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GENERATORS AND INTEGRAL POINTS ON CERTAIN

QUARTIC CURVES

Yasutsugu Fujita and Tadahisa Nara

Nihon University, Japan and Tohoku-Gakuin University, Japan

Abstract. In this paper, we study integral points and generators on
quartic curves of the forms u2

±v
4 = m for a nonzero integer m. The main

results assert that certain integral points on the curves can be extended
to bases for the Mordell-Weil groups of the elliptic curves attached to the
quartic curves in the cases where the Mordell-Weil ranks are at most two.
As corollaries, we explicitly describe the integral points on the quartic
curves in each case where the ranks are one and two.

1. Introduction

Let m be a nonzero integer. Denote by C−
m and C+

m the quartic curves
defined by

u2 − v4 = m

and

u2 + v4 = m,

respectively.
Consider first the curve C−

m, which is birationally equivalent to the elliptic
curve E−

m defined by

y2 = x3 − 4mx.

In fact, a birational map ϕ− from C−
m to E−

m is defined by

(1.1) ϕ−(u, v) = (2(u+ v2), 4v(u+ v2))
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and its inverse ψ− from E−
m to C−

m is defined by

(1.2) ψ−(x, y) =

(

2x3 − y2

4x2
,
y

2x

)

.

Note that there are two points at infinity on C−
m corresponding to the

points (±1, 0) on the “dual” model of C−
m defined by u2 = mw4 + 1, via the

map ϕ− one of the points at infinity maps to the identity element O− on E−
m

and the other maps to the torsion point T− = (0, 0) on E−
m. Denote by T the

point at infinity on C−
m corresponding to T− on E−

m. So we regard C−
m(Q)

as a group consisting of the rational points with the two points at infinity,
isomorphic to E−

m(Q).

Theorem 1.1. Let m be a fourth-power-free integer. If P1 = (a1, b1) is

an integral point on C−
m with a1b1 6= 0, then P1 can be extended to a basis for

C−
m(Q) modulo C−

m(Q)tors.

Corollary 1.2. Let m be a fourth-power-free integer. Assume that the

rank of C−
m(Q) is one. If m is a non-square, then C−

m has at most four integral

points, which can be expressed as (a1,±b1), (−a1,±b1), and if m is a square

of some positive integer m0, then C−
m has at most six integral points, which

can be expressed as (a1,±b1), (−a1,±b1), (±m0, 0) for some integers a1 and

b1.

Theorem 1.3. Let m be a square-free integer. Assume that P1 and P2

are integral points on C−
m such that (|x(P1)|, |y(P1)|) 6= (|x(P2)|, |y(P2)|). If

neither P1 + P2 nor P1 − P2 has a 3-division point in C−
m(Q), then {P1, P2}

can be extended to a basis for C−
m(Q) modulo C−

m(Q)tors.

Using the identity

(1.3) (2s2 + st+ 2t2)2 − (s+ t)4 = (2s2 − st+ 2t2)2 − (s− t)4,

we can give an explicit example of an infinite family of m satisfying the as-
sumption of Theorem 1.3.

Corollary 1.4. Let m be a square-free integer expressed as m = 3 (s4+
s2t2 + t4) with coprime integers s, t. Put

(1.4) P1 = (st+ 2(s2 + t2), s+ t), P2 = (st− 2(s2 + t2), s− t).

Then, {P1, P2} can be extended to a basis for C−
m(Q) modulo C−

m(Q)tors.

If we assume that the rank of C−
m(Q) is two, then the integral points

can be explicitly described without the assumption on 3-division points as in
Theorem 1.3.

Theorem 1.5. Let m be a square-free integer. Assume that the rank of

C−
m(Q) is two. Then, C−

m has at most eight integral points, which can be

expressed as

(1.5) (a1,±b1), (−a1,±b1), (a2,±b2), (−a2,±b2)
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for some integers a1, b1, a2 and b2. In particular, if C−
m has two integral points

(a1, b1) and (a2, b2) with (|a1|, |b1|) 6= (|a2|, |b2|), then the integral points on

C−
m are exactly given by (1.5).

Consider next the curve C+
m. Let P1 = (a1, b1) be a point in C+

m(Q), and
E+

m the elliptic curve defined by

y2 = x3 + 4mx.

Then, there exists a birational map ϕ+ from C+
m to E+

m defined by
(1.6)

ϕ+(u, v) =

(

(u + a1)
2 + (v2 − b21)

2

(v + b1)2
,
4
{

(u+ a1)m+ b1v(a1v
2 + b21u)

}

(v + b1)3

)

,

with the inverse map ψ+ defined by
(1.7)

ψ+(x, y) =

(

a31x
3 − 12a1b

2
1mx

2 − 4a31mx+ 8b1(a
2
1 + 2b41)my − 16a1b

2
1m

2

(a1y − 2b31x− 4b1m)2
,

2mx− a1b1y − 4b21m

a1y − 2b31x− 4b1m

)

.

Note that

ϕ+(a1,−b1) = O+, ϕ+(−a1, b1) = (0, 0) =: T+,

ϕ+(a1, b1) =

(

a21
b21
,
a1(a

2
1 + 2b41)

b31

)

=: P+
1 ,

ϕ+(−a1,−b1) =
(

4b21m

a21
,−4b1(a

2
1 + 2b41)m

a31

)

= P+
1 + T+.

The latter two equalities follow from

u+ a1
v + b1

=
(b1 − v)(b21 + v2)

u− a1
,

b1u− a1v

v + b1
=

(b1 − v)(m+ b21v
2)

b1u+ a1v
,

by u2 + v4 = a21 + b41. Thus, C+
m can be regarded as an elliptic curve with

the identity element O = (a1,−b1), the 2-torsion point T = (−a1, b1) and the
non-torsion point P1 = (a1, b1).

Theorem 1.6. Let m be a fourth-power-free integer. If P1 = (a1, b1) is

an integral point on C+
m with a1b1 6= 0, then P1 can be extended to a basis for

C+
m(Q) modulo C+

m(Q)tors.

Corollary 1.7. Let m be a fourth-power-free integer. Assume that the

rank of C+
m(Q) is one. If m is a non-square, then C+

m has at most four integral

points, which can be expressed as (a1,±b1), (−a1,±b1), and if m is a square

of some positive integer m0, then C+
m has at most six integral points, which
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can be expressed as (a1,±b1), (−a1,±b1), (±m0, 0) for some integers a1 and

b1.

Theorem 1.8. Let m be a non-square, fourth-power-free integer. Assume

that P1 = (a1, b1) and P2 = (a2, b2) are integral points on C+
m such that

{|a1|, b21} 6= {|a2|, b22}. Assume further that either of the following holds:

(i) m is square-free.

(ii) Neither (a1 + a2)
2 + (b21 − b22)

2 nor (a1 − a2)
2 + (b21 − b22)

2 is a square.

If neither P2 nor P1 −P2 has a 3-division point in C+
m(Q), then {P1, P2} can

be extended to a basis for C+
m(Q) modulo C+

m(Q)tors.

Identity (1.3) also gives an explicit example satisfying assumption (i) of
Theorem 1.8.

