
β = 1 first. A similar computation of a2 as before shows that

a2 =
pα2−α

q
− pα2−α

q2
+ L

(

1.001 ·
(

1

pαq2
+

1

pαq3
+

1

pαq2
+

1

pαq3

))

and since pα ≥ p ≥ 3 and q > 105 we conclude that

a2 =
pα2−α

q
− pα2−α

q2
+ L

(
0.7

q2

)

is an integer. This implies that

q2 |(qpα2 − pα2)

which is an obvious contradiction.
In the case that β = 2 we deduce by reconsidering the asymptotic expan-

sion of a2 a similar contradiction.

6.2. Case II. In the second case we have

ab+ 1 =qβ
′

, bc+ 1 =pα4qβ ,

ac+ 1 =pαqβ
′

, bd+ 1 =pαqβ5 ,

ad+ 1 =pα3qβ , cd+ 1 =qβ6 ,

with 0 < α < α3, α4 and β < β′ < β5 < β6. Note that β = 0 can be excluded
due to Lemma 3.6. We consider the second equation of system (2.1) and
obtain

(6.2) qβ
′−β

(

qβ5−β′

+ 1
)

= pαqβ5+β′−β + pα3−α + pα4−α − pα3+α4−αqβ .

Let M = min{α, α3 − α, α4 −α}, then pM |qβ5−β′

+ 1 and Lemma 6.2 implies
that pM < q2. That is we have to consider three subcases:

Case A: M = α or
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Case B: M = α3 − α or
Case C: pα4−α < q2 and M 6= α.

Let us note that we will show that Case B will imply that pα4−α < q2. This
is the reason why we consider this more general statement for Case C.

6.2.1. Case A. First, we observe that

c

b
=

s2 − 1

s1 − 1
=

qβ
′

pα − 1

qβ′ − 1
= pα

qβ
′

qβ′ − 1
− 1

qβ′ − 1
< 1.001pα

since qβ
′ ≥ q > 105. Therefore we have

qβ6 = cd+ 1 <
c

b
(bd+ 1) < 1.001p2αqβ5

and we obtain that β6 − β5 ≤ 4.
Let us assume that β6−β5 = 3. Then Lemma 3.3 yields that d| s6−s5

gcd(s6,s5)
=

qβ6−qβ5pα

qβ5
and we obtain that d < q3. Further, we deduce that q6 > d2 >

cd + 1 = qβ6 . Therefore β6 ≤ 5 and by our assumption that β6 − β5 = 3 we
obtain that β5 ≤ 2. On the other hand we have 0 < β < β′ < β5 ≤ 2 which
yields an obvious contradiction. Similar arguments show that β6 − β5 = 1, 2
cannot hold.

Therefore we are left with the case that β6 − β5 = 4. In this case Lemma
3.3 yields similarly as above that β6 ≤ 7 and we obtain

β = 1, β′ = 2, β5 = 3, β6 = 7.

Let us apply Lemma 3.4, then we obtain that

q3 · pα = gcd(s1, s5) gcd(s3, s5) < s5 = q3pα

which is a contradiction.
6.2.2. Case B. Due to Case A we may assume that α > α3 − α. If we

consider the inequality s2 < s3, then we obtain that q ≤ qβ
′−β < pα3−α < q2

and therefore β′ = β+1. Note that this inequality also implies that q < pα3−α

and therefore we also have that pα > q and pα4 = pα4−αpα > q2. Next, we
compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
pαq2β

′ − pαqβ
′ − qβ

′

+ 1

pα4qβ − 1

=
(

pαq2β
′ − pαqβ

′
)( 1

pα4qβ
+

1

pα4qβ(pα4qβ − 1)

)

− (qβ
′ − 1)

1

pα4qβ − 1

=
qβ

′+1 − q

pα4−α
+

X:=
︷ ︸︸ ︷

qβ
′+1 − q

pα4−α(pα4qβ − 1)
−

Y :=
︷ ︸︸ ︷

(qβ
′ − 1)

1

pα4qβ − 1
.
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We obviously have X,Y > 0. We want to show that also X,Y < pα−α4 holds.
Indeed X < pα−α4 holds since

X <
qβ

′+1

pα4−α(pα4qβ − 1)
=

1

pα4−α
· q2

pα4 − 1
qβ

<
1

pα4−α
.

In particular note that pα4 − 1
qβ

> q2 since pα4 > q2 and both pα4 and q2 are

integers. A similar computation shows that Y < pα−α4 holds:

Y <
qβ

′

pα4qβ − 1
=

1

pα4−α
· q

pα − 1
qβpα4−α

<
1

pα4−α
.

Therefore |X − Y | < 1
pα4−α and qβ

′+1−q

pα4−α has to be an integer. Thus

pα4−α|qβ′ − 1

and Lemma 6.2 yields pα4−α < q2. But this implies that we are in Case C.
6.2.3. Case C. First of all note that we may assume that pα > q, since

pα < q would imply that either pα3−α < q or that pα4−α < q. The first
case can be excluded as in Case B. The second case can be excluded by using
Lemma 3.4:

qβ · pαqβ = gcd(s4, s1) gcd(s4, s2) < s4 = qβpα4

which yields qβ < pα4−α. If pα4−α < q we would deduce that β = 0 a
contradiction to Lemma 3.6. Nevertheless we obtain β = 1. By the inequality
s2 < s4 we also obtain that qβ

′−β < pα4−α < q2, hence β = 1 and β′ = 2.
Next we observe that by Lemma 3.3 we have c| s4−s2

gcd(s4,s2)
and therefore

c < qpα4

qpα < q2. Since ac+ 1 = q2pα this yields that a > pα > q and therefore

we get q2 = ab+ 1 > p2α > q2, a contradiction.

