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Abstract. In this paper, we study a new kind of vertex operator
algebras related to twisted Heisenberg-Virasoro algebra. We showed that

there exist one-to-one correspondences between the restricted module cate-
gories of twisted Heisenberg-Virasoro algebras of rank one and rank two and
several different kinds of module categories of their corresponding vertex
algebras. We also study in detail the structures of the twisted Heisenberg-
Virasoro vertex operator algebra and give a characterization of it as a
tensor product of two well-known vertex operator algebras.

1. Introduction

This paper mainly consists of two parts. One is the relationship between
(φ-coordinated) modules of certain vertex algebras and restricted modules of
two Lie algebras, the results are good in that we get equivalence of categories
of modules, which may provide new ways of looking at the representation
theory of the two Lie algebras as well as the representation theory of the
obtained vertex algebras. The other is a fulfilled study of vertex operator
algebras we obtained. This kind of vertex operator algebra looks like the
form of combining Heisenberg and Virasoro vertex operator algebras. The
structure theory and representation theory of vertex operator algebras coming
from Heisenberg algebras and Virasoro algebras are well-known and beautiful,
so it is inevitable to consider the corresponding theory of our obtained vertex
operator algebras.
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The rank one twisted Heisenberg-Virasoro algebra L was first studied in
the paper [2], it is spanned by the elements Ln, In, c1, c2, c3, n ∈ Z, and the
Lie bracket is given by (cf. [5])

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
c1,

[Lm, In] = −nIm+n − δm+n,0(m
2 +m)c2,

[Im, In] = mδm+n,0c3, [L, ci] = 0, i = 1, 2, 3.

With Ln 7→ −tn+1 d
dt

and In 7→ tn, it is the universal central extension of the
Lie algebra of differential operators on a circle of order at most one:

{f(t) d
dt

+ g(t) | f(t), g(t) ∈ C[t, t−1]}.

The highest weight modules of L when c3 acts in a nonzero way have been
studied in the paper [2]. The study for c3 acts as zero is given in [5]. L also has
its role in the representation theory of toroidal Lie algebra ([6]). Recently, the
authors in [3] gave a free field realization of the twisted Heisenberg-Virasoro
algebra and study the representation theory of it when c3 acts as zero using
vertex-algebraic methods and screening operators. The representation theory
of Heisenberg-Virasoro vertex operator algebras is also related to logarithmic
conformal field theory ([4]). In our paper, we study the restricted modules of L
using vertex algebra methods and formal variables, we give a characterization
of this type of modules via vertex algebras and corresponding (φ-coordinated)
modules, where our c1, c2, c3 can act as any complex numbers. And the results
are also used to study the irreducible modules of the obtained vertex operator
algebras.

In [33], the authors generalized the rank one to rank two case, and call
the Lie algebra arising from 2-dimensional torus, which here we denote it by
L∗. More precisely, let A = C[t±1

1 , t±1
2 ] be the ring of Laurent polynomials

in two variables and B be the set of skew derivations of A spanned by the
elements of the form

Em,n = tm1 t
n
2 (nd1 −md2),

where (m,n) ∈ Z2, and d1, d2 are degree derivations of A. Set L = A ⊕ B.
Then L becomes a Lie algebra under the Lie bracket relations

[tm1 t
n
2 , t

r
1t

s
2] = 0;

[tm1 t
n
2 , Er,s] = (nr −ms)tm+r

1 tn+s
2 ;

[Em,n, Er,s] = (nr −ms)Em+r,n+s.
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Let L′ be the derived Lie subalgebra of L. Then L′ is perfect and has a
universal central extension L∗ with the following Lie bracket relations ([33]):

[tm1 t
n
2 , t

r
1t

s
2] = 0; [Ki,L∗] = 0, i = 1, 2, 3, 4;

[tm1 t
n
2 , Er,s] = (nr −ms)tm+r

1 tn+s
2 + δm+r,0δn+s,0(mK1 + nK2);

[Em,n, Er,s] = (nr −ms)Em+r,n+s + δm+r,0δn+s,0(mK3 + nK4).

where (m,n), (r, s) ∈ Z2\{(0, 0)}, K1,K2,K3,K4 are central elements.
In this paper, we give an association of the restricted modules of L∗

with φ-coordinated modules of corresponding vertex algebra, where again our
K1,K2,K3,K4 can act as arbitrary complex numbers.

In a series of papers, the authors use Lie algebras to construct and study
vertex algebras, and they also give the connections between the modules of
the Lie algebras and the modules of the corresponding vertex algebras or
their likes. For example, the very beginning study of the association of affine
and Virasoro algebras with vertex (operator) algebras (cf. [15]), and further
studies like [24, 26, 27, 8], etc. Later on, many other Lie algebras, like toroidal
Lie algebras, quantum torus Lie algebras, deformed Heisenberg Lie algebras,
Lie algebra gl∞, elliptic affine Lie algebra, q-Virasoro algebra and unitary Lie
algebra have also been related to vertex algebras or their likes (see [15, 7, 32,
25, 27, 20, 18, 19]).

As for the rank one twisted Heisenberg-Virasoro algebra L, it contains
both a Heisenberg subalgebra and a Virasoro subalgebra. In the theory of
vertex algebras, we usually write the generating functions of Virasoro algebra
and Heisenberg algebra as

L(x) =
∑

n∈Z

Lnx
−n−2, I(x) =

∑

n∈Z

Inx
−n−1,

so we first consider these types of generating functions. After writing the
bracket relations in terms of generating functions, we see that the subset
which consists of L(x) and I(x), when acting on a restricted module W of
L, form a local subset (see [27], cf. [24]). So conceptually, it generates a
vertex algebra with W a module under a certain vertex operator operation.
And in this case, the explicit vertex algebra we needed is actually an induced
module constructed from L. In the process, we observe that when writing the
generating functions as the form

L̃(x) =
∑

n∈Z

Lnx
−n, Ĩ(x) =

∑

n∈Z

Inx
−n,

the subset that consists of L̃(x) and Ĩ(x), when acting on a restricted module
W of L, also forms a local subset, but under the vertex operator operation
which was introduced through the study of quantum vertex algebras and their
corresponding modules ([28, 29]), it generates conceptually a vertex algebra
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with W being its φ-coordinated module. And in this case, we use another Lie
algebra which is isomorphic to L to construct the vertex algebra we needed.

For the rank two twisted Heisenberg-Virasoro algebra L∗, we write the
generating functions as

Tm(x) =
∑

n∈Z

tm1 t
n
2x

−n, Em(x) =
∑

n∈Z

Em,nx
−n.

Form the subset UW = {1W } ∪ {Tm(x), Em(x) | m ∈ Z} with W being
a restricted module of L∗, this subset is also a local subset. And under
the context of [28] or [29], it generates a vertex algebra with W being its
φ-coordinated modules. To associate a vertex algebra to L∗ explicitly, we

construct a new affine type Lie algebra L̂∗ and showed that its induced module
V
L̂∗(ℓ1234, 0) is a vertex algebra, where ℓ1234 ∈ C (see section 4). Furthermore,

we prove the correspondence between the restricted modules of L∗ and φ-
coordinated modules of the vertex algebra V

L̂∗(ℓ1234, 0).
Beside the equivalence between the categories of these two Lie algebra

modules and corresponding vertex algebra modules, we study in detail the
new vertex operator algebra VL(ℓ123, 0) obtained in section 2, give the char-
acterization of all the irreducible vertex operator algebra VL(ℓ123, 0)-modules,
and then we consider the Zhu’s algebra, C2-cofiniteness, rationality, regular-
ity, unitary property of it and its simple descendant, we also consider the
commutant of Heisenberg vertex operator algebra in it, in the process, we
give a characterization of it as a tensor product of two other vertex operator
algebras which are equipped with non standard conformal vectors (See section
3 for detail).