Corollary 1.9. Let m be a square-free integer expressed as m = 5 (s4+
3s2t2 + t4) with coprime integers s, t. Put

(1.8) P1 = (st+ 2(s2 + t2), s− t), P2 = (st− 2(s2 + t2), s+ t).

Then, {P1, P2} can be extended to a basis for C+
m(Q) modulo C+

m(Q)tors.

Theorem 1.10. Let m be a square-free integer. If the rank of C+
m(Q) is

two, then C+
m has at most eight integral points, which can be expressed as

(1.9) (a1,±b1), (−a1,±b1), (a2,±b2), (−a2,±b2)
for some integers a1, b1, a2 and b2. In particular, if C+

m has two integral points

(a1, b1) and (a2, b2) with (|a1|, |b1|) 6= (|a2|, |b2|), then the integral points on

C+
m are exactly given by (1.9).

Let Q+
m be the quartic curve defined by u4 + v4 = m. For a point P =

(u, v) in Q+
m(Q), denote by P̂ the “dual” point (v, u) of P and denote by Pq

and P̂q the images of P and P̂ , respectively, in C+
m(Q) via the natural map

(u, v) 7→ (u2, v).
Let (a, b) be an integral point on Q+

m. When we take (a1, b1) = (a2, b)
and regard C+

m as an elliptic curve via the map ϕ+, we obtain the following,
which is an immediate consequence of [5, Theorem 1.5 (1)].

Theorem 1.11. Let m be a fourth-power-free integer. Assume that Q+
m

has an integral point P = (a, b). Then, {Pq, P̂q} can be extended to a basis

for C+
m(Q) modulo C+

m(Q)tors.

The final result of this paper asserts that the integral points on Q+
m can

be completely described under the assumptions that the rank of C+
m(Q) is

two and m is fourth-power-free (not necessarily square-free, unlike Theorem
1.10).

Theorem 1.12. Let m be a fourth-power-free integer. If the rank of

C+
m(Q) is two, then Q+

m has at most eight integral points, which can be ex-

pressed as (a,±b), (−a,±b), (b,±a), (−b,±a) for some integers a and b.
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Note that the main strategy of the proofs is similar to that of the proofs
of theorems and corollaries in [3]; after transforming a given model into the
Weierstrass form, we combine divisibility considerations with height estimates.
However, we need other devices than those used in [3]. In fact, in the cases
of C+

m, we often use another map ϕ′ from C+
m to E+

m defined by ϕ′(u, v) =
(−v2, uv), and the proof of Theorem 1.10 needs an argument over Q(i) instead
of Q.

The organization of this paper is as follows. In Section 2, we refer to two
lemmas, one of which will be used to show that some rational points on an
elliptic curve are not divisible by 2 over Q, and the other of which will be
needed for determining the integral points on an elliptic curve. In Section
3, we show that some rational points on an elliptic curve are not divisible
by 2 over Q. Some of the results (Lemmas 3.2 and 3.3) imply that certain
two points are independent modulo torsion (see Remark 3.4). In Section 4,
we quote the work of Voutier and Yabuta ([11, Theorem 1.2]), which gives a
uniform lower bound for canonical heights, and bound canonical heights from
above by computing local heights. Finally, in Section 5, we give the proofs of
theorems and corollaries.

We now fix the notation. Throughout this paper, let m be a fourth-
power-free integer. Let C−

m, C+
m be the quartic curves defined by u2−v4 = m,

u2 + v4 = m, respectively, and E−
m, E+

m the elliptic curves defined by y2 =
x3−4mx, y2 = x3+4mx, respectively. Note that C−

m and E−
m are birationally

equivalent via ϕ− and ψ− defined by (1.1) and (1.2), respectively, and that
C+

m and E+
m are birationally equivalent via ϕ+ and ψ+ defined by (1.6) and

(1.7), respectively, under the assumption that C+
m has a rational point P1 =

(a1, b1). For a point P in C−
m(Q) or in C+

m(Q), denote by P− = ϕ−(P ) or
P+ = ϕ+(P ) the corresponding point in E−

m(Q) or in E+
m(Q), respectively.

Let T− = (0, 0) be the torsion point in E−
m(Q), which is the image by ϕ− of

one of the points at infinity T on C−
m, whereas let T+ = (0, 0) be the torsion

point in E+
m(Q), which is the image by ϕ+ of the point (−a1, b1) on C+

m. We
also use the map ϕ′ from C+

m to Ē+
m defined by ϕ′(u, v) = (−v2, uv), where

Ē+
m is defined by y2 = x3 −mx. In case m = m2

0 for some positive integer
m0, let T

−
1 = (−2m0, 0), T

−
2 = (2m0, 0) be the remaining 2-torsion points in

E−
m(Q), and denote by T1 = (−m0, 0), T2 = (m0, 0) the corresponding points

on C−
m, respectively.

2. Preliminary Lemmas

Let K be a number field, E an elliptic curve defined by

y2 = x3 − 4Ax

for some A ∈ K and Ē the elliptic curve defined by

y2 = x3 +Ax.
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Then, there is an isogeny g of degree two from E to Ē defined by

g(P ) =











(

y2

4x2
,
y(x2 + 4A)

8x2

)

if P = (x, y) 6∈ {O, T },

Ō if P ∈ {O, T },
and the dual isogeny ĝ of g is

(2.1) ĝ(P̄ ) =











(

ȳ2

x̄2
,
ȳ(x̄2 −A)

x̄2

)

if P̄ = (x̄, ȳ) 6∈ {Ō, T̄},

O if P̄ ∈ {Ō, T̄},

where O, Ō are the identity elements on E, Ē, and T, T̄ are the 2-torsion
points (0, 0) on E, Ē, respectively.

In order to examine whether a rational point has a 2-division point or not
in E(K), we need the following lemma.

Lemma 2.1. Let P 6= O be a point in E(K).
(1) P ∈ ĝ(Ē(K)) if and only if x(P ) is a square. In this case, putting

P = (x20, y) with x0 positive, one can express P̄ ∈ Ē(K) with g(P̄ ) = P as

P̄ =

(

1

2

(

x20 ±
y

x0

)

,±x0x(P̄ )

)

,

where the signs are taken simultaneously.

(2) P ∈ 2E(K) if and only if both x(P ) and x(P̄ ) are squares for some

P̄ ∈ Ē(K) with g(P̄ ) = P .

Proof. The assertion in the case where K = Q follows immediately from
(iii) in [10, p. 83]. The same argument applies to the case where K is a general
number field (see [2, p. 342]).

The following lemma is used in the proofs of Theorems 1.5 and 1.10, i.e.,
in determining integral points on C−

m and C+
m in the rank two cases.

Lemma 2.2. The map Φ : E(K) → K×/(K×)2, defined by

Φ(P ) =











x(K×)2 if P = (x, y) 6∈ {O, T },
−A(K×)2 if P = T,

(K×)2 if P = O,
is a group homomorphism.

Proof. The assertion is an immediate consequence of [1, Lemma 2 in
Chapter 14] if K = Q. The same argument applies to a general K, see [2,
Proposition 3.2.1 (a)].

Note that we use Lemmas 2.1 and 2.2 only for K = Q and K = Q(i).
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3. Divisibility and independence of points

Let us first examine the divisibility of integral points on C−
m.