6.3. Case III. In the third case we have:

ab+ 1 =pαqβ , bc+ 1 =pα4qβ
′

,

ac+ 1 =qβ2 , bd+ 1 =qβ5 ,

ad+ 1 =pαqβ
′

, cd+ 1 =pα6qβ ,

with 0 < α ≤ α4 < α6 and β < β′ < β2 < β5. We consider the last
equation of system (2.1) and obtain in combination with Lemma 6.2 that
pα4−α < q2. Indeed, we can do slightly better and show that pα4−α < q2 − 1,
since gcd(q + 1, q − 1) = 2 and pα4−α = q2 − 1 = (q − 1)(q + 1) would yield a
contradiction. We use Lemma 3.4 to obtain

qβpα · qβ′

= gcd(s4, s1) gcd(s4, s2) < s4 = qβ
′

pα4 ,

and therefore qβ < pα4−α < q2, which implies that β = 1. Also note that
since β = 0 is excluded due to Lemma 3.6 we conclude that q < pα4−α. We
also note that due to s2 < s3 we have that pα > q, hence pα4 > q2.
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Now, let us consider the second equation of system (2.1). After dividing
through a common denominator and rearranging terms we obtain

pα(pα4−α + 1) = qβ
′

pα4 − qβ2+β5−β′

+ qβ2−β′

+ qβ5−β′

.

Since pα4−α + 1 < q2 the q-adic valuation of the right hand side is at most
1. Therefore we have either β′ = 1 or β2 − β′ = 1. Since β = β′ = 1 is a
contradiction we have that β2 = β′ + 1.

Next, we compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
pαqβ

′+2 − qβ
′+1 − pαq + 1

pα4qβ′ − 1

=
q2

pα4−α
− q

pα4

+ L

(

1.001 ·
(

q2

p2α4−αqβ′ +
q

p2α4qβ′ +
q

pα4−αqβ′ +
1

pα4qβ′

))

=
q2

pα4−α
− q

pα4
+ L

(
1.001

pα4−α

(
1

q2
+

1

q5
+

1

q2
+

1

q4

))

=
q2

pα4−α
− 1

pα4−α
· q

pα
+ L

(
2.004

pα4−α
· 1
q

)

.

Therefore we have that 1 > a2pα4−α − q2 > −2. This implies that

a2 =
q2 − 1

pα4−α
or a2 =

q2

pα4−α

is an integer. The second option clearly cannot hold. Thus pα4−α|q2 − 1 =
(q + 1)(q − 1). Since gcd(q + 1, q − 1) = 2 and p is odd we conclude that

pα4−α ≤ q+1
2 < q which contradicts our previous conclusion that q < pα4−α.

6.4. Case IV. In the last case we have:

ab+ 1 =pαqβ , bc+ 1 =qβ4 ,

ac+ 1 =pαqβ
′

, bd+ 1 =pα5qβ
′

,

ad+ 1 =qβ3 , cd+ 1 =pα6qβ ,

with 0 < α < α5 < α6 and 0 < β < β′ < β3, β4. Note that β = 0 is
not possible due to Lemma 3.6 In this case we consider the first equation
of system (2.1) and obtain in combination with Lemma 6.2 that pα5−α < q2.
Similar as in Case III we may even assume that pα5−α < q2−1. Now applying
Lemma 3.4 we obtain

pαqβ · qβ′

= gcd(s5, s1) gcd(s5, s3) < s5 = pα5qβ
′

,
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hence qβ < pα5−α < q2 and therefore β = 1. Now, let us consider the second
equation of system (2.1). After dividing through a common denominator and
rearranging terms we obtain

pα(pα5−α + 1) = qβ
′

pα5+α − qβ3+β4−β′

+ qβ3−β′

+ qβ4−β′

.

Since pα5−α + 1 < q2 the q-adic valuation of the right hand side is at most
1. Therefore we have either β′ = 1 or β4 − β′ = 1 or β3 − β′ = 1. Since
β = β′ = 1 is a contradiction the first case cannot hold.

Let us assume that β4 = β′ + 1. We apply Lemma 3.4 and obtain

q · qβ′

= gcd(s4, s1) gcd(s4, s2) < s4 = qβ
′+1,

an obvious contradiction.
Therefore we have β3 = β′ + 1 and β4 ≥ β′ + 2. But β3 = β′ + 1 yields

together with s2 < s3 that pα < q and therefore pα5 < q3 and due to s4 < s5
we deduce that β4 = β′ + 2. Let us compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
p2αq1+β′ − pαqβ

′ − pαq + 1

qβ′+2 − 1

=
(

p2αq1+β′ − pαqβ
′
)( 1

qβ′+2
+

1

qβ′+2(qβ′+2 − 1)

)

− (pαq − 1)
1

qβ′+2 − 1

=
pα(pαq − 1)

q2
+

X:=
︷ ︸︸ ︷

pα(pαq − 1)

q2(qβ′+2 − 1)
−

Y :=
︷ ︸︸ ︷

(pαq − 1)
1

qβ′+2 − 1

Since pα < q it is easy to see that 0 < X, Y < 1
q2

and therefore |X − Y | < 1
q2
.