Y. Zhu in [36] constructed an associative algebra A(V ) (nowadays it is
called Zhu’s algebra of V ) for a general vertex operator algebra V and es-
tablished a 1-1 correspondence between irreducible representations of V and
irreducible representations of A(V ). C2-cofiniteness, rationality and regular-
ity are three different but closely related notions, and Zhu’s algebra plays
an important role in studying them, since for V being C2-cofinite, rational
and regular, A(V ) must be a finite dimensional algebra (c.f. [36, 12]). The
notion of regularity (which deals with the complete reducibility of weak mod-
ules) was first introduced in the paper [11], it is a generalization of rationality
(which was first introduced in the paper [36] and deals with the complete
reducibility of admissible modules). Regularity implies rationality by defi-
nition, and it was showed in [31] that any regular vertex operator algebra
is C2-cofinite, C2-cofiniteness and rationality is equivalent to regularity for
CFT type vertex operator algebras has been proved in [1]. For our vertex
operator algebra VL(ℓ123, 0), it is closely related to two kinds of vertex oper-
ator algebras, as one may expected, Virasoro and Heisenberg vertex operator
algebras, their C2-cofiniteness, rationality and regularity are well-known (c.f.
[11, 15, 35]). In section 3, we show in two different ways that the Zhu’s algebra
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of VL(ℓ123, 0) is infinite-dimensional, and its simple descendant also turns out
to be infinite-dimensional, which immediately give that our VL(ℓ123, 0) and
its simple descendant are not C2-cofinite, not rational and not regular.

The unitary property of vertex operator algebras has been studied in [9],
and most well-known vertex operator algebras turn out to be unitary, our
VL(ℓ123, 0) is also proved to be unitary under certain conditions. Unitarity
of a vertex operator algebra is important in that it is the first step that one
may want to construct conformal nets from vertex operator algebras, where
the construction of conformal nets and the construction of vertex operator
algebras are expected to be equivalent in the sense that you may get one
from the other. The commutant of a vertex subalgebra in a vertex algebra
was introduced by Frenkel and Zhu in the paper [15], it is a generalization of
the coset construction considered by Kac-Peterson in representation theory
([22]) and Goddard-Kent-Olive in conformal field theory ([17]). Describing the
generators (or even basis) of a commutant is generally a non-trivial problem
(c.f. [10, 21]), the authors in the paper [23] reducing the problem of describing
commutant in an appropriate category of vertex algebras to a question in
commutative algebra, which is a new viewpoint, here we solve our problem by
giving a characterization of our vertex operator algebra as a tensor product
of a Heisenberg vertex operator algebra (with nonstandard conformal vector)
and a Virasoro vertex operator algebra (constructed using new conformal
vectors).

This paper is organized as follows: In section 2, we first review the def-
inition of rank one twisted Heisenberg-Virasoro algebra L and define its re-
stricted modules, then we prove that the category of restricted L-modules
is equivalent to the category of modules for a specific vertex algebra and
we also present the equivalence between restricted L-module category and
φ-coordinated module category for certain vertex algebra. In section 3, we
specifically study the structure theory of vertex operator algebra VL(ℓ123, 0).
In section 4, we study the relationship between the restricted module category
of the rank two twisted Heisenberg-Virasoro Lie algebra L∗ and φ-coordinated
module category for a vertex algebra which is constructed based on a new Lie
algebra.

2. Modules and φ-coordinated modules

In this section, we associate the rank one twisted Heisenberg-Virasoro
algebra L with VL(ℓ123, 0) in terms of vertex algebra with its module and
φ-coordinated modules. More specifically, we show that there is a one-to-one
correspondence between the restricted L-modules of level ℓ123 and modules for
the vertex algebra VL(ℓ123, 0). And also the category of restricted L-modules
of level ℓ123 is equivalent to that of φ-coordinated modules for the vertex
algebra VL(ℓ123, 0), where L is a Lie algebra that is isomorphic to L.
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Throughout this paper, we denote by N, Z, C, C× the set of nonnegative
integers, integers, complex numbers, nonzero complex numbers respectively,
and the symbols x, x1, x2 . . . denote mutually commuting independent formal
variables. All vector spaces in this paper are considered to be over C. For a
vector space U , U((x)) is the vector space of lower truncated integral power
series in x with coefficients in U , U [[x]] is the vector space of nonnegative
integral power series in x with coefficients in U , and U [[x, x−1]] is the vector
space of doubly infinite integral power series in x with coefficients in U .

2.1. Basic notions. For later use, we know from [24] that

(x1 − x2)
m(

∂

∂x2
)nx−1

1 δ(
x2
x1

) = 0(2.1)

for m > n, m,n ∈ N, where δ(x1

x2
) =

∑
n∈Z

xn1x
−n
2 .

For the definition of vertex (operator) algebra and its modules, we follow
[24]. Let W be a general vector space. Set

E(W ) = Hom(W,W ((x))) ⊂ (EndW)[[x, x−1]].(2.2)

The identity operator on W , denoted by 1W , is a special element of E(W ).
The following notion of locality was introduced in [27].

Definition 2.1. Formal series a(x), b(x) ∈ E(W ) are said to be mutually
local if there exists a nonzero polynomial (x1 − x2)

k with k ∈ N such that

(x1 − x2)
ka(x1)b(x2) = (x1 − x2)

kb(x2)a(x1).(2.3)

A subset (subspace) U of E(W ) is said to be local if any a(x), b(x) ∈ U are
mutually local.

Recall the basic notions and results on φ-coordinated modules for vertex
algebras ([28]). Set

φ = φ(x, z) = xez ∈ C((x))[[z]],

which is fixed throughout the paper.

Definition 2.2. Let V be a vertex algebra. A φ-coordinated V -module
is a vector space W equipped with a linear map

YW (·, x) : V −→ Hom(W,W ((x))) ⊂ (EndW)[[x, x−1]],

satisfying the conditions that YW (1, x) = 1W and that for u, v ∈ V , there
exists a nonzero polynomial (x1 − x2)

k with k ∈ N such that

(x1 − x2)
kYW (u, x1)YW (v, x2) ∈ Hom(W,W ((x1, x2)))

and

(x2e
z − x2)

kYW (Y (u, z)v, x2) = ((x1 − x2)
kYW (u, x1)YW (v, x2))|x1=x2ez .
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Let W be a general vector space, a(x), b(x) ∈ E(W ). Assume that there
exists a nonzero polynomial p(x) such that

p(x, z)a(x)b(z) ∈ Hom(W,W ((x, z))).(2.4)

Define a(x)enb(x) ∈ E(W ) for n ∈ Z in terms of generating function

Y e
E (a(x), z)b(x) =

∑

n∈Z

(a(x)enb(x))z
−n−1

by

Y e
E (a(x), z)b(x) = p(xez, x)−1(p(x1, x)a(x1)b(x))|x1=xez ,

where p(x1, x) is any nonzero polynomial such that (2.4) holds and p(xez , x)−1

stands for the inverse of p(xez, x) in C((x))((z)). (Note that p(xez , x) is a
nonzero element in C((x))((z)).) The definition of φ-coordinated module re-
quires that p(x, z) is of the form (x− z)k with k ∈ N.

A subspace U of E(W ) such that every ordered pair satisfies (2.4) is said
to be Y e

E -closed if a(x)enb(x) ∈ U for a(x), b(x) ∈ U , n ∈ Z. We denote by
〈U〉e the smallest Y e

E -closed subspace of E(W ) that contains U and 1W .
The following result was obtained in [28] (Theorem 5.4 and Proposition

5.3).

Theorem 2.3. Let U be a local subset of E(W ). Then (〈U〉e, Y e
E ,1W )

carries the structure of a vertex algebra and W is a φ-coordinated 〈U〉e-module
with YW (a(x), z) = a(z) for a(x) ∈ 〈U〉e.

Now we are in a position to study the twisted Heisenberg-Virasoro algebra
in terms of vertex algebra with its module and its φ-coordinated modules.