Lemma 3.1. Assume that C−
m has an integral point P . Then P−, P− +

T− 6∈ 2E−
m(Q). Moreover, if m = m2

0 for some positive integer m0, then

P− + T−
1 , P

− + T−
2 6∈ 2E−

m(Q).

Proof. Suppose that P = (u, v) ∈ 2C−
m(Q), which implies P− = ϕ(P ) =

(2(u+ v2), 4v(u+ v2)) ∈ 2E−
m(Q). From Lemma 2.1 we see that both x(P−)

and x(P̄−) are squares. Thus, we may write x(P−) = 2(u + v2) = 4w2 and
x(P̄−) = 2w(w ± v) with w a positive integer. Since u− v2 must be even by
u + v2 = 2w2, it holds that w is odd and square-free. If a prime p divides
gcd(u, v), then p also divides w and hence p2 divides u + v2. Therefore, p2

divides either of v2 and u and thus u − v2, which shows that p4 divides m,
a contradiction. It follows that gcd(u, v) = gcd(v, w) = 1. This implies that
any odd prime p dividing w does not divide w± v, which contradicts the fact
that x(P̄−) is a square. Hence, we obtain P− 6∈ 2E−

m(Q).
Since P−+T− = (2(−u+v2),−4v(−u+v2)), if we replace u, v by −u, −v

in the argument above, we see that P− + T− 6∈ 2E−
m(Q).

Consider the case where m = m2
0. We may write u− v2 = km2

1, u+ v2 =
km2

2 and m0 = km1m2 for some integers k, m1, m2 with gcd(m1,m2) = 1.
Then, we have

x(P− + T−
1 ) =

2km1m2(m1 −m2)

m1 +m2

, x(P− + T−
2 ) =

2km1m2(m1 +m2)

−m1 +m2

.

Since m0 = km1m2 is square-free and gcd(m1,m2) = 1, we conclude that
neither x(P− + T−

1 ) nor x(P− + T−
2 ) can be a square.

Consider the case where C−
m has integral points P1 = (a1, b1) and P2 =

(a2, b2) with (|a1|, |b1|) 6= (|a2|, |b2|).
Lemma 3.2. Let m be a square-free integer. Assume that C−

m has integral

points P1 = (a1, b1) and P2 = (a2, b2) with (|a1|, |b1|) 6= (|a2|, |b2|). Then,

P−
1 , P

−
1 + T−, P−

2 , P
−
2 + T−, P−

1 + P−
2 , P

−
1 + P−

2 + T− 6∈ 2E−
m(Q).

Proof. By Lemma 3.1 it suffices to show that P−
1 +P−

2 , P
−
1 +P−

2 +T− 6∈
2E−

m(Q), which is obvious from

x(P−
1 + P−

2 ) =
4(a1 + b21)(a2 + b22)(b1 − b2)

2

(a1 + b21 − a2 − b22)
2

,

x(P−
1 + P−

2 + T−) =
4(−a1 + b21)(a2 + b22)(b1 + b2)

2

(−a1 + b21 − a2 − b22)
2

and the assumption that m = a21 − b41 = a22 − b42 is square-free.
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Second, examine the divisibility of integral points on C+
m.

Lemma 3.3. Let m be a non-square, fourth-power-free integer. If C+
m has

an integral point P1 = (a1, b1), then P+
1 , P

+
1 + T+ 6∈ 2E+

m(Q). Moreover,

assume that there exists another integral point P2 = (a2, b2) with {|a1|, |b1|} 6=
{|a2|, |b2|}. Assume further that either of the following holds:

(i) m is square-free.

(ii) Neither (a1 + a2)
2 + (b21 − b22)

2 nor (a1 − a2)
2 + (b21 − b22)

2 is a square.

Then, P+
1 , P

+
2 , P

+
1 + T+, P+

2 + T+, P+
1 + P+

2 , P
+
1 + P+

2 + T+ 6∈ 2E+
m(Q).

Proof. Noting that (a1 ± a2)
2 + (b21 − b22)

2 = 2(m − b21b
2
2 ± a1a2), one

sees that this lemma follows, more or less, from [4, Lemma 3.2]. However, [4,
Lemma 3.2] examines the divisibility of points on an elliptic curve of the form
y2 = x3 −mx, which is 2-isogenous to E+

m. Therefore, we give the proof of
this lemma.

It is clear that P+
1 + T+ 6∈ 2E+

m(Q), since x(P+
1 + T+) = 4b21m/a

2
1 and

m is non-square. Moreover, since the point P+
1 satisfies ĝ(−b21, a1b1) = P+

1 ,
where ĝ : Ē+

m → E+
m is the dual isogeny of g defined by (2.1) with A = −m,

it follows from Lemma 2.1 that P+
1 6∈ 2E+

m(Q).
Consider next the point P+

2 . Since

x(P+
2 ) =

(a1 + a2)
2 + (b21 − b22)

2

(b1 + b2)2
,

the assumption and Lemma 2.1 together imply that P+
2 6∈ 2E+

m(Q). Since

x(P+
2 + T+) =

(a1 − a2)
2 + (b21 − b22)

2

(b1 − b2)2
,

it also holds that P+
2 +T+ 6∈ 2E+

m(Q). Moreover, since g(P+
1 ) = 2(−b21, a1b1),

it is necessary for P+
1 +P+

2 ∈ 2E+
m(Q) that P+

2 ∈ ĝ(Ē+
m(Q)), which is impossi-

ble by the assumption and Lemma 2.1. Thus, P+
1 +P+

2 6∈ 2E+
m(Q). Similarly,

it is easily checked that P+
1 + P+

2 + T+ 6∈ 2E+
m(Q).

Remark 3.4. On the assumption of Lemma 3.2, it can be deduced that
P−
1 and P−

2 are independent modulo E−
m(Q)tors. Indeed, suppose on the

contrary that P−
1 and P−

2 are dependent. Then, there exist integers n1, n2

and n3 with (n1, n2, n3) 6= (0, 0, 0) such that n1P
−
1 + n2P

−
2 + n3T

− = O.
Considering this equality modulo 2E−

m(Q), we have δ1P
−
1 + δ2P

−
2 + δ3T

− ∈
2E−

m(Q) with δ1, δ2, δ3 ∈ {0, 1}, which contradicts Lemma 3.2. Similarly, on
the assumption of Lemma 3.3, one sees that P+

1 and P+
2 are independent

modulo E+
m(Q)tors.

In order to prove Theorem 1.10, we have to consider the divisibility of
points on E+

m over the quadratic field Q(i) so that the points at infinity
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become rational. Let us now denote by ϕ+
i the isomorphism over Q(i) from

C+
m to E+

m defined by

ϕ+
i (u, v) =

(

2(iu+ v2), 4v(iu+ v2)
)

.

In view of the following lemma, the torsion subgroup of E+
m(Q(i)) is isomor-

phic to Z/2Z.

Lemma 3.5. Let A be a non-square, positive integer, and E the elliptic

curve defined by y2 = x3 +Ax. Then, E(Q(i))tors = 〈(0, 0)〉 ≃ Z/2Z.