Hence pα(pαq−1)
q2

is an integer, which contradicts the fact that q2 ∤ pα(pαq−1).

Since in all four cases which are described in Proposition 5.1 (see Table
1) the assumption that q ≥ 52038 logp yields a contradiction we have proved
Proposition 6.1 completely.

7. The case p = 2, 3

We start with the easier case that p = 3. The first main result of this
section is the following proposition which is the content of the first part of
Theorem 1.2:

Proposition 7.1. There is no {3, q}-Diophantine quadruple.

Proof. We start by noting that u3 = v3(q
ord3(q)− 1) ≤ v3(q

2− 1). Since

q2−1 = (q−1)(q+1) and 3 ∤ gcd(q+1, q−1) = 2 we deduce that 3u3 ≤ q+1
2 , i.e.

u3 < max
{

2, log q
log 3

}

and the p-adic Wieferich condition is fulfilled and we may

apply Proposition 6.1 and deduce that 52038 logp < 57170, if p = 3. Therefore
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Proposition 6.1 implies that there is no {3, q}-Diophantine quadruple if q is
a prime ≥ 57170. However, by Lemma 3.9 we also know that no {p, q}-
Diophantine quadruple exists, if max{p, q} < 105. Thus no {3, q}-Diophantine
quadruple exists.

Now we turn to the much more difficult proof that no {2, q}-Diophantine
quadruple exists. First, let us note that due to [19, Theorem 1.2] we may
assume that q ≡ 1 mod 4. However we start with an analog of Lemma 3.7
for the case that p = 2 and q ≡ 1 mod 4.

Lemma 7.2. Let q ≡ 1 mod 4 be a prime. Then we have

v2(q
x − 1) = u2 + v2(x)

and

v2(q
x + 1) = 1

Proof. The second statement is almost trivial after noting that for a
prime q ≡ 1 mod 4 we have qx ≡ 1 mod 4.

In order to prove the first statement of the lemma, assume that v2(q
x −

1) = ℓ. Then

qx ≡ 1 + k · 2ℓ mod 2ℓ+2

for some odd integer k and we have

q2x ≡ 1 + k · 2ℓ+1 mod 2ℓ+2,

i.e. v2(q
2x − 1) = ℓ+ 1. For some odd integer u we obtain

qux ≡ 1 + uk · 2ℓ mod 2ℓ+2,

i.e. v2(q
ux − 1) = ℓ. Note that since q ≡ 1 mod 4 we have that ℓ ≥ 2. An

induction argument similar as in the case that p is odd can be applied (e.g.
see [4, Section 2.1.4]).

In view of Lemma 7.2 we obtain now the following variant of Lemma 6.2.

Lemma 7.3. Let ∗, † ∈ {0, 1, 2, 3, 4, 5, 6} and set β0 = 0 and α0 = 0. Then
we have that

2v2(q
|β∗−β†|−1) < 215q < q1.51

and

v2

(

q|β∗−β†| + 1
)

= 1.

Moreover we have

vq

(

2|α∗−α†| ± 1
)

= 0, uq.
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Proof. Note that due to the results of Szalay and the author [19] we
may assume that q ≡ 1 mod 4 and q > 109. The statement that

v2

(

q|β∗−β†| + 1
)

= 1

is a direct consequence of Lemma 7.2.
Since u2 = v2(q− 1) we deduce that u2 < log q

log 2 , hence Lemma 7.2 implies

exp
(

log 2 · v2
(

q|β∗−β†| − 1
))

< exp(log q + log 2 · v2(|β∗ − β†|))

=q · 2v2(|β∗−β†|).

Since Corollary 4.7 we know that |β∗ − β†| < 36070. Therefore we have that
v2(|β∗ − β†|) ≤ 15 and we obtain the first statement of the lemma, if we take
into account that we may assume that q > 109.

The last statement of the lemma is easily deduced from Lemma 3.7. In-
deed we have

vq

(

2|α∗−α†| ± 1
)

≤ uq +
log |α∗ − α†|

log q
< uq +

log(52038 log q)

log q
< uq + 1

since q > 52038 log q, which holds for q > 109. The last statement of the
lemma follows now from the observation that vq(2

x±1) ≥ uq if vq(2
x±1) 6= 0.

Now, we consider the four cases of Proposition 5.2 individually and show
that the assumption that q > 109 yields a contradiction in each case. The
problem is that an analogous statement of Lemma 3.6 does not hold for p = 2
and we have to be careful when we repeat the proof of Proposition 6.1 in the
case that p = 2.

7.1. Case I. In this case we have

ab+ 1 =2qβ, bc+ 1 =2αqβ4 ,

ac+ 1 =2α2qβ , bd+ 1 =2αqβ5 ,

ad+ 1 =2α3qβ , cd+ 1 =2qβ6 ,

with 1 < α < α2 < α5 and β < β4 < β5 < β6. We consider the second
equation of system (2.1) and obtain after dividing through the common de-
nominator 2αqβ the equation

(7.1) qβ4−β
(
qβ5−β − 1

)
= 2α2qβ5 − 2α3qβ4 + 2α3−α − 2α2−α.