2.2. Modules. Firstly, we give the definition of the rank one twisted
Heisenberg-Virasoro algebra L (see [2] or [5]).

Definition 2.4. The rank one twisted Heisenberg-Virasoro algebra L is
a Lie algebra with the basis {Ln, In, c1, c2, c3|n ∈ Z}, and the following Lie
brackets:

[Lm, Ln] = (m− n)Lm+n + δm+n,0
m3 −m

12
c1,(2.5)

[Lm, In] = −nIm+n − δm+n,0(m
2 +m)c2,(2.6)

[Im, In] = mδm+n,0c3, [L, ci] = 0, i = 1, 2, 3.(2.7)

Clearly, Span{Ln, c1 | n ∈ Z} is a Virasoro algebra, Span{In, c3 | n ∈
Z\{0}} is an infinite-dimensional Heisenberg algebra, we denote them by V ir,
H respectively.

Form the generating functions as

L(x) =
∑

n∈Z

Lnx
−n−2, I(x) =

∑

n∈Z

Inx
−n−1,
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then the defining relations of L become to be

[L(x1), L(x2)]

=
∑

m,n∈Z

(m− n)Lm+nx
−m−2
1 x−n−2

2 +
∑

m∈Z

m3 −m

12
c1x

−m−2
1 xm−2

2

= L
′

(x2)x
−1
1 δ

(
x2
x1

)
+ 2L(x2)

∂

∂x2
x−1
1 δ

(
x2
x1

)

+
c1
12

(
∂

∂x2

)3

x−1
1 δ

(
x2
x1

)
,

(2.8)

[L(x1), I(x2)]

= −
∑

m,n∈Z

nIm+nx
−m−2
1 x−n−1

2 −
∑

m∈Z

(m2 +m)c2x
−m−2
1 xm−1

2

= I
′

(x2)x
−1
1 δ

(
x2
x1

)
+ I(x2)

∂

∂x2
x−1
1 δ

(
x2
x1

)

−
(

∂

∂x2

)2

x−1
1 δ

(
x2
x1

)
c2,

(2.9)

[I(x1), I(x2)] =
∑

m∈Z

mc3x
−m−1
1 xm−1

2 =
∂

∂x2
x−1
1 δ

(
x2
x1

)
c3,(2.10)

where L
′

(x) = d
dx
(L(x)), I

′

(x) = d
dx
(I(x)).

We give the following definition.

Definition 2.5. An L-module W is said to be restricted if for any w ∈
W,n ∈ Z, Lnw = 0 and Inw = 0 for n sufficiently large, or equivalently, if
L(x), I(x) ∈ E(W ). We say an L-module W is of level ℓ123 if the central
element ci acts as scalar ℓi for i = 1, 2, 3.

Recall ([24]) that a Lie algebra g equipped with a Z-grading g =
∐

n∈Z
g(n)

is called a Z-graded Lie algebra if

[g(m), g(n)] ⊂ g(m+n) for m,n ∈ Z.

A subalgebra h of a Z-graded Lie algebra g is called a graded subalgebra if

h =
∐

n∈Z

h(n), where h(n) = h ∩ g(n) for n ∈ Z.

In particular, g(0), g(±) =
∐

n≥1 g(±n) and g(0)⊕ g(±) are graded subalgebras.
For the twisted Heisenberg-Virasoro algebra L, consider the following Z-

grading on L

L =
∐

n∈Z

L(n),(2.11)
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where

L(0) = CL0 ⊕ CI0 ⊕
3∑

i=1

Cci, and L(n) = CL−n ⊕ CI−n for n 6= 0.

It makes L a Z-graded Lie algebra, and this grading is given by adL0-
eigenvalues. Then we have the graded subalgebras

L(−) =
∐

n≥1

L(−n) =
∐

n≥1

CLn ⊕
∐

n≥1

CIn,

L(+) =
∐

n≥1

L(n) =
∐

n≥1

CL−n ⊕
∐

n≥1

CI−n,

L(0) ⊕ L(−), and L(0) ⊕ L(+).

We also have the graded subalgebras

L(≤1) =
∐

n≤1

CL−n ⊕
∐

n≤0

CI−n ⊕
3∑

i=1

Cci,(2.12)

L(≥2) =
∐

n≥2

CL−n ⊕
∐

n≥1

CI−n,(2.13)

and the decomposition

L = L(≤1) ⊕ L(≥2).(2.14)

Let ℓi, i = 1, 2, 3, be any complex numbers. Consider C as an L(≤1)-
module with ci acting as the scalar ℓi, i = 1, 2, 3, and with

∐
n≤1 CL−n ⊕∐

n≤0 CI−n acting trivially. Denote this L(≤1)-module by Cℓ123 . Form the
induced module

VL(ℓ123, 0) = U(L)⊗U(L(≤1)) Cℓ123 ,(2.15)

where U(·) denotes the universal enveloping algebra of a Lie algebra.
Set 1 = 1⊗ 1 ∈ VL(ℓ123, 0). Define a linear operator d on L by

d(ci) = 0, for i = 1, 2, 3,

d(Ln) = −(n+ 1)Ln−1, and d(In) = −nIn−1, n ∈ Z.

It is easy to check that d is a derivation of the twisted Heisenberg-Virasoro
algebra L, so that d naturally extends to a derivation of the associative algebra

U(L). Clearly, d preserves the subspace∐n≤1 CL−n⊕
∐

n≤0 CI−n⊕
3∑

i=1

C(ci−
ℓi) of U(L). Since as a (left) U(L)-module,

VL(ℓ123, 0) ∼= U(L)/U(L)


∐

n≤1

CL−n ⊕
∐

n≤0

CI−n ⊕
3∑

i=1

C(ci − ℓi)


 ,
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it follows that d induces a linear operator on VL(ℓ123, 0), which we denote by
d. Then we have

d(1) = 0, and [d, L(x)] =
d

dx
L(x), [d, I(x)] =

d

dx
I(x).

From (2.8) to (2.10), using (2.1), we see that

(x1 − x2)
4[L(x1), L(x2)] = 0, (x1 − x2)

3[L(x1), I(x2)] = 0,

(x1 − x2)
2[I(x1), I(x2)] = 0.

By the Poincare-Birkhoff-Witt theorem, as a vector space we have

VL(ℓ123, 0) = U(L(≥2)) ≃ S(L(≥2)).

And

VL(ℓ123, 0) =
∐

n≥0

VL(ℓ123, 0)(n),

where VL(ℓ123, 0)(0) = Cℓ123 and VL(ℓ123, 0)(n), n ≥ 1, has a basis consisting
of the vectors

I−k1 · · · I−ks
L−m1 · · ·L−mr

1

for r, s ≥ 0, m1 ≥ · · · ≥ mr ≥ 2, k1 ≥ · · · ≥ ks ≥ 1 with
r∑

i=1

mi +
s∑

j=1

kj = n.

Then by Theorem 5.7.1 of [24] we get the following theorem.

Theorem 2.6. VL(ℓ123, 0) is a vertex algebra, which is uniquely deter-
mined by the condition that 1 is the vacuum vector and

Y (L−21, x) = L(x)

(
=
∑

n∈Z

Lnx
−n−2

)
,(2.16)

Y (I−11, x) = I(x)

(
=
∑

n∈Z

Inx
−n−1

)
.(2.17)

The vertex operator map Y for this vertex algebra structure is given by

Y (Im1 · · · Ims
Ln1 · · ·Lnr

1, x) = I(x)m1 · · · I(x)ms
L(x)n1+1 · · ·L(x)nr+11

for r, s ≥ 0 and n1, · · · , nr,m1, · · · ,ms ∈ Z. Furthermore, T = {L−21, I−11}
is the generating subset of VL(ℓ123, 0).

Convention: In our paper, for numbers of the form n1, . . . , nr, we say
r ≥ 0, where r = 0 means the element with subscript ni’s do not appear.