Proof. Since the j-invariant of E is 1728, we know from [7, Theorem
7] that E(Q(i))tors has no element of odd order. If there is a 2-torsion point
(x, y) ∈ E(Q(i)) with (x, y) 6= (0, 0), then x2 + A = 0 has a solution in
Q(i). Hence, A or −A has to be a square in Q(i), which contradicts the
assumption. If the point (0, 0) has a 2-division point (x, y) in E+

m(Q(i)), then
the duplication formula implies that x4 − 2Ax2 + A2 = 0, that is, x2 = A,
which is again a contradiction.

For a point P ∈ C+
m(Q), put P i := ϕ+

i (P ). With the help of Lemma 3.5,
an analogous result to Lemma 3.2 can be shown.

Lemma 3.6. Let m be a square-free integer. Assume that C+
m has integral

points P1 = (a1, b1) and P2 = (a2, b2) with {|a1|, |b1|} 6= {|a2|, |b2|}. Then,

P i
1, P

i
1 + T+, P i

2 , P
i
2 + T+, P i

1 + P i
2 , P

i
1 + P i

2 + T+ 6∈ 2E+
m(Q).

Proof. If P i
1 =

(

2(ia1 + b21), 4b1(ia1 + b21)
)

∈ 2E+
m(Q(i)), then Lemma

2.1 with K = Q(i) implies that 2(ia1 + b21) is a square, which is equivalent to
that 2(−ia1+b21) is a square. Thus, 4m = 4(a21+b

4
1) must be a square in Q(i),

i.e., in Q, which contradicts the assumption. Hence, P i
1 6∈ 2E+

m(Q(i)). Since
x(P i

1 + T+) = 2(−ia1 + b21), we also have P i
1 + T+ 6∈ 2E+

m(Q(i)). Similarly, it
is easy to see that P i

2, P
i
2 + T+ 6∈ 2E+

m(Q(i)).
Assume that P i

1 + P i
2 ∈ 2E+

m(Q(i)). Then,

x(P i
1 + P i

2) =
4(ia1 + b21)(ia2 + b22)(b1 − b2)

2

(ia1 + b21 − ia2 − b22)
2

is a square by Lemma 2.1. Since m = a21 + b41 = a22 + b42 is square-free, we
have ia1 + b21 = ±(ia2 + b22) and hence (a1, b

2
1) = (a2, b

2
2), which contradicts

the assumption. Therefore, P i
1 +P i

2 6∈ 2E+
m(Q(i)). In the same way, it can be

shown that P i
1 + P i

2 + T+ 6∈ 2E+
m(Q(i)), since

x(P i
1 + P i

2 + T+) =
4(−ia1 + b21)(ia2 + b22)(b1 + b2)

2

(−ia1 + b21 − ia2 − b22)
2

.

In the case ofQ+
m, we can replace the assumption “square-free” by “fourth-

power-free”.
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Lemma 3.7. Let m be a fourth-power-free integer. Assume that Q+
m has

an integral point P = (a, b). Then, P i
1, P

i
1 + T+, P i

2, P
i
2 + T+, P i

1 + P i
2, P

i
1 +

P i
2 + T+ 6∈ 2E+

m(Q).

Proof. One can prove P i
1 , P

i
1 + T+, P i

2 , P
i
2 + T+ 6∈ 2E+

m(Q) in exactly
the same way as in Lemma 3.6. Moreover, we have

x(P i
1 + P+

2k) = − 2m

(a+ b)2
and x(P i

1 + P i
2 + T+) = −2(a+ b)2.

Since m = a4 + b4 cannot be twice a square and 2 = i(1− i)2 is not a square,
none of the x-coordinates above can be a square in Q(i). It follows from
Lemma 2.1 that P i

1 + P i
2, P

i
1 + P i

2 + T+ 6∈ 2E+
m(Q(i)).

4. Estimates on canonical heights

Voutier and Yabuta ([11, Theorem 1.2]) showed a uniform lower bound,
which is best-possible, for the canonical height of a rational point on an elliptic
curve E of the form y2 = x3 + Ax with A a fourth-power-free integer. For

P ∈ E(Q), the canonical height ĥ is defined by

ĥ(P ) =
1

2
lim
k→∞

h(2kP )

4k
,

where h(Q) = logmax{|a|, |b|} for Q = (a/b, ∗) ∈ E(Q) with gcd(a, b) = 1. In
view of

a2 − b4 ≡ 0, 1, 3, 4, 8, 9, 15 (mod 16)

and

a2 + b4 ≡ 1, 2, 4, 5, 9, 10 (mod 16)

for integers a and b, the following are immediate consequences of [11, Theorem
1.2].

Lemma 4.1. Let a and b be integers and let m = a2 − b4 be fourth-

power-free. Let E−
m be the elliptic curve defined by y2 = x3 − 4mx and P− a

non-torsion point in E−
m(Q). Then,

ĥ(P−) >
1

16
log |m|+ C,

where in case m 6≡ 0 (mod 4), we have

C =



























3
8
log 2 if m < 0 and m ≡ 1 (mod 8),

0 if m < 0 and m ≡ 15 (mod 16),

7
16

log 2 if m > 0 and m ≡ 1 (mod 8),

1
16

log 2 if m > 0 and m ≡ 15 (mod 16),
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and in case m ≡ 0 (mod 4), we have

C =







1
8
log 2 if m < 0 and m ≡ 8, 24, 40, 56 (mod 64),

3
16

log 2 if m > 0 and m ≡ 8, 24, 40, 56 (mod 64).

Lemma 4.2. Let a and b be integers and let m = a2 + b4 be fourth-power-

free. Let Ē+
m be the elliptic curve defined by y2 = x3−mx and P ′ a non-torsion

point in Ē+
m(Q). Then

ĥ(P ′) >
1

16
log |m|+ C,

where

C =

{

9
16

log 2 if m ≡ 1, 9 (mod 16),

5
16

log 2 if m ≡ 2, 4, 10 (mod 16).

Next we should compute upper bounds for ĥ(P−), where P is an integral

point on C−
m, and for ĥ(P ′), where P ′ = (−v2, uv) and P = (u, v) is an

integral point on C+
m.

Note that on computing the canonical heights we can assume u, v ≥ 1 for
integral points ϕ−(u, v) = (2(u+ v2), 4v(u+ v2)) ∈ E−

m(Q), since

ĥ(ϕ−(u,−v)) = ĥ(−ϕ−(u, v)) = ĥ(ϕ−(u, v)),

ĥ(ϕ−(−u, v)) = ĥ(−ϕ−(u, v) + T−) = ĥ(ϕ−(u, v)).

Lemma 4.3. Let m be a nonzero fourth-power-free integer and P an in-

tegral point on C−
m. Then

ĥ(P−) ≤
{

1
4
log(|m|+ 1) + 1

12
log 2 if m > 0,

1
4
log |m|+ 1

4
log 2 if m < 0.

Lemma 4.4. Let m be a nonzero fourth-power-free integer and P an in-

tegral point on C+
m (hence m > 0). Then

ĥ(P ′) ≤ 1

4
logm+

1

3
log 2.

To prove the lemmas we can use the decomposition of the canonical height
into local heights:

ĥ(Q) = ĥ∞(Q) +
∑

p:prime

ĥp(Q) = ĥ∞(Q) + ĥfin(Q).