That is 2α2−α|qβ5−β − 1 and Lemma 7.3 implies that 2α2−α < q1.51.
Similarly as in the case that p is odd, we observe that due to Lemma 3.4

we have

2qβ · 2αqβ = gcd(s1, s4) gcd(s2, s4) < s4 = 2αqβ4 ,
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i.e. 2β < β4. Moreover, (ab+ 1)(ac+ 1) > bc+ 1 implies that

2α2+1q2β > 2αqβ4 ,

hence 2β + 2 > β4. Thus β4 = 2β + 1.
Next we compute similarly as in the case that p is odd the quantity a2

and we obtain:

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
2α2+1q2β − 2α2qβ − 2qβ + 1

2αq2β+1 − 1

=
2α2−α+1

q
+ L

(

1.001 ·
(

2α2

22αq2β+2
+

2α2−α

qβ+1
+

2

2αqβ+1
+

1

2αq2β+1

))

=
2α2−α+1

q
+ L

(

1.001 ·
(

1

2αq2β
+

2

qβ−1
+

1

2αqβ+1
+

1

2αq2β+1

))

.

If we assume that β ≥ 3 we obtain

a2 =
2α2−α+1

q
+ L

(
4.004

q2

)

and similarly as in Case I of the proof of Proposition 6.1 we obtain a contra-
diction. Thus we may assume that β ≤ 2.

The case that β = 0 can be excluded since otherwise we would have that
s1 = ab+ 1 = 2 and a = b = 1 which is excluded. Assume that β = 1, then a
computation of a2 as before shows that

a2 =
2α2−α+1

q
− 2α2−α

q2
+ L

(

1.001 ·
(

1

2αq2
+

1

2αq3
+

1

2α−1q2
+

1

2αq3

))

and since 2α ≥ 4 we conclude that

a2 =
2α2−α+1

q
− 2α2−α

q2
+ L

(
0.8

q2

)

is an integer. This implies that

q2
∣
∣q2α2+1 − 2α2

which is impossible.
By similar means we can show that in the case that β = 2 no {2, q}-

Diophantine quadruple exists.

7.2. Case II. In the second case we have

ab+ 1 =2qβ
′

, bc+ 1 =2α4qβ ,

ac+ 1 =2αqβ
′

, bd+ 1 =2αqβ5 ,

ad+ 1 =2α3qβ , cd+ 1 =2qβ6 ,
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with 0 < α < α3, α4 and β < β′ < β5 < β6. We consider the second equation
of system (2.1) and obtain

(7.2) qβ
′−β

(

qβ5−β′

+ 1
)

= 2αqβ5+β′−β + 2α3−α + 2α3+α4−αqβ .

Let M = min{α, α3 − α, α4 − α}, then 2M |qβ5−β + 1 and Lemma 7.3 implies
that M = 1. In case that α = 1, we would obtain that s1 = s2 a contradiction.
If α3 = α+ 1 we obtain 2αqβ

′

= s2 < s3 = 2α+1qβ , i.e. qβ
′−β < 2 an obvious

contradiction. Finally in the case that α4 = α+ 1 we obtain a contradiction
by considering the inequality s2 < s4.

7.3. Case III. In the third case we have:

ab+ 1 =2αqβ, bc+ 1 =2α4qβ
′

,

ac+ 1 =2qβ2 , bd+ 1 =2qβ5 ,

ad+ 1 =2αqβ
′

, cd+ 1 =2α6qβ ,

with 1 < α ≤ α4 < α6 and β < β′ < β2 < β5. We consider the last equation
of system (2.1) and we obtain that 2α4−α|qβ′−β − 1. Thus Lemma 7.3 implies
that 2α4−α < 215q. We apply Lemma 3.4 and obtain

qβ2α · 2qβ′

= gcd(s4, s1) gcd(s4, s2) < s4 = qβ
′

2α4 ,

and therefore qβ < 2α4−α−1 < 214q, which implies that β = 0, 1.
The case that β = 1 is similar to the treatment of Case III, if p is odd.

However we may even assume that 2α4−α > 2q and the inequality s2 < s3
yields that 2α > 2q, that is we have that 2α4 > 4q2. Now, let us consider the
second equation of system (2.1). After rewriting the equation we obtain

2α(2α4−α + 1) = qβ
′

2α4+α − 4qβ2+β4 + 2qβ2 + 2qβ5 .

Since 2α4−α−1 + 1 < q2 we deduce that either β′ = 1 or β2 = β′ + 1. Note
that β = β′ = 1 is excluded, hence we deduce that β2 = β′ + 1. Next, we
compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
2α+1q2β

′+1 − 2qβ
′+1 − 2αq + 1

2α4qβ′ − 1

=
q2

2α4−α−1
+ L

(

1.001 ·
(

q2

22α4−α−1qβ′ +
q

2α4−1
+

q

2α4−αqβ′ +
1

2α4qβ′

))