In the following, we denote by ω = L−21, I = I−11, and ω
′

= 1
2ℓ3
I−1I−11

(for ℓ3 6= 0), note we have ωn = Ln−1, (I)n = (I−11)n = In (this is why we
denote by I−11 the symbol I), for all n ∈ Z.
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Remark 2.7. As a module for the twisted Heisenberg-Virasoro algebra,
VL(ℓ123, 0) is generated by 1 with the relations ci = ℓi and Ln1 = Im1 = 0 for
n ≥ −1,m ≥ 0, i = 1, 2, 3. In fact, VL(ℓ123, 0) is universal in the sense that
for any module W of the twisted Heisenberg-Virasoro algebra L of level ℓ123
equipped with a vector e ∈ W such that Lne = Ime = 0 for n ≥ −1,m ≥ 0,
there exists a unique L-module homomorphism from VL(ℓ123, 0) toW sending
1 to e.

We now use Theorem 5.5.18 and Theorem 5.7.6 of [24] to prove the fol-
lowing result.

Theorem 2.8. Let W be any restricted module for the rank one twisted
Heisenberg-Virasoro algebra L of level ℓ123. Then there exists a unique module
structure on W for VL(ℓ123, 0) viewed as a vertex algebra such that

YW (L−21, x) = L(x)

(
=
∑

n∈Z

Lnx
−n−2

)
,(2.18)

YW (I−11, x) = I(x)

(
=
∑

n∈Z

Inx
−n−1

)
.(2.19)

The vertex operator map YW for this module structure is given by
(2.20)
YW (Im1 · · · Ims

Ln1 · · ·Lnr
1, x) = I(x)m1 · · · I(x)ms

L(x)n1+1 · · ·L(x)nr+11W

for r ≥ 0, s ≥ 0 and n1, · · · , nr,m1, · · · ,ms ∈ Z.

Proof. Set

UW = {L(x), I(x),1W },

then UW is a local subset of E(W ). By Theorem 5.5.18 of [24], UW generates
a vertex algebra 〈UW 〉 with W a natural faithful module. Furthermore, 〈UW 〉
is the linear span of the elements of the form

a(1)(x)n1 · · · a(r)(x)nr
1W

for a(i)(x) ∈ UW , n1, . . . , nr ∈ Z with r ≥ 0. 〈UW 〉 is an L-module with Ln, In
acting as L(x)n+1, I(x)n for n ∈ Z, so that L(x)n1W = 0, I(x)n1W = 0 for
n ≥ 0. In view of Remark 2.7, there exists a unique L-module map ψ from
VL(ℓ123, 0) to 〈UW 〉 such that ψ(1) = 1W . Then

ψ(ωnv) = L(x)nψ(v) and ψ(Inv) = I(x)nψ(v), for n ∈ Z, v ∈ VL(ℓ123, 0).

The existence and uniqueness of VL(ℓ123, 0)-module structure on W now im-
mediately follows from Theorem 5.7.6 of [24] with T = {ω, I}.

On the other hand, we have the following statement.
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Theorem 2.9. Every module W for VL(ℓ123, 0) viewed as a vertex algebra
is naturally a restricted module for the rank one twisted Heisenberg-Virasoro
algebra L of level ℓ123, with L(x) = YW (L−21, x), I(x) = YW (I−11, x).

Proof. We have (L−21)i = ωi = Li−1, (I−11)i = Ii for i ∈ Z. Then for
i ≥ 0,

(L−21)iL−21 = Li−1L−21 = [Li−1, L−2]1

= (i + 1)Li−31+ δi−3,0
(i− 1)3 − (i− 1)

12
c11,

(2.21)

(L−21)iI−11 = Li−1I−11 = [Li−1, I−1]1

= Ii−21− δi−2,0((i− 1)2 + (i− 1))c21,
(2.22)

(I−11)iI−11 = IiI−11 = [Ii, I−1]1 = iδi−1,0c31.(2.23)

By Proposition 5.6.7 of [24], we get

[YW (L−21, x1), YW (L−21, x2)]

=
∑

i≥0

(−1)i

i!
YW ((L−21)iL−21, x2)

(
∂

∂x1

)i

x−1
2 δ

(
x1
x2

)

= YW (L−31, x2)x
−1
2 δ

(
x1
x2

)

− 2YW (L−21, x2)

(
∂

∂x1

)
x−1
2 δ

(
x1
x2

)

− 1

12

(
∂

∂x1

)3

x−1
2 δ

(
x1
x2

)
c11,

(2.24)

[YW (L−21, x1), YW (I−11, x2)]

=
∑

i≥0

(−1)i

i!
YW ((L−21)iI−11, x2)

(
∂

∂x1

)i

x−1
2 δ

(
x1
x2

)

= YW (I−21, x2)x
−1
2 δ

(
x1
x2

)

− YW (I−11, x2)

(
∂

∂x1

)
x−1
2 δ

(
x1
x2

)
−
(

∂

∂x1

)2

x−1
2 δ

(
x1
x2

)
c21,

(2.25)

[YW (I−11, x1), YW (I−11, x2)]

=
∑

i≥0

(−1)i

i!
YW ((I−11)iI−11, x2)

(
∂

∂x1

)i

x−1
2 δ

(
x1
x2

)

= −
(

∂

∂x1

)
x−1
2 δ

(
x1
x2

)
c31.

(2.26)
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Note that

YW (L−31, x) = YW (d(L−21), x) =
d

dx
YW (L−21, x)

and

YW (I−21, x) = YW (d(I−11), x) =
d

dx
YW (I−11, x).

With Proposition 2.3.6 of [24] and the fact

x−1
2 δ

(
x1
x2

)
= x−1

1 δ

(
x1
x2

)
= x−1

1 δ

(
x2
x1

)
,

we see that W is an L-module of level ℓ123 with L(x) = YW (L−21, x), and
I(x) = YW (I−11, x) for L−2, I−1 ∈ L. Since W is a VL(ℓ123, 0)-module, by
definition, YW (L−21, x), YW (I−11, x) ∈ E(W ). Therefore, W is a restricted
L-module of level ℓ123.

2.3. φ-coordinated modules. We now consider the case of φ-coordinated
modules. Modifying the generating functions of L by a shift as follows:

L̃(x) =
∑

n∈Z

Lnx
−n, Ĩ(x) =

∑

n∈Z

Inx
−n,

then the defining relations of L become to be

[L̃(x1), L̃(x2)]

=
∑

m,n∈Z

(m− n)Lm+nx
−m
1 x−n

2 +
∑

m∈Z

m3 −m

12
c1x

−m
1 xm2

=

(
x2

∂

∂x2
L̃(x2)

)
δ

(
x2
x1

)
+ 2L̃(x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

+
c1
12

(
x2

∂

∂x2

)3

δ

(
x2
x1

)
− c1

12

(
x2

∂

∂x2

)
δ

(
x2
x1

)
,

(2.27)

[L̃(x1), Ĩ(x2)]

= −
∑

m,n∈Z

nIm+nx
−m
1 x−n

2 −
∑

m∈Z

(m2 +m)c2x
−m
1 xm2

=

(
x2

∂

∂x2
Ĩ(x2)

)
δ

(
x2
x1

)
+ Ĩ(x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

−
(
x2

∂

∂x2

)2

δ

(
x2
x1

)
c2 −

(
x2

∂

∂x2

)
δ

(
x2
x1

)
c2,

(2.28)

[Ĩ(x1), Ĩ(x2)] =
∑

m∈Z

mc3x
−m
1 xm2 =

(
x2

∂

∂x2

)
δ

(
x2
x1

)
c3.(2.29)
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We further set

L̂(x) = L̃(x)− 1

24
c1, Î(x) = Ĩ(x) − c2,

then we have

[L̂(x1), L̂(x2)]

=

(
x2

∂

∂x2
L̂(x2)

)
δ

(
x2
x1

)
+ 2L̂(x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

+
c1
12

(
x2

∂

∂x2

)3

δ

(
x2
x1

)
,

(2.30)

[L̂(x1), Î(x2)]

=

(
x2

∂

∂x2
Î(x2)

)
δ

(
x2
x1

)
+ Î(x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

−
(
x2

∂

∂x2

)2

δ

(
x2
x1

)
c2,

(2.31)

[Î(x1), Î(x2)] =

(
x2

∂

∂x2

)
δ

(
x2
x1

)
c3.(2.32)

Now we need a new Lie algebra to establish the connection between L and
certain vertex algebra with respect to φ-coordinated modules.