If A < 0, then E(R) has two connected components and

(4.1) x(2kQ) ≥
√
−A
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holds for k ≥ 1. Hence by Tate’s series, on the curve of the form E : y2 =
x3 +Ax, we have

(4.2)

ĥ∞(Q) =
1

2
log |x(Q)|+ 1

8

∞
∑

k=0

log |zk(Q)|
4k

=
1

8
log |x4(Q)z0(Q)|+ 1

8

∞
∑

k=1

log |zk(Q)|
4k

=
1

4
log |x2(Q)−A|+ 1

8

∞
∑

k=1

log |zk(Q)|
4k

,

where zk(Q) = z(2kQ), z(Q) = (1 − A/x(Q)2)2, which are generally defined
by

z(Q) = 1− b4x(Q)−2 + 2b6x(Q)−3 − b8x(Q)−4

with the usual quantities associated with the Weierstrass equation. Note that

we omit the term (log |∆(E)|)/12 in ĥ∞(Q) and (log |∆(E)|v)/12 in ĥv(Q),
since they are canceled out in summing up the local heights. Now inequality
(4.1) implies for k ≥ 1

zk(Q) =
(

1 +
−A

x(2kQ)2

)2

∈ [1, 4],

and so

(4.3)
1

8

∞
∑

k=1

log |zk(Q)|
4k

∈
[

0,
1

12
log 2

]

.

If A > 0, then E(R) has only one connected component and x(2kQ) may
be close to 0, which causes difficulties with estimates of zk(Q). So as in [11,
Lemma 3.3] we use the shifted model

E′ : (y′)2 = (x′)3 − 3A1/2(x′)2 + 4Ax′ − 2A3/2

over R of y2 = x3 + Ax (A > 0) via x′ = x + A1/2. Concerning the model,
x′(Q) ≥ A1/2 for Q ∈ E′(R) and

z′(Q) = 1− 8Ax′(Q)−2 + 16A3/2x′(Q)−3 − 8A2x′(Q)−4
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and z′k(Q) = z′(2kQ). By the definition of the local height, ĥ∞ is invariant
under such shifting and so again by Tate’s series

(4.4)

ĥ∞(Q) =
1

2
log |x′(Q)|+ 1

8

∞
∑

k=0

log |z′k(Q)|
4k

=
1

8
log |x′(Q)4z′0(Q)|+ 1

8

∞
∑

k=1

log |z′k(Q)|
4k

=
1

8
log |x′(Q)4 − 8Ax′(Q)2 + 16A3/2x′(Q)− 8A2|

+
1

8

∞
∑

k=1

log |z′k(Q)|
4k

.

By a bit of calculus we can see

dz′

dx′
=

16A(x′ −A1/2)(x′ − 2A1/2)

(x′)5
,

which gives the estimate of z′(Q) under the condition x′(Q) ≥ A1/2:

z′k(Q) ∈ [1/2, 1],

hence

(4.5)
1

8

∞
∑

k=1

log |z′k(Q)|
4k

≤ 0.

Proof of Lemma 4.3. Write P = (u, v) and P− = (2(u + v2), 4v(u +
v2)) with integers u, v.

First to compute ĥfin(P
−) we use [11, Lemmas 4.1 and 5.1]. Note that

we omit the contribution of the terms (log |∆(E)|v)/12, as explained above.
So we have

(4.6) ĥfin(P
−) = −1

4
log

∏

26=pi|U,m

peii − 1

2
log 2 ≤ −1

4
log |U | − 1

2
log 2,

where U = u+ v2 and ei = vpi
(4m).

Now assume m > 0. Then by (4.2) and (4.3) with A = −4m we have

(4.7)

ĥ∞(P−) =
1

4
log |4U2 + 4m|+ 1

8

∞
∑

k=1

log |zk(P−)|
4k

≤ 1

4
log(U2 + |m|) + 1

2
log 2 +

1

12
log 2.
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Hence we have

ĥ(P−) ≤ 1

4
log(U2 + |m|) + 1

2
log 2 +

1

12
log 2− 1

4
log |U | − 1

2
log 2

≤ 1

4
log(|U |+ |m|

|U | ) +
1

12
log 2

≤ 1

4
log(|m|+ 1) +

1

12
log 2,

where we use the fact that f(x) = x+ k/x ≤ f(1) = k+1 for 1 ≤ x ≤ k with
k > 1.

Next assume m < 0. Then we use (4.4) with (4.5). By substituting
x′(Q) = x′(P−) = 2(u+ v2) +A1/2 with A = −4m = −4(u2 − v4), we find

x′(Q)4 − 8Ax′(Q)2 + 16A3/2x′(Q)− 8A2

= 64
(

v2 + u
)2
(

2v2
√

v4 − u2 + u2
)

= 64U2(2v2|m|1/2 + u2).

Since v2 = U − u ≤ |m| − u, we have u ≤ |m| and

2v2 |m|1/2+u2 ≤ 2(|m|−u)|m|1/2+u2 =
(

u− |m|1/2
)2

−|m|+2|m|3/2 =: F (u).

Then it is not difficult to see, for 1 ≤ u ≤ |m|,
F (u) ≤ F (|m|) = |m|2.

Consequently we have

ĥ∞(P−) ≤ 1

8
log(64 · U2|m|2)

and so

ĥ(P−) ≤ 1

8
log(64 · U2|m|2)− 1

4
log |U | − 1

2
log 2 =

1

4
log |m|+ 1

4
log 2.

Proof of Lemma 4.4. We can prove this by the same manner as above.
Write P = (u, v) and P ′ = (−v2, uv) with integers u, v. By [11, Lemmas

4.1 and 5.1] we have

ĥfin(P
′) = −1

4
log

∏

26=pi|v,m

peii + 0 ≤ 0.

Also by (4.2) with (4.3)

ĥ∞(P ′) =
1

4
log |v4 +m|+ 1

8

∞
∑

k=1

log |zk(P ′)|
4k

≤ 1

4
log(m+m) +

1

12
log 2 =

1

4
logm+

1

3
log 2,



GENERATORS AND INTEGRAL POINTS ON CERTAIN QUARTIC CURVES 335

where we note v4 ≤ u2 + v4 = m. Hence we have

ĥ(P ′) ≤ 1

4
logm+

1

3
log 2.

5. Proofs of the theorems

Proof of Theorem 1.1. We claim that if uv 6= 0, then P = (u, v) is a
non-torsion point. Indeed, by [6, Theorem 5.2] we have E−

m(Q)tors ≃ Z/2Z or
(Z/2Z)2 unless m 6= −1. So any rational torsion point is a 2-torsion point and
thus v(u+v2) = 0. If u+v2 = 0, then m = 0, a contradiction and so v = 0. In
the case m = −1 we have E−

m(Q)tors = 〈(2, 4)〉 ≃ Z/4Z and ψ((2, 4)) = (0, 1).
Suppose either ϕ−(P1) = P−

1 = kQ or ϕ−(P1 + T ) = P−
1 + T− = kQ

for some rational point Q ∈ E−
m(Q) with a positive integer k. Note that

ĥ(P−
1 + T−) = ĥ(P−

1 ). If |m| ≥ 2, then by Lemmas 4.1 and 4.3 we have

k2 =
ĥ(P−

1 )

ĥ(Q)
<

1
4
log |2m|

1
16

log |m| ≤ 8,

since 1
4
log |2m| ≥ 1

4
log(|m|+ 1) + 1

12
log 2 for |m| ≥ 2, which means k = 1, 2.