=
q2

2α4−α−1
+ L

(
0.51

2α4−α−1

)

which implies that q2

2α4−α−1 is an integer, an obvious contradiction.
Therefore we have β = 0 and by considering again the second equation

of system (2.1) we obtain that β′ = 1. Note that the case that β2 = β′ + 1
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has been excluded by the previous paragraph, i.e. we have that β2 ≥ 3. Due
to the inequality 2qβ2 = s2 < s3 = 2αq we deduce that 2α > 2qβ2−1 ≥ 2q2.
Next, we observe that

d

b
=

s3 − 1

s1 − 1
=

2αq − 1

2α − 1
< 1.001q

and
d

b
=

s6 − 1

s4 − 1
=

2α6 − 1

q2α4 − 1
>

2α6−α4

q

and therefore 2α6−α4 < 1.001q2. On the other hand we have that c| s6−s4
gcd(s6,s4)

,

hence c < 2α6−α4 < 1.001q2. This yields 2qβ2 = ac + 1 < c2 < 2q4 and we
obtain that β2 ≤ 3. Since we have excluded the case that β2 < 3 we are left
with the possibility that β2 = 3. Let us compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1
<

s1s2
s4

= 2α+1−α4q2

and therefore we have a < q
√
2, since α4 ≥ α. But a < 1.5q and c < 1.001q2

yield 2q3 = ac+ 1 < 2q3 a contradiction.

7.4. Case IV. In the last case we have:

ab+ 1 =2αqβ, bc+ 1 =2qβ4 ,

ac+ 1 =2αqβ
′

, bd+ 1 =2α5qβ
′

,

ad+ 1 =2qβ3 , cd+ 1 =2α6qβ ,

with α < α5 < α6 and β < β′ < β3, β4. In this case we consider the first
equation of system (2.1) and obtain in combination with Lemma 7.3 that
2α5−α < 215q. Applying Lemma 3.4 we obtain

2αqβ · 2qβ′

= gcd(s1, s5) gcd(s3, s5) < s5 = qβ
′

2α5 ,

hence qβ < 2α5−α−1 < q2 and therefore β = 0, 1.
In the case that β = 1 we proceed similarly as in the case that p is

odd. That is we consider the second equation of system (2.1). After dividing
through a common denominator and rearranging terms we obtain

(7.3) 2α(2α5−α + 1) = qβ
′

pα5 − 4qβ3+β4−β′

+ 2qβ3−β′

+ 2qβ4−β′

.

Since 2α5−α + 1 < q2 the q-adic valuation of the right hand side is at most
1. Therefore we have either β′ = 1 or β4 − β′ = 1 or β3 − β′ = 1. Since
β = β′ = 1 is a contradiction the first case cannot hold and the second case
cannot hold due to an application of Lemma 3.4. Indeed we obtain

2qβ · 2qβ′

= gcd(s1, s4) gcd(s2, s4) < s4 = 2qβ
′+1

which yields a contradiction since we assume that β = 1.
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Therefore we have β3 = β′ + 1 and β4 ≥ β′ + 2. But β3 = β′ + 1 yields
together with s2 < s3 that 2α < 2q and therefore 2α5 < 216q2 < q3 and due
to s4 < s5 we deduce that β4 = β′ + 2. Let us compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
22αq1+β′ − 2αqβ

′ − 2αq + 1

2qβ′+2 − 1

=
(

22αq1+β′ − 2αqβ
′
)( 1

2qβ′+2
+

1

2qβ′+2(2qβ′+2 − 1)

)

− (2αq − 1)
1

2qβ′+2 − 1

=
2α−1(2αq − 1)

q2
+

X:=
︷ ︸︸ ︷

2α(2αq − 1)

2q2(2qβ′+2 − 1)
−

Y :=
︷ ︸︸ ︷

(2αq − 1)
1

2qβ′+2 − 1
.

Since 2α < 2q it is easy to see that 0 < X, Y < 1
q2

and therefore |X − Y | <
1
q2
. Hence a2 = 2α−1(2αq−1)

q2
is an integer, which contradicts the fact that

q2 ∤ 2α(2αq − 1).
Therefore we are left with the case that β = 0. Again we consider (7.3)

and see that qM |2α5−α + 1, where M = min{β′, β3 − β′, β4 − β′}. Since
2α5−α + 1 < 215q + 1 < q2 we obtain that M ≤ 1. Note that in case that
2α5−α < q− 1 we have M = 0 which would yield an immediate contradiction.
Therefore we have M = 1 and 2α5−α ≥ q − 1. However, M = 1 implies that
either β′ = 1 or β4 − β′ = 1 or β3 − β′ = 1. The last two options have been
excluded in our previous discussion, hence β′ = 1. Next we compute

d

a
=

s5 − 1

s1 − 1
=

2α5q − 1

2α − 1
< 1.001 · 2α5−αq < 1.001 · 215q2

and
d

a
=

s6 − 1

s2 − 1
=

2α6 − 1

2αq − 1
>

2α6−α

q
.

Therefore we obtain that 2α6−α < 1.001 · 215q3. But since 2α5−α ≥ q − 1 we
obtain that 2α6−α5 < 1.002 · 215q2. On the other hand we have d| s6−s5

gcd(s5,s6)

and we obtain that d < 2α6−α5 < 1.002 · 215q2.
Next we estimate

(7.4) c2 =
(s4 − 1)(s2 − 1)

s1 − 1
> 0.999

s4s2
s1

= 1.998qβ4+1

and we obtain

1.01 · 230q4 > d2 > c2 > 1.998qβ4+1.

hence 1.02 · 229q3 > qβ4 and since we may assume that q > 109 > 1.02 · 229
due to [19, Theorem 1.3] we deduce that β4 ≤ 3. On the other hand we have



312 V. ZIEGLER

already excluded that β4 < 3 and obtain that β4 = 3. Moreover, (7.4) yields
c > 1.4q2. On the other hand we have that c| s4−s2

gcd(s4,s2)
, hence we get c < q2

and we have a contradiction.
Since we excluded the existence of {2, q}-Diophantine quadruples for all

four cases the proof that no {2, q}-Diophantine quadruple exists is complete.