Definition 2.10. Let L be a vector space spanned by the elements
Ln, In, ci, n ∈ Z, i = 1, 2, 3, we define the brackets of L as follows:

[Lm, Ln] = (m− n)Lm+n−1 +
m(m− 1)(m− 2)

12
δm+n−2,0c1,(2.33)

[Lm, In] = −nIm+n−1 − (m2 −m)δm+n−1,0c2,(2.34)

[Im, In] = mδm+n,0c3, [L, ci] = 0, for i = 1, 2, 3.(2.35)

It is straightforward to see that L is a Lie algebra, and it is isomorphic
to the rank one twisted Heisenberg-Virasoro algebra L via

Lm 7→ Lm−1, Im 7→ Im, ci 7→ ci for i = 1, 2, 3.

We set

L(x) =
∑

n∈Z

Lnx
−n−1, I(x) =

∑

n∈Z

Inx
−n−1,
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then the definition relations of L amount to

[L(x1), L(x2)]

=
∑

m,n∈Z

(m− n)Lm+n−1x
−m−1
1 x−n−1

2

+
∑

m∈Z

c1
12
m(m− 1)(m− 2)x−m−1

1 xm−3
2

=

(
∂

∂x2
L(x2)

)
x−1
1 δ

(
x2
x1

)
+ 2L(x2)

∂

∂x2
x−1
1 δ

(
x2
x1

)

+
c1
12

(
∂

∂x2

)3

x−1
1 δ

(
x2
x1

)
,

(2.36)

[L(x1), I(x2)]

= −
∑

m,n∈Z

nIm+n−1x
−m−1
1 x−n−1

2 −
∑

m∈Z

(m2 −m)c2x
−m−1
1 xm−2

2

=

(
∂

∂x2
I(x2)

)
x−1
1 δ

(
x2
x1

)
+ I(x2)

∂

∂x2
x−1
1 δ

(
x2
x1

)

−
(

∂

∂x2

)2

x−1
1 δ

(
x2
x1

)
c2,

(2.37)

[I(x1), I(x2)] =
∑

m∈Z

mc3x
−m−1
1 xm−1

2 =
∂

∂x2
x−1
1 δ

(
x2
x1

)
c3.(2.38)

Set

L≥0 =
∐

n≥0

Ln ⊕
∐

n≥0

In ⊕
3∑

i=1

Cci, L<0 =
∐

n<0

Ln ⊕
∐

n<0

In.

Then L≥0 and L<0 are Lie subalgebras, and L = L≥0 ⊕ L<0 as a vector
space. Let ℓi ∈ C, i = 1, 2, 3, we denote by Cℓ123 = C the one-dimensional
L≥0-module with

∐
n≥0 Ln ⊕∐n≥0 In acting trivially and ci acting as ℓi for

i = 1, 2, 3. Form the induced module

VL(ℓ123, 0) = U(L)⊗U(L≥0) Cℓ123 .

Set 1 = 1⊗1 ∈ VL(ℓ123, 0). Similarly, one can show that there exists a natural
vertex algebra structure on VL(ℓ123, 0) with a linear operator d on L defined
by

d(ci) = 0, for i = 1, 2, 3,

d(Ln) = −nLn−1, d(In) = −nIn−1, n ∈ Z,

and it is uniquely determined by the condition that 1 is the vacuum vector,

Y (L−11, x) = L(x)

(
=
∑

n∈Z

Lnx
−n−1

)
,(2.39)
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Y (I−11, x) = I(x)

(
=
∑

n∈Z

Inx
−n−1

)
.(2.40)

The vertex operator map Y for this vertex algebra structure is given by

Y (Im1 · · · Ims
Ln1 · · ·Lnr

1, x) = I(x)m1 · · · I(x)ms
L(x)n1 · · ·L(x)nr

1

for r ≥ 0, s ≥ 0 and n1, · · · , nr,m1, · · · ,ms ∈ Z. Furthermore, T =
{L−11, I−11} is a generating subset of VL(ℓ123, 0).

Remark 2.11. As a module for the new Lie algebra L, VL(ℓ123, 0) is
generated by 1 with the relations ci = ℓi and Ln1 = In1 = 0 for n ≥ 0,
i = 1, 2, 3. VL(ℓ123, 0) is universal in the sense that for any module W of L of
level ℓ123 equipped with a vector e ∈ W such that Lne = Ine = 0 for n ≥ 0,
there exists a unique L-module homomorphism from VL(ℓ123, 0) toW sending
1 to e.

And we have the following result.

Theorem 2.12. Let W be a restricted L-module of level ℓ123. Then there
exists a φ-coordinated VL(ℓ123, 0)-module structure YW (·, x) on W , which is
uniquely determined by

YW (L−11, x) = L̂(x) and YW (I−11, x) = Î(x) for L−1, I−1 ∈ L.

The vertex operator map YW for this module structure is given by

YW (Im1 · · · Ims
Ln1 · · ·Lnr

1, x) = Î(x)em1
· · · Î(x)ems

L̂(x)en1
· · · L̂(x)enr

1W

for r ≥ 0, s ≥ 0 and n1, · · · , nr,m1, · · · ,ms ∈ Z.

Proof. Since T = {L−11, I−11} generates VL(ℓ123, 0) as a vertex al-
gebra, the uniqueness is clear. We now prove the existence. Set UW =

{1W } ∪ {L̂(x), Î(x)} ⊂ E(W ). From (2.30) to (2.32), by using Lemma 2.1 of
[29], we see that

(x1 − x2)
4[L̂(x1), L̂(x2)] = 0, (x1 − x2)

3[L̂(x1), Î(x2)] = 0,

(x1 − x2)
2[Î(x1), Î(x2)] = 0.

Then UW is a local subset of E(W ), Theorem 2.3 tells us UW generates a
vertex algebra 〈UW 〉e under the vertex operator operation Y e

E with W a φ-
coordinated module, and YW (a(x), z) = a(z) for a(x) ∈ 〈UW 〉e. Using Lemma
4.13 or Proposition 4.14 of [29], together with (2.30), (2.31) and (2.32), we
have

L̂(x)ei L̂(x) = 0 for i = 2 and i ≥ 4,

L̂(x)e3L̂(x) =
ℓ1
2
1W ,

L̂(x)e1L̂(x) = 2L̂(x),
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L̂(x)e0L̂(x) = x
∂

∂x
L̂(x),

L̂(x)ei Î(x) = 0 for i ≥ 3,

L̂(x)e2 Î(x) = −2ℓ21W ,

L̂(x)e1 Î(x) = Î(x),

L̂(x)e0Î(x) = x
∂

∂x
Î(x),

and
Î(x)ei Î(x) = 0 for i = 0 and i ≥ 2,

Î(x)e1Î(x) = ℓ31W .

Then by Borcherds’ commutator formula we have

[Y e
E (L̂(x), x1), Y

e
E (L̂(x), x2)]

=
∑

i≥0

Y e
E (L̂(x)

e
i L̂(x), x2)

1

i!