But the latter is impossible by Lemma 3.1. Now the proof for |m| ≥ 2 is
complete.

On the other hand, the only integral points on C−
m are (u, v) = (±1, 0) if

m = 1 and (u, v) = (0,±1) if m = −1, in each case of which there is no points
satisfying uv 6= 0.

Proof of Corollary 1.2. Let P1 be an integral point on C−
m. (If there

exists no integral point, then we have nothing to prove.) Recall that if Q ∈
C−

m(Q) is an integral point, then Q− ∈ E−
m(Q) is also an integral point.

If m is not a square, then E−
m(Q) = 〈P−

1 , T
−〉 by Theorem 1.1. So for

any rational non-torsion point Q ∈ C−
m(Q), we have Q− = kP−

1 + lT−, k ∈
Z, l ∈ Z/2Z. Further if Q is an integral point, then |k| ≤ 1 by Theorem
1.1. The four relevant points are actually integral as P1 = (a1, b1), −P1 =
(a1,−b1), P1 + T = (−a1,−b1) and −P1 + T = (−a1, b1). Recall that the
torsion point T− = (0, 0) corresponds to one of the points at infinity on C−

m,
which is not integral.

If m is a square, say m = m2
0, then E

−
m(Q) = 〈P−

1 , T
−, T−

1 〉 by Theorem
1.1. So if a non-torsion point Q− = kP− + l0T

− + l1T
−
1 ∈ E−

m(Q) for some
integers k, l0, l1 is an integral point, then |k| = 1. The points ±P−

1 , ±P−
1 +

T−, T−
1 = (−m0, 0) and T− + T−

1 = (m0, 0) are always integral points on
E−

m, and the corresponding points ±P1, ±P1 + T, T1, T + T1 on C−
m are also

integral. We now claim that none of the points ±P1 + T1, ±P1 + T + T1(=
±P1 + T2) is integral on C−

m, which shows that C−
m has exactly six integral

points ±P1, ±P1 + T, T1, T + T1. It suffices to show that neither P1 + T1 =
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ψ−(P−
1 + T−

1 ) nor P1 + T2 = ψ−(P−
1 + T−

2 ) is integral on C−
m. Indeed, let

d = gcd(a1, b1), a
′
1 = a1/d and b′1 = b1/d. Then, m = m2

0 = a21 − b41 =
d2((a′1)

2 − d2(b′1)
4). Putting m′

0 = m0/d, we have

(m′
0)

2 = (a′1)
2 − d2(b′1)

4.

Since m0 is square-free and gcd(a′1, db
′
1) = 1, we see that b′1 is even and we

may write

a′1 = A2 +B2, m′
0 = A2 −B2, d(b′1)

2 = 2AB

for some coprime integers A and B with A 6≡ B (mod 2). We then have

P−
1 + T−

1 =

(

−4B2(A2 −B2)

(b′1)
2

,−8B2(A2 −B2)2

(b′1)
3

)

.

It follows from (1.2) that

v(P1 + T1)
(

= v(ψ−(P−
1 + T−

1 ))
)

=
A2 −B2

b′1
.

However, since 2AB ≡ 0 (mod b′1), gcd(2AB,A
2 − B2) = 1 and b′1 is even

(hence b′1 > 1), v(P1 + T1) cannot be an integer. Therefore, we conclude
that P1 + T1 is not an integral point on C−

m. It can be similarly shown that
P1 + T2 = P1 + T + T1 cannot be integral by noting that

P−
1 + T−

2 =

(

4A2(A2 −B2)

(b′1)
2

,−8A2(A2 −B2)2

(b′1)
3

)

.

Proof of Theorem 1.3. Let ν be the group index of the sublattice
generated by {P1, P2} in the full lattice of rank 2 in C−

m(Q)/C−
m(Q)tors and

λ a positive number such that ĥ(P−) > λ for any non-torsion point P− in
E−

m(Q). We know from Lemma 3.2 (see also Remark 3.4) that P−
1 and P−

2

are independent modulo E−
m(Q)tors. Then by Siksek’s theorem ([9, Theorem

3.1]) with Lemmas 4.1 and 4.3 we have, for |m| ≥ 5000,

ν ≤ 2√
3

√

ĥ(P−
1 )ĥ(P−

2 )

λ
≤ 2√

3

1
4
log |2m|

1
16

log |m| < 5,

which means ν = 1, 2, 3, 4. But we have 2 ∤ ν by Lemma 3.2. Further by
Theorem 1.1, we have P−

1 , P
−
2 6∈ 3E−

m(Q). So with the assumption P−
1 ±P−

2 6∈
3E−

m(Q) we conclude 3 ∤ ν, which means ν = 1.
For |m| < 5000 we have ν < 10, so it suffices to see that any linear

combination of P−
1 , P−

2 and T− (and further T−
1 in case m is a square) does

not have a p-division point in E−
m(Q) for p ∈ {5, 7} as long as m is fourth-

power-free. We checked this using a program written in Sage ([8]).
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Proof of Corollary 1.4. Note s, t are nonzero for m to be square-
free. Since

m = 3(s4 + s2t2 + t4) = (2s2 + st+ 2t2)2 − (s+ t)4

= (2s2 − st+ 2t2)2 − (s− t)4,

we see that P1 and P2 defined by (1.4) are integral points on C−
m. So to use

Theorem 1.3 it suffices to show that both P−
1 ± P−

2 are indivisible by 3 in
E−

m(Q). We do this by height estimation.
By the formula in the proof of Lemma 3.2 with

a1 = st+ 2(s2 + t2), b1 = s+ t,

a2 = st− 2(s2 + t2), b2 = s− t,

we have

x(P−
1 + P−

2 ) = −3t2, x(P−
1 − P−

2 ) = −3s2.

(Note if P = (u, v), then −P = (u,−v) on C−
m.) Now by (4.2) and (4.3) we

have

ĥ∞(P−
1 + P−

2 ) ≤ 1

4
log |9t4 + 4m|+ 1

12
log 2

and also we have

ĥfin(P
−
1 + P−

2 ) ≤ −1

4
log 3

by [11, Lemmas 4.1 and 5.1], which may not be the best. Summing them up,
we have

ĥ(P−
1 + P−

2 ) ≤ 1

4
log |9t4 + 4m|+ 1

12
log 2− 1

4
log 3

≤ 1

4
log |9m+ 4m|+ 1

12
log 2− 1

4
log 3

=
1

4
logm+

1

4
log 13 +

1

12
log 2− 1

4
log 3

≤ 1

4
logm+ 0.425.

Similarly

ĥ(P−
1 − P−

2 ) ≤ 1

4
logm+ 0.425.