8. The q-adic Wieferich condition

This section is the q-adic analog of Section 6. Thus we assume the divis-
ibility condition q2 ∤ pq−1 − 1, i.e. vq(p

q−1 − 1) = 1. The main result of this
section is the following proposition.

Proposition 8.1. Let p < q be primes such that p ≡ 3 mod 4 and
q2 ∤ pq−1 − 1, i.e. uq = 1. If there exists a {p, q}-Diophantine quadruple, then
q ≤ 700393.

Similar as in the proof of Proposition 6.1 we need a tool to estimate q-adic
valuations. That is we prove the following q-adic variation of Lemma 6.2.

Lemma 8.2. Let p < q be odd primes such that p ≡ 3 mod 4 and let
∗, † ∈ {0, 1, 2, 3, 4, 5, 6}. Moreover, set α0 = 0 and assume that q > 700393.
If vq(p

q−1 − 1) = uq, then we have that vq
(
p|α∗−α†| ± 1

)
= 0, uq.

Proof. The lemma is a consequence of Lemma 3.7 and Proposition 4.5.
Indeed we have

vq

(

p|α∗−α†| − 1
)

< uq + vq(|α∗ − α†|) < uq +
log(52038 log q)

log q
< uq + 1,

which implies the statement of the lemma provided that log(52038 log q)
log q

< 1.

Note that if vq(p
x − 1) 6= 0, then vq(p

x − 1) ≥ uq.
To obtain the lemma we observe that the inequality 52038 log q < q holds,

if q is a prime larger than 700393. Indeed the inequality 52038 logx < x holds
if x > 700401 and 700393 is the largest prime less than 700401.

The proof of Proposition 8.1 is similar to the proof of Proposition 6.1.
However, we have to discuss all four cases of Proposition 5.1.

8.1. Case I. In this case we have

ab+ 1 =qβ , bc+ 1 =pαqβ4 ,

ac+ 1 =pα2qβ , bd+ 1 =pαqβ5 ,

ad+ 1 =pα3qβ , cd+ 1 =qβ6 ,

with 0 < α < α2 < α5 and β < β4 < β5 < β6. We consider the second
equation of system (2.1) and obtain after dividing through the common de-
nominator pαqβ the equation

pα2−α(pα3−α2 − 1) = pα3qβ4 − pα2qβ5 + qβ5−β − qβ4−β
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That is qβ4−β|pα3−α2 − 1 and Lemma 8.2 implies that β4 − β = uq = 1. We
apply Lemma 3.4 and obtain

qβ · pαqβ = gcd(s1, s4) gcd(s2, s4) < s4 = qβ · pαqβ < pαqβ+1.

This implies that qβ < q, i.e. β = 0. But, β = 0 implies that ab + 1 = 1, a
contradiction.

8.2. Case II. In the second case we have

ab+ 1 =qβ
′

, bc+ 1 =pα4qβ ,

ac+ 1 =pαqβ
′

, bd+ 1 =pαqβ5 ,

ad+ 1 =pα3qβ , cd+ 1 =qβ6 ,

with 0 < α < α3, α4 and β < β′ < β5 < β6. We consider the first equation of
system (2.1) and obtain after rearranging terms

pα − 1 = p2αqβ5 − pαqβ5−β′ − qβ6 + qβ6−β′

.

Lemma 8.2 yields β5 − β′ = 1. By an application of Lemma 3.4 we obtain

qβ
′ · pαqβ = gcd(s1, s5) gcd(s3, s5) < s5 = qβ

′+1pα,

which yields a contradiction unless β = 0. But β = 0 is also impossible due
to Lemma 3.6.

8.3. The Case III. In the third case we have:

ab+ 1 =pαqβ , bc+ 1 =pα4qβ
′

,

ac+ 1 =qβ2 , bd+ 1 =qβ5 ,

ad+ 1 =pαqβ
′

, cd+ 1 =pα6qβ ,

with 0 < α ≤ α4 < α6 and β < β′ < β2 < β5. If we consider the first equation
of system (2.1) and rearrange it in view of q-adic valuations we obtain

pα6−α + 1 = pα6qβ − pα4q2β
′−β + qβ

′−β + pα4−αqβ4−β.

Lemma 6.2 implies now that either β = 1 or β2 − β = 1. The second case
cannot hold since β < β′ < β2. However, if we consider the second equation
of system (2.1) in view of q-adic valuations we have

pα(pα4−α + 1) = pα+α4qβ
′ − qβ2+β5−β′

+ qβ2−β′

+ qβ5−β′

.