(
∂

∂x2

)i

x−1
1 δ

(
x2
x1

)

= Y e
E (x

∂

∂x
L̂(x), x2)x

−1
1 δ

(
x2
x1

)
+ 2Y e

E (L̂(x), x2)
∂

∂x2
x−1
1 δ

(
x2
x1

)

+
ℓ1
12

1W

(
∂

∂x2

)3

x−1
1 δ

(
x2
x1

)
,

[Y e
E (L̂(x), x1), Y

e
E (Î(x), x2)]

=
∑

i≥0

Y e
E (L̂(x)

e
i Î(x), x2)

1

i!

(
∂

∂x2

)i

x−1
1 δ

(
x2
x1

)

= Y e
E (x

∂

∂x
Î(x), x2)x

−1
1 δ

(
x2
x1

)
+ Y e

E (Î(x), x2)
∂

∂x2
x−1
1 δ

(
x2
x1

)

− ℓ21W

(
∂

∂x2

)2

x−1
1 δ

(
x2
x1

)
,

and

[Y e
E (Î(x), x1), Y

e
E (Î(x), x2)]

=
∑

i≥0

Y e
E (Î(x)

e
i Î(x), x2)

1

i!

(
∂

∂x2

)i

x−1
1 δ

(
x2
x1

)

= ℓ31W

∂

∂x2
x−1
1 δ

(
x2
x1

)
.

Comparing these with (2.36) to (2.38), we see that 〈UW 〉e is an L-module of

level ℓ123 with L(z), I(z) acting as Y e
E (L̂(x), z), Y

e
E (Î(x), z) respectively, and

∂
∂z
L(z), ∂

∂z
I(z) acting as Y e

E (x
∂
∂x
L̂(x), z), Y e

E (x
∂
∂x
Î(x), z) respectively. Since

L̂(x)en1W = Î(x)en1W = 0 for n 6= −1, and L̂(x)e−11W = L̂(x), Î(x)e−11W =
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Î(x), we have Ln1W = In1W = 0 for n ≥ 0. Then it follows from Remark
2.11 that there exists a unique L-module homomorphism ψ from VL(ℓ123, 0)
to 〈UW 〉e with ψ(1) = 1W . So

ψ(L−11) = L̂(x)e−11W = L̂(x) ∈ 〈UW 〉e,

ψ(I−11) = Î(x)e−11W = Î(x) ∈ 〈UW 〉e.
Now for s ∈ Z, v ∈ VL(ℓ123, 0), with (2.39), (2.40) we have

ψ((L−11)sv) = ψ(Lsv) = L̂(x)esψ(v) = ψ(L−11)
e
sψ(v),

ψ((I−11)sv) = ψ(Isv) = Î(x)esψ(v) = ψ(I−11)
e
sψ(v),

Since T = {L−11, I−11} generates VL(ℓ123, 0) as a vertex algebra, it follows
from Proposition 5.7.9 of [24] that ψ is a homomorphism of vertex algebra.
And then W becomes a φ-coordinated module of VL(ℓ123, 0) with

YW (L−11, x) = L̂(x), YW (I−11, x) = Î(x) for L−1, I−1 ∈ L,

and

YW (Im1 · · · Ims
Ln1 · · ·Lnr

1, x) = Î(x)em1
· · · Î(x)ems

L̂(x)en1
· · · L̂(x)enr

1W

for r ≥ 0, s ≥ 0 and n1, · · · , nr,m1, · · · ,ms ∈ Z.

On the other hand, we have the following statement.

Theorem 2.13. Let W be a φ-coordinated VL(ℓ123, 0)-module. Then W

is a restricted L-module of level ℓ123 with L̂(x) = YW (L−11, x), and Î(x) =
YW (I−11, x) for L−1, I−1 ∈ L.

Proof. For L−1, I−1 ∈ L, since Y (L−11, x) = L(x), Y (I−11, x) = I(x),
from the identities (2.36) to (2.38), by using (2.1) we see that

(x1 − x2)
4[Y (L−11, x1), Y (L−11, x2)] = 0,

(x1 − x2)
3[Y (L−11, x1), Y (I−11, x2)] = 0,

(x1 − x2)
2[Y (I−11, x1), Y (I−11, x2)] = 0.

Note that for i ≥ 0, we have

(L−11)iL−11 = LiL−11 = [Li, L−1]1

= (i + 1)Li−21+
i(i− 1)(i− 2)

12
δi−3,0ℓ11,

(L−11)iI−11 = LiI−11 = [Li, I−1]1 = I i−21− (i2 − i)δi−2,0ℓ21,

and

(I−11)iI−11 = IiI−11 = [Ii, I−1]1 = iδi−1,0ℓ31.
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By Proposition 5.9 of [28], we have

[YW (L−11, x1), YW (L−11, x2)]

= Resx0x
−1
1 δ

(
x2e

x0

x1

)
x2e

x0YW (Y (L−11, x0)L−11, x2)

= YW (L−21, x2)δ

(
x2
x1

)
+ 2YW (L−11, x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

+
ℓ11W

12

(
x2

∂

∂x2

)3

δ

(
x2
x1

)
,

[YW (L−11, x1), YW (I−11, x2)]

= Resx0x
−1
1 δ

(
x2e

x0

x1

)
x2e

x0YW (Y (L−11, x0)I−11, x2)

= YW (I−21, x2)δ

(
x2
x1

)
+ YW (I−11, x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

−
(
x2

∂

∂x2

)2

δ

(
x2
x1

)
ℓ21W ,

and

[YW (I−11, x1), YW (I−11, x2)]

= Resx0x
−1
1 δ

(
x2e

x0

x1

)
x2e

x0YW (Y (I−11, x0)I−11, x2)

=

(
x2

∂

∂x2

)
δ

(
x2
x1

)
ℓ31W .

For a φ-coordinated module, by Lemma 3.7 of [28], we have

YW (L−21, x) = YW (d(L−11), x) = x
∂

∂x
YW (L−11, x)

and

YW (I−21, x) = YW (d(I−11), x) = x
∂

∂x
YW (I−11, x).

Then W is an L-module of level ℓ123 with L̂(x) = YW (L−11, x), and

Î(x) = YW (I−11, x) for L−1, I−1 ∈ L. SinceW is a φ-coordinated VL(ℓ123, 0)-
module, by definition, YW (L−11, x), YW (I−11, x) ∈ E(W ). Therefore, W is a
restricted L-module of level ℓ123.

3. Structures of twisted Heisenberg-Virasoro vertex operator

algebra VL(ℓ123, 0) and its irreducible modules

In this section, we first show that VL(ℓ123, 0) is a vertex operator algebra
and characterize its irreducible modules. Then we study the structure theory
of VL(ℓ123, 0) and get the corresponding results of the simple vertex operator
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algebra coming from it. Specifically, we study its Zhu’s algebra, rationality,
C2-cofiniteness, regularity, unitarity and the commutant of Heisenberg vertex
operator subalgebra. In the process, we get the result that VL(ℓ123, 0) can be
characterized as a tensor product vertex operator algebra.

3.1. Vertex operator algebra VL(ℓ123, 0) and its irreducible modules. For
a Z-graded Lie algebra g =

∐
n∈Z

g(n), a C-graded g-module is a g-module W
equipped with a C-grading W =

∐
r∈C

W(r) such that

g(n)W(r) ⊂W(n+r) for n ∈ Z, r ∈ C.(3.1)

From the above section, we know that VL(ℓ123, 0) is Z-graded by L0-
eigenvalues, and clearly, the two grading restriction conditions in the definition
of vertex operator algebra hold for VL(ℓ123, 0). It is also clear that VL(ℓ123, 0)
is a restricted L-module, a restricted V ir-module (and also a restricted H-
module). In order to say that it has a vertex operator algebra structure,
it remains to check (5.7.22) or (5.7.23) of Theorem 5.7.4 of [24] which is
straightforward, so we have the following result.

Proposition 3.1. (VL(ℓ123, 0), Y,1, L−21) is a vertex operator algebra
with conformal vector ω = L−21 and of central charge ℓ1.