Now any non-torsion rational point Q ∈ 3E−
m(Q) satisfies ĥ(Q) > 32 ·

1
16

logm by Lemma 4.1. But

1

4
logm+ 0.425 <

9

16
logm

holds for m ≥ 4, which contradicts s, t ≥ 1. So we have P−
1 ± P−

2 6∈ 3E−
m(Q)

and by Theorem 1.3 the proof is complete.
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Proof of Theorem 1.5. Assume that C−
m has integral points P1 =

(a1, b1) and P2 = (a2, b2) with (|a1|, |b1|) 6= (|a2|, |b2|) (otherwise, there is
nothing to prove). Then, Lemma 3.2 implies that P−

1 , P−
2 and T− are inde-

pendent in E−
m(Q). Now, let P = (u, v) be an integral point on C−

m. Since
the rank of E−

m(Q) is two and E−
m(Q)tors = 〈T−〉 ≃ Z/2Z, there exist integers

k0, k1, k2, k3 such that

k0P
− = k1P1 − k2P

−
2 + k3T

−.

We may assume that gcd(k0, k1, k2, k3) = 1, and hence we see from Lemma
3.2 that k0 is odd. Therefore, we have

P− ≡ P−
0 (mod 2E−

m(Q)),

where

P−
0 ∈ {O−, T−, P−

1 , P
−
1 + T−, P−

2 , P
−
2 + T−, P−

1 + P−
2 , P

−
1 + P−

2 + T−}.

We examine each case using Lemma 2.2 with A = m and K = Q. Note that
Φ(P−) = 2(u+ v2)�, where � denotes the square of a rational number.

If P−
0 = O−, then 2(u + v2) = �, which cannot happen, since m =

(u+ v2)(u− v2) is square-free and odd.
If P−

0 = P−, then 2(u+ v2) = −4m�, that is, u+ v2 = −2m�, which is
impossible, since m is odd.

If P−
0 ∈ {P−

1 , P
−
1 + T−}, then u + v2 = (±a1 + b21)�. Since m = (u +

v2)(u − v2) = (±a1 + b21)(±a1 − b21) is square-free, u + v2 = ±a1 + b21, which
is equivalent to u − v2 = ±a1 − b21. Hence, u = ±a1 and v2 = b21. It follows
that P ∈ {(a1,±b1), (−a1,±b1)}.

Similarly, if P−
0 ∈ m{P−

2 , P
−
2 + T−}, then P ∈ {(a2,±b2), (−a2,±b2)}.

Finally, if P−
0 ∈ {P−

1 + P−
2 , P

−
1 + P−

2 + T−}, then

2(u+ v2) = (±a1 + b21)(a2 + b22)�,

which again contradicts the assumption that m is odd.

Now we proceed to proofs for C+
m.

Proof of Theorem 1.6. It suffices to show that the point P ′
1 := (−b21,

a1b1) can be extended to a basis for Ē+
m(Q) modulo Ē+

m(Q)tors. Indeed, since
g(P+

1 ) = 2P ′
1, we then see that the point g(P+

1 ) with the torsion point T ′
0 =

(0, 0) generates a rank one subgroup of Ē+
m(Q). Thus, for any point P+ ∈

E+
m(Q), we have 2g(P+) = l1g(P

+
1 )+ l2T

′
0 with some integers l1, l2, and hence

4P+ = 2l1P
+
1 , which yields 2P+ = ±l1P+

1 + l′2T
+ with l′2 ∈ {0, 1}. It follows

from Lemma 3.3 that l1, l
′
2 are even and {P+

1 , T
+} can be extended to a basis

for E+
m(Q).
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Suppose P ′
1 = kQ′ + lT ′

0 for some rational point Q′ ∈ E+
m(Q) with a

positive integer k and l ∈ {0, 1}. By Lemmas 4.2 and 4.4 we have

k2 =
ĥ(P ′

1 + lT ′
0)

ĥ(Q′)
=
ĥ(P ′

1)

ĥ(Q′)
≤

1
4
logm+ 1

3
log 2

1
16

logm+ 5
16

log 2
< 4,

which means k = 1. Hence we can conclude that P ′
1 can be extended to a

basis for Ē+
m(Q) modulo Ē+

m(Q)tors.

Proof of Corollary 1.7. Let P1 = (a1, b1) be an integral point in
C+

m(Q). Then by the proof of Theorem 1.6, for any integral point P on C+
m

we can write

P ′ = k1P
′
1 + l1T

′,

where k1 is an integer, l1 ∈ {0, 1} and T ′ ∈ Ē+
m(Q)tors. Then, the proof of

Theorem 1.6 implies that |k1| ≤ 1.
It is obvious that ±P ′

1 = (−b21,±a1b1) correspond to the integral points

(a1,±b1), (−a1,±b1)
on C+

m. Let T ′
0 = (0, 0). Since

±P ′
1 + T ′

0 =

(

m

b21
,±a1m

b31

)

,

the x-coordinates of points ±P ′
1+T

′
0 are positive (note that m = a21+b

4
1 > 0).

On the other hand, the x-coordinate of the image P ′ = (−b2, ab) of any
integral point P = (a, b) on C+

m is always negative. Thus, neither of the
points ±P ′

1 + T ′
0 corresponds to an integral point on C+

m. This shows the
assertion in the case where m is non-square.

Suppose now that m = m2
0 for a square-free positive integer m0. In

this case, we have additional integral points (±m0, 0) on C+
m, which map to

T ′
0 = (0, 0) in Ē+

m(Q). Let T ′
1 = (−m0, 0) and T

′
2 = (m0, 0) be the remaining

2-torsion points in Ē+
m(Q). We have

x(±P ′
1 + T ′

1) =
m0(m0 + b21)

m0 − b21
=

m0a
2
1

(m0 − b21)
2

and

x(±P ′
1 + T ′

2) = −m0(m0 − b21)

m0 + b21
= − m0a

2
1

(m0 + b21)
2
.

Since m0 is square-free, we see that any integral point on C+
m does not map

to a point Q via ϕ′, where

Q ∈ {T ′
1, T

′
2,±P ′

1 + T ′
1,±P ′

1 + T ′
2}.

This shows that C+
m has at most six integral points, expressed as (a1,±b1),

(−a1,±b1), (±m0, 0).
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Proof of Theorem 1.8. It suffices to show that the points P ′
1 := (−b21,

a1b1) and P ′
2 := (−b22, a2b2) can be extended to a basis for Ē+

m(Q) modulo
Ē+

m(Q)tors. Indeed, since g(P+
1 ) = 2P ′

1 and g(P+
2 ) = P ′

1 + P ′
2, we then see

that the points g(P+
1 ) and g(P+

2 ) with the torsion point T̄+ = (0, 0) generate
a rank two subgroup of Ē+

m(Q). Thus, for any point P+ ∈ E+
m(Q), we have

2g(P+) = l1g(P
+
1 ) + l2g(P

+
2 ) + l3T̄

+ with some integers l1, l2, l3, and hence
4P+ = 2l1P

+
1 + 2l2P

+
2 , which yields 2P+ = ±l1P+

1 ± l2P
+
2 + l′3T

+ with
l′3 ∈ {0, 1}. It follows from Lemma 3.3 that l1, l2, l

′
3 are even and P+

1 , P
+
2 , T

+

can be extended to a basis for E+
m(Q).