By Lemma 8.2 we obtain that either β′ = 1 or β2−β′ = 1. Thus we conclude
that β = 1 and β2 = β′ + 1. Moreover the inequality s2 < s3 yields that
pα > q. Now by an almost identical computation as in Case III in the proof
of Proposition 6.1 we obtain

a2 =
q2

pα4−α
− q

pα4
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+ L

(

1.001 ·
(

q2

p2α4−αqβ′ +
q

p2α4qβ′ +
q

pα4−αqβ′ +
1

pα4qβ′

))

=
q2

pα4−α
− q

pα4
+ L

(
1.001

pα4−α
·
(
1

q
+

1

q3
+

1

q
+

1

q3

))

=
q2

pα4−α
− 1

pα4−α
· q

pα
+ L

(
2.004

pα4−α
· 1
q

)

.

and the same argument as in Case III in the proof of Proposition 6.1 applies.

8.4. The Case IV. In the last case we have:

ab+ 1 =pαqβ , bc+ 1 =qβ4 ,

ac+ 1 =pαqβ
′

, bd+ 1 =pα5qβ
′

,

ad+ 1 =qβ3 , cd+ 1 =pα6qβ ,

with 0 < α < α5 < α6 and β < β′ < β3, β4. We consider the third equation
of system (2.1) in view of q-adic valuations and obtain

pα(pα6−α + 1) = pα+α6qβ − qβ3+β4−β + qβ3−β + qβ4−β.

Lemma 8.2 yields that either β = 1 or β3−β = 1 or β4 −β = 1. The last two
cases cannot hold, since β < β′ < β3, β4. However, if we consider the second
equation of system (2.1) we obtain

pα(pα5−α + 1) = pα+α5qβ
′ − qβ3+β4−β′

+ qβ3−β′

+ qβ4−β′

and Lemma 8.2 implies that either β′ = 1 or β3 − β′ = 1 or β4 − β′ = 1.
Obviously the first case cannot hold since 1 = β < β′.

Let us assume for the moment that β4 = β′+1. By Lemma 3.4 we obtain

q · qβ′

= gcd(s1, s4) gcd(s2, s4) < s4 = qβ
′+1,

a contradiction. Therefore we may assume that β3 = β′+1 and β4 = β′+2+ℓ
with some non-negative integer ℓ.

Now, we are almost in the same situation as in Case IV of the proof of
Proposition 6.1. Thus we compute the quantity a2. Before we do this let us
note that pα < q holds due to the inequality s2 < s3. Now let us compute

a2 =
(s1 − 1)(s2 − 1)

s4 − 1

=
p2αq1+β′ − pαqβ

′ − pαq + 1

qβ′+2+ℓ − 1

=
(

p2αq1+β′ − pαqβ
′
)( 1

qβ′+2+ℓ
+

1

qβ′+2+ℓ(qβ′+2+ℓ − 1)

)

− pαq − 1

qβ′+2+ℓ − 1

=
pα(pαq − 1)

q2+ℓ
+

X:=
︷ ︸︸ ︷

pα(pαq − 1)

q2+ℓ(qβ′+2+ℓ − 1)
−

Y :=
︷ ︸︸ ︷

pαq − 1

qβ′+2+ℓ − 1
.
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Since pα < q and β′ ≥ 2 it is easy to see that 0 < X, Y < 1
q2+ℓ and therefore

|X−Y | < 1
q2+ℓ . Hence

pα(pαq−1)
q2+ℓ is an integer, which contradicts the fact that

q2 ∤ pα(pαq − 1).
Therefore the proof of Proposition 8.1 is complete.

Let us summarize what we have proved so far. Combining our results
obtained in the p-adic case (Proposition 6.1) and our results found in the
q-adic case (Proposition 8.1) we immediately obtain the following corollary.

Corollary 8.3. Let p < q be primes and assume that p ≡ 3 mod 4.
Furthermore assume that (p, q) is not an extreme Wieferich pair. Then a S-
Diophantine quadruple exists only if q ≤ 700393. Moreover if p2 ∤ qp−1 − 1
we have

p < q < 52038 logp.

Proof. Note that if p2 ∤ qp−1 − 1 we have up = 1 < max
{

2, log q
log p

}

and

we can use the sharper bound provided by Proposition 6.1.

9. The remaining small cases

In [19] Szalay and the author found a method to reduce the huge bound
for log d coming from the theory of linear forms in logarithms to comparable
small bounds by using continued fractions. In particular they proved the
following lemma (see [19, Lemma 3.1]).

Lemma 9.1. Let C ≥ log d and assume that for some real number δ > 0
we have

|P log p−Q log q| > δ

for all convergents P/Q to log q/log p with Q < 2C/log q and P < 2C/log p.
Then

log d < 2C1 + uq log q + up log p+ log

(
2C2

1

log p log q

)

,

where

C1 = max

{

log

(
2

δ

)

, log

(
8C

log p log q

)}

.

Also the following lemma is useful (see [19, Lemma 3.2]).

Lemma 9.2. Under the assumptions of Lemma 9.1, α1, α2 < C1/log p
and β1, β2 < C1/log q follows, where

C1 = max

{

log

(
2

δ

)

, log

(
8C

log p log q

)}

.

Moreover, log(ab+ 1) < C1 and log(ac+ 1) < C1 also hold.
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One can apply these two lemmas repeatedly and obtain small upper
bounds for log d which makes a computer search feasible. Moreover the al-
gorithm is very efficient and it is possible to test for many pairs (p, q) of
primes whether a {p, q}-Diophantine quadruple exists. We use the following
algorithm to find all S-Diophantine quadruples for given S = {p, q}.