Remark 3.2. VL(ℓ123, 0) is generated by the conformal vector ω = L−21

and I = I−11. It is not a minimal vertex operator algebra, for example, it
has a proper vertex operator subalgebra VV ir(ℓ1, 0) (with the same conformal
vector ω).

We now investigate the modules of VL(ℓ123, 0) viewed as a vertex operator
algebra. By Theorem 2.8, if further W is C-graded by L0-eigenvalues, then
W is a module for VL(ℓ123, 0) viewed as a vertex operator algebra, possibly
without the two grading restrictions.

By Theorem 2.8 and Theorem 2.9 we have the following statement.

Theorem 3.3. The modules for VL(ℓ123, 0) viewed as a vertex operator
algebra (i.e. C-graded by L0-eigenvalues and with the two grading restric-
tions) are exactly those restricted modules for the Lie algebra L of level ℓ123
that are C-graded by L0-eigenvalues and with the two grading restrictions.
Furthermore, for any VL(ℓ123, 0)-module W , the VL(ℓ123, 0)-submodules of W
are exactly the submodules of W for L, and these submodules are in particular
graded.

Next, we will modify the construction of the L-module VL(ℓ123, 0) to
get a certain natural family of restricted L-modules of level ℓ123 that are C-
graded by L0-eigenvalues and satisfy the two grading restrictions. Note such
L-modules are naturally modules for the vertex operator algebra VL(ℓ123, 0)
by the above theorem.
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Consider C as an L(0)-module with ci acting as the scalar ℓi, i = 1, 2, 3,
L0 acting as h1 and I0 acting as h2, where ℓ1, ℓ2, ℓ3, h1, h2 ∈ C.

Let L(−) acting trivially on C, making C an (L(−) ⊕L(0))-module, which
we denote by Cℓ123,h12 . Form the induced module

ML(ℓ123, h1, h2) = U(L)⊗U(L(−)⊕L(0)) Cℓ123,h12 .(3.2)

Again from the Poincare-Birkhoff-Witt theorem, as a vector space we
have

ML(ℓ123, h1, h2) = U(L(+))⊗ Cℓ123,h12 = U(L(+)) ≃ S(L(+)).(3.3)

We naturally consider Cℓ123,h12 as a subspace of ML(ℓ123, h1, h2) and set

1(ℓ123,h12) = 1 ∈ Cℓ123,h12 ⊂ML(ℓ123, h1, h2).

Then

ML(ℓ123, h1, h2) =
∐

n≥0

ML(ℓ123, h1, h2)(n+h1),

where ML(ℓ123, h1, h2)(h1) = Cℓ123,h12 and ML(ℓ123, h1, h2)(n+h1) for n ≥ 1
is the L0-eigenspace of eigenvalue n + h1. ML(ℓ123, h1, h2)(n+h1) has a basis
consisting of the vectors

I−k1 · · · I−ks
L−m1 · · ·L−mr

1(ℓ123,h12)

for r, s ≥ 0, m1 ≥ · · · ≥ mr ≥ 1, k1 ≥ · · · ≥ ks ≥ 1 with
r∑

i=1

mi +
s∑

j=1

kj = n.

Hence, as a module for L of level ℓ123, ML(ℓ123, h1, h2) is C-graded by L0-
eigenvalues.

Consequently, ML(ℓ123, h1, h2) with the given C-grading satisfies the
grading restriction conditions. This in particular implies thatML(ℓ123, h1, h2)
is a restricted L-module.

Thus from Theorem 3.3 we immediately have the following theorem.

Theorem 3.4. For any complex numbers ℓ1, ℓ2, ℓ3, h1 and h2, W =
ML(ℓ123, h1, h2) has a unique module structure for the vertex operator algebra
VL(ℓ123, 0) such that YW (ω, x) = L(x) and YW (I−11, x) = I(x).

Remark 3.5. The L-module ML(ℓ123, h1, h2) is commonly referred to in
the literature as the Verma module in the papers [2, 5]. As a module for L,
ML(ℓ123, h1, h2) is generated by 1(ℓ123,h12) with the relations

L01(ℓ123,h12) = h11(ℓ123,h12), I01(ℓ123,h12) = h21(ℓ123,h12), ci = ℓi, i = 1, 2, 3,

and Ln1(ℓ123,h12) = 0, In1(ℓ123,h12) = 0 for n ≥ 1.

ML(ℓ123, h1, h2) is universal in the sense that for any L-moduleW of level
ℓ123 equipped with a vector v such that L0v = h1v, I0v = h2v, Lnv = 0, Inv =
0 for all n ≥ 1, there exists a unique module map ML(ℓ123, h1, h2) −→ W
sending 1(ℓ123,h12) to v.
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In general, ML(ℓ123, h1, h2) as a module for L may be reducible, then it
is a reducible VL(ℓ123, 0)-module by Theorem 3.3 (or Proposition 4.5.17 in
[24]). Since ML(ℓ123, h1, h2)(h1)(= Cℓ123,h12) generates ML(ℓ123, h1, h2), for
any proper submodule U , U is graded by Theorem 3.3, and

U(h1) = U ∩ML(ℓ123, h1, h2)(h1) = 0.

Let TL(ℓ123, h1, h2) be the sum of all the proper L-submodules of the modul
ML(ℓ123, h1, h2), it is also graded. Then TL(ℓ123, h1, h2)(h1) = 0. So
TL(ℓ123, h1, h2) is also proper and is the largest proper submodule. Set

LL(ℓ123, h1, h2) =ML(ℓ123, h1, h2)/TL(ℓ123, h1, h2),(3.4)

then LL(ℓ123, h1, h2) is an irreducible L-module.
By Theorem 3.3, TL(ℓ123, h1, h2) is also the (unique) largest proper

VL(ℓ123, 0)-submodule of ML(ℓ123, h1, h2), so that LL(ℓ123, h1, h2) is an ir-
reducible VL(ℓ123, 0)-module.

Theorem 3.6. For any complex numbers ℓ1, ℓ2, ℓ3, h1, h2, LL(ℓ123, h1, h2)
is an irreducible module for the vertex operator algebra VL(ℓ123, 0). Further-
more, the modules LL(ℓ123, h1, h2) for h1, h2 ∈ C exhaust those irreducible
(vertex operator algebra) VL(ℓ123, 0)-modules.

Proof. The first assertion has been showed above. For the second as-
sertion, let W =

∐
r∈C

W(r) be an irreducible VL(ℓ123, 0)-module, since I0 is
in the center, so it must acts on the irreducible module as a scalar, say I0
acts on W as a scalar h2. By Theorem 3.3, W must be of level ℓ123, i.e. ci
acts on W as a scalar ℓi for i = 1, 2, 3. From (4.1.22) of [24], there exists
h1 ∈ C such that W(h1) 6= 0 and W(h1−n) = 0 for all positive integers n. Let
0 6= v ∈ W(h1). Then L0v = h1v, Lnv = 0 and Inv = 0 for n ≥ 1 since
Lnv, Inv ∈ W(h1−n). Hence by the universal property of ML(ℓ123, h1, h2),
there is a unique L-module homomorphism

ψ :ML(ℓ123, h1, h2) −→W ; 1(ℓ123,h12) 7→ v.

By Proposition 4.5.1 of [24], ψ is a VL(ℓ123, 0)-module homomorphism
(since L−21 and I−11 generates VL(ℓ123, 0)). Since W is irreducible and
TL(ℓ123, h1, h2) is the (unique) largest proper submodule of ML(ℓ123, h1, h2),
it follows that ψ(ML(ℓ123, h1, h2)) = W and that Ker ψ = TL(ℓ123, h1, h2).
Thus ψ reduces to a VL(ℓ123, 0)-module isomorphism from LL(ℓ123, h1, h2)
onto W .