Let ν be the lattice index of {P ′
1, P

′
2}. Combining Siksek’s theorem with

Lemmas 4.2 and 4.4 shows that

ν ≤ 2√
3

√

ĥ(P ′
1)ĥ(P

′
2)

λ
≤ 2√

3

1
4
logm+ 1

3
log 2

1
16

logm+ 5
16

log 2
< 5,

which means ν = 1, 2, 3, 4. But we have 2 ∤ ν by Lemma 3.3. Further in the
proof of Theorem 1.6, we have showed P ′

1, P
′
2 6∈ 3Ē+

m(Q). Now the assumption
P2 6∈ 3C+

m(Q) implies P ′
1 +P ′

2 6∈ 3Ē+
m(Q), since otherwise g(P+

2 ) = P ′
1 +P ′

2 =
3Q for some Q in Ē+

m(Q), which leads to 2P+
2 = 3ĝ(Q), a contradiction.

Similarly P1 − P2 6∈ 3C+
m(Q) implies P ′

1 − P ′
2 6∈ 3Ē+

m(Q).
So we conclude 3 ∤ ν, which means ν = 1.

Proof of Corollary 1.9. Since

m = 5(s4 + 3s2t2 + t4) = (2s2 + st+ 2t2)2 + (s− t)4

= (2s2 − st+ 2t2)2 + (s+ t)4,

the points P1 and P2 defined by (1.8) are integral points on C+
m. Thus, it

suffices to show that P ′
1 ± P ′

2 is indivisible by 3 in Ē+
m(Q).

By the addition formula on Ē+
m : y2 = x3 −mx we have

P ′
1 − P ′

2 =

(

(3s2 + 2t2)2

(2s)2
, − (3s2 + 2t2)(s4 − 12s2t2 − 4t4)

(2s)3

)

,

P ′
1 + P ′

2 =

(

(3t2 + 2s2)2

(2t)2
, +

(3t2 + 2s2)(t4 − 12t2s2 − 4s4)

(2t)3

)

,

from which we can see that if we write P ′
1−P ′

2 = (a/d2, b/d3) with gcd(a, d) =
gcd(b, d) = 1 and d > 0, then d ≤ |2s|. So we have

ĥfin(P
′
1 − P ′

2) ≤ log |2s|

by [11, Lemmas 4.1 and 5.1]. Further by (4.2) and (4.3) we have

ĥ∞(P ′
1 − P ′

2) ≤
1

4
log

∣

∣

∣

∣

(3s2 + 2t2)4

(2s)4
+m

∣

∣

∣

∣

+
1

12
log 2.
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Summing them up, we have

ĥ(P ′
1 − P ′

2) ≤
1

4
log |(3s2 + 2t2)4 + (2s)4m|+ 1

12
log 2

≤ 1

4
log |(161/25)m2|+ 1

12
log 2

=
1

2
logm+

1

4
log(161/25) +

1

12
log 2 ≤ 1

2
logm+ 0.5234,

where the second inequality comes from a direct estimate of (161/25)m2 −
(3s2 + 2t2)4 − (2s)4m, to be positive. By almost the same computation we
have

ĥ(P ′
1 + P ′

2) ≤
1

2
logm+ 0.5234.

Now any non-torsion rational point Q ∈ 3Ē+
m(Q) satisfies

ĥ(Q) > 32 (
1

16
logm+

5

16
log 2)

by Lemma 4.2. But clearly

1

2
logm+ 0.5234 < 32

(

1

16
logm+

5

16
log 2

)

.

So we have P ′
1 ±P ′

2 6∈ 3Ē+
m(Q) and by Theorem 1.8 the proof is complete.

Proof of Theorem 1.10. The proof proceeds along similar lines to
that of Theorem 1.5, except that we have to replace E−

m(Q) by E+
m(Q(i)).

Assume that C+
m has integral points P1 = (a1, b1) and P2 = (a2, b2) with

(|a1|, b21) 6= (|a2|, b22). Let P = (u, v) be an integral point on C+
m. Then, by

the same argument as in the proof of Theorem 1.5, we see from Lemma 3.6
that

P+ ≡ P+
0 (mod 2E+

m(Q(i))),

where

P+
0 ∈ {O+, T+, P i

1, P
i
1 + T+, P i

2, P
i
2 + T+, P i

1 + P i
2, P

i
1 + P i

2 + T+}.
We apply Lemma 2.2 with A = −m and K = Q(i).

If P+
0 = O+, then 2(iu+v2) = �, since 2 = −i(1+i)2, we have u−iv2 = �,

where � denotes the square of an element in Q(i). Since this also implies
u+ iv2 = �, we have m = u2 + v4 = �, which contradicts the assumption.

If P+
0 = T+, then iu+ v2 = 2m�, that is u+ iv2 = �. In the same way

as the previous case, we obtain a contradiction.
If P+

0 ∈ {P i
1, P

i
1 + T+}, then iu + v2 = (±ia1 + b21)�. Since m

is square-free, we have iu + v2 ∈ {ia1 + b21, −ia1 + b21}, and therefore,
P ∈ {(a1,±b1), (−a1,±b1)}.

If P+
0 ∈ {P i

2, P
i
2+T

+}, then similarly we have P ∈ {(a2,±b2), (−a2,±b2)}.
If P+

0 ∈ {P i
1 + P i

2 , P
i
1 + P i

2 + T+}, then
2(iu+ v2) = (±ia1 + b21)(ia2 + b22)�,
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that is,
(u − iv2)(±ia1 + b21)(ia2 + b22) = �.

Since this is equivalent to

(u+ iv2)(∓ia1 + b21)(−ia2 + b22) = �.

we obtain m = �, which is a contradiction.

Proof of Theorem 1.11. By Lemma 3.7 and the argument given in
the proof of Theorem 1.8, it suffices to show that the points P ′

q := (−b2, a2b)
and P̂ ′

q := (−a2, ab2) can be extended to a basis for Ē+
m(Q) modulo Ē+

m(Q)tors,
which is nothing but the assertion of [5, Theorem 1.5 (1)].

Proof of Theorem 1.12. Assume that Q+
m has an integral point P =

(a, b). Let R = (u, v) be an integral point on Q+
m. Then, R′ = (−v2, u2v) is

an integral point on Ē+
m. Since v2 ≤

√
u2 + v4 =

√
m, we may examine the

integral points (x, y) on Ē+
m with −√

m ≤ x ≤ 0. However, [5, Theorem 1.5
(2)] and its proof imply that if rank Ē+

m(Q) = 2, then such points are

T ′
0 = (0, 0), ±P ′

q = (−b2,±a2b), ±P̂ ′
q = (−a2,±ab2).

Note that since

x
(

±P ′
q + T ′

0

)

=
m

b2
and x

(

±(P ′
q − P̂ ′

q)
)

=
(a2 − ab+ b2)2

(a− b)2
,

none of the points ±P ′
q +T ′

0 and ±(P ′
q − P̂ ′

q) corresponds to an integral point

on Q+
m, even if b = 1 or |a − b| = 1, because each x-coordinate is positive.

Moreover, T ′
0 also does not correspond to an integral point on Q+

m, since if
it does, then it would correspond to a point (u, 0) on Q+

m and m = u4, a
contradiction. Therefore, we obtain eight integral points on Q+

m displayed in
the theorem.
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