Algorithm 1. Given two primes p, q such that either p ≡ 3 mod 4 or
q ≡ 3 mod 4. Then the algorithm returns all possible {p, q}-Diophantine
quadruples.

1. We compute the bound

log d < log
(
pAqB

)
< C0 := 104076 logp log q.

2. We use Lemma 9.1 and Lemma 9.2 to compute the new upper bounds
C and C1 by using the upper bound C0 ≥ log d. If C < C0 − 0.1 we
put C0 := C and repeat this step.

3. For all exponents 0 ≤ α1, α2 ≤ C1

log p
and all exponents 0 ≤ β1, β2 <

C1

log q
we do the following:

(a) Compute g = gcd(pα1qβ1 − 1, pα2qβ2 − 1). Note that gcd(s1 −
1, s2 − 1) = gcd(ab, ac) = a gcd(b, c).

(b) If g > 0 we compute for all divisors a of g the quantity

b = pα1qβ1−1
a

and if a < b we compute c = pα2qβ2−1
a

and check
whether c is an integer such that a < b < c. If (a, b, c) is a
{p, q}-Diophantine triple, i.e. the only prime divisors of bc+ 1
are p and q, then we store (a, b, c) in a list L.

4. For all exponents 0 ≤ α6 ≤ C
log p

, all exponents 0 ≤ β6 < C
log q

and all

triples (a, b, c) ∈ L we do the following:

(a) We compute d = pα6qβ6−1
c

.
(b) We check whether d is an integer such that d > c.
(c) We check whether (a, b, c, d) is a {p, q}-Diophantine quadruple,

that is we check whether the only prime divisors of ad + 1 and
bd+ 1 are p and q.

(d) If (a, b, c, d) is a {p, q}-Diophantine quadruple, then we store
(a, b, c, d) in a list Quad.

5. We return the list Quad.

We implemented this algorithm in PARI/GP ([20]) and checked all pairs
of primes such that p < q, p ≡ 3 mod 4 and q < 52038 logp. This are
340306885 pairs and it took about 21 hours on a usual PC (Intel i7-7500U
– 2.70 GHz). However we found no S-Diophantine quadruple. In view of
Corollary 8.3 this proves Theorem 1.4 for all pairs (p, q) of primes such that
p < q, p ≡ 3 mod 4 and p2 ∤ qp−1 − 1.

For the remaining cases we do the following. For all pairs of primes (p, q)
such that p < q, p ≡ 3 mod 4 and 52038 logp ≤ q ≤ 700393, we check
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whether p2|qp−1 − 1. In the cases for which p2|qp−1 − 1 we apply Algorithm
1. Let us note that only 24297 pairs (p, q) of the 60321782 remaining pairs
of primes satisfy p2|qp−1 − 1. Therefore the running time of 87 seconds was
rather short. Since we found in this second round no S-Diophantine quadruple
the proof of Theorem 1.4 is now complete.

10. Further Remarks and open problems

In this final section we want to discuss several open problems concerning
this topic. First, we want to mention that with some effort it seems to be
possible to resolve the case of primes p < q such that q ≡ 3 mod 4. We hope
to be able to prove in a forthcoming paper the following conjecture:

Conjecture 10.1. Let p < q be primes and assume that (p, q) is not
a Wieferich pair nor satisfies p ≡ q ≡ 1 mod 4. Then there is no {p, q}-
Diophantine quadruple.

It would be very interesting to get rid of the Wieferich condition as we
were able do to in the case that S = {2, q} or S = {3, q}. With a little more
effort will also prove in a forthcoming paper the following conjecture:

Conjecture 10.2. Let q 6≡ 1 mod 4 be a prime. Then there is no {5, q}-
Diophantine quadruple.

However, with much effort such results as Theorem 1.2 or Conjecture 10.2
could also be established with p = 7 or even p = 11. But the problem is that to
the authors knowledge for fixed p we do not know how large up = vp(q

p−1−1)
can get. To the authors knowledge the best known upper bound for up is
due to Yamada ([21]) who used the very sharp results due to Bugeaud and
Laurent ([3]) for linear forms in two p-adic logarithms. In particular, Yamada
obtained that

up ≤
⌊

283(p− 1)
log 2

log p
· log 2q
log p

⌋

+ 4.

However this bound seems to be far from optimal. In particular, Yamada
([21, Conjecture 1.3]) conjectures that

up ≤ 2 +
log q + log log q + log log p

log p
.

In view of this conjecture it seems very unlikely that our p-adic Wieferich

condition that up < max
{

2, log q
log p

}

is not fulfilled if q is large compared to p

and in view of our definition of an extreme Wieferich pair we are interested
in the following problem.

Problem 10.1. Does there exist an extreme Wieferich pair (p, q), with
q > p2?
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The author’s guess is that such an extreme Wieferich pair does not exist.
Nevertheless to prove a theorem without a Wieferich type criterion using the
methods presented in this paper we would need to show that vp(q

p−1 − 1) <
c log q
log p

, where c is a small (e.g. c < 2) absolute constant, a result that seems

to be far out of reach.
It would be also interesting to get rid of the congruence condition that

either p or q is ≡ 3 mod 4. In particular, it would be interesting to prove the
following weaker form of Conjecture 1.1.

Conjecture 10.3. Let p < q be primes and assume that (p, q) is not a
Wieferich pair. Then there exists no {p, q}-Diophantine quadruple.
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