Remark 3.7. Similarly as in the case of VL(ℓ123, 0), one can show that
there is a vertex operator algebra structure on VL(ℓ123, 0), with L−11 a con-
formal vector,

VL(ℓ123, 0) =
∐

n≥0

VL(ℓ123, 0)(n),
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where VL(ℓ123, 0)(0) = Cℓ123 and VL(ℓ123, 0)(n), n ≥ 1, has a basis consisting
of the vectors

I−k1 · · · I−ks
L−m1 · · ·L−mr

1

for r, s ≥ 0, m1 ≥ · · · ≥ mr ≥ 1, k1 ≥ · · · ≥ ks ≥ 1 with
r∑

i=1

(mi + 1) +

s∑

j=1

kj = n.

Actually VL(ℓ123, 0) and VL(ℓ123, 0) are isomorphic as vertex operator alge-
bras.

In the following subsections, we will study the structure theory of the
vertex operator algebra VL(ℓ123, 0) and its simple descendant.

3.2. Zhu’s algebra, C2-cofiniteness, rationality and regularity. Recall the
following notions, see for example [11, 12, 36] for detail.

Definition 3.8. A vertex operator algebra V is called C2-cofinite if
dimV/C2(V ) <∞, where C2(V ) = span{u−2v | u, v ∈ V }.

Definition 3.9. A vertex operator algebra V is called rational if every
admissible module is a direct sum of simple admissible modules.

Definition 3.10. A vertex operator algebra V is called regular if every
weak module is a direct sum of simple ordinary modules.

For any vertex operator algebra V , its Zhu’s algebra is defined to be
A(V ) = V/O(V ), where O(V ) is the subspace of V spanned by elements

{Resz(Y (a, z)
(1 + z)wt a

z2
b) | a, b ∈ V, a homogeneous},

note

Resz(Y (a, z)
(1 + z)wt a

z2
b) =

∑

i≥0

(
wt a

i

)
ai−2b,

with the bilinear operation ∗ on V defined by

a ∗ b = Resz(Y (a, z)
(1 + z)wt a

z
b) =

∑

i≥0

(
wt a

i

)
ai−1b for a homogeneous.

For v ∈ V , we denote the image of v in A(V ) by [v], then

[a] ∗ [b] =
∑

i≥0

(
wt a

i

)
[ai−1b] for a homogeneous.

(A(V ), ∗) is an associative algebra with identity [1] ([36]).
For any u ∈ V , denote by o(u) = uwt u−1. We do not recall the corre-

spondence between V -module and A(V )-module here, the readers can check
[36] for detail. As we need, we write down the following results.
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Lemma 3.11. For homogeneous elements a, b ∈ V , and m ≥ n ≥ 0,

Resz(Y (a, z)
(z + 1)wt a+n

z2+m
b) ∈ O(V ).

Lemma 3.12. 1. o(u) = 0 for any u ∈ O(V );
2. o(u ∗ v) = o(u)o(v);
3. [u] ∈ A(V ) acts on A(V )-module corresponds to the o(u)-action on the

corresponding V -module.

Since I0 commutes with Lm, In for any m,n ∈ Z, we have

I0v = 0, hence [I0v] = [0], for any v ∈ VL(ℓ123, 0).

For any vertex operator algebra V with conformal vector (denoted by) ω,
[ω] is in the center of A(V ). Hence for VL(ℓ123, 0), [ω] ∗ [I] = [I] ∗ [ω], i.e. [ω]
commutes with [I].

Theorem 3.13. There exists an isomorphism of associative algebras

ϕ : C[x, y] −→ A(VL(ℓ123, 0)); 1 7→ [1], x 7→ [ω], y 7→ [I].

Proof. Let A be the subalgebra of A(VL(ℓ123, 0)) generated by [ω], [I]
and [1]. For the existence of the above surjective algebra homomorphism, it
suffices to show that for every homogeneous u ∈ VL(ℓ123, 0) with wt u ≥ 1,
we have [u] ∈ A. We show it by induction on wt u, note wt u ≥ 1. For
u ∈ VL(ℓ123, 0) with wt u = 1, we only have one choice, i.e. u = I. Clearly
[u] = [I] ∈ A. Suppose for all homogeneous u with wt u ≤ m − 1 we have
[u] ∈ A, then for u with wt u = m, we may assume that

u = I−k1 · · · I−ks
L−m1 · · ·L−mr

1

for r, s ≥ 0, m1 ≥ · · · ≥ mr ≥ 2, k1 ≥ · · · ≥ ks ≥ 1 with
∑r

i=1mi+
∑s

j=1 kj =
m. If all kj ’s are zero, i.e.

u = L−m1 · · ·L−mr
1,

then one get from Lemma 4.1 of [35] that [u] can be generated by [ω]. Other-
wise, denote

u
′

= I−k2 · · · I−ks
L−m1 · · ·L−mr

1,

then by induction [u
′

] is in A(VL(ℓ123, 0)). And u = I−k1u
′

, k1 ≥ 1. By
Lemma 3.11, take a = I, n = 0, note wt a = 1, then we have

[(I−n + I−n−1)b] = [0] for b homogeneous, n ≥ 1.

So without loss of generality, we may assume k1 = 1, i.e. u = I−1u
′

. Then

[I] ∗ [u′

] = [(I−1 + I0)u
′

] = [I−1u
′

] + [I0u
′

] = [u].

With [u
′

], [I] ∈ A we get [u] ∈ A.
We now show that ϕ is injective. Assume 0 6= f(x, y) ∈ Ker(ϕ),

we can write it as f(x, y) =
∑
f.s.

amnx
myn (f.s. means finite sum), then
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∑
f.s.

amn[ω]
m[I]n = [0] in A(VL(ℓ123, 0)), and so

∑
f.s.

amn[ω]
m[I]n acts trivially

on anyA(VL(ℓ123, 0))-module which corresponds to that
∑

f.s. amno(ω)
mo(I)n

acts as zero on the bottom level of any VL(ℓ123, 0)-module. Note o(ω) = ω1 =
L0 and o(I) = I0. Recall for any h1, h2 ∈ C, ML(ℓ123, h1, h2) is a module for
VL(ℓ123, 0), with the bottom level Cℓ123,h12 , and L0 acts as h1, I0 acts as h2,
hence on Cℓ123,h12 we have

0 =
∑

f.s.

amno(ω)
mo(I)n =

∑

f.s.

amnL
m
0 I

n
0 =

∑

f.s.

amnh
m
1 h

n
2 .

Clearly, there exist elements h1, h2 such that
∑
f.s.

amnh
m
1 h

n
2 6= 0, contradiction.

Hence ϕ is injective.

Remark 3.14. Later on, we will characterize VL(ℓ123, 0) as a ten-
sor product of two vertex operator algebras, which immediately gives that
A(VL(ℓ123, 0)) is isomorphic to a polynomial algebra over C with two vari-
ables. But our proof above is more intrinsic and gives expectation (or some
sense) that VL(ℓ123, 0) may be isomorphic to a tensor product of two vertex
operator algebras.

For a vertex operator algebra to be regular, rational and C2-cofinite,
its Zhu’s algebra must be of finite dimensional (c.f. [36, 12]). Now
A(VL(ℓ123, 0)) ∼= C[x, y] is an infinite dimensional C-algebra, hence we have:

Proposition 3.15. VL(ℓ123, 0) is not regular, not rational and not C2-
cofinite.

3.3. Commutant. We now look at the commutant of Heisenberg vertex
operator algebra in VL(ℓ123, 0). Recall that if (V, Y,1, ω) is a vertex opera-

tor algebra and (U, Y,1, ω
′

) is a vertex operator subalgebra of V , then the
commutant is defined to be

U c = {v ∈ V | L′

(−1)v = 0},
where L

′

(−1) is determined by ω
′

.
For our VL(ℓ123, 0), we know that when ℓ3 6= 0, U = VH(ℓ3, 0) is a vertex

operator algebra with standard conformal vector ω
′

= 1
2ℓ3
I−1I−11 (of central

charge 1).

L1ω
′

=
1

2ℓ3
L1I−1I−11 =

−2ℓ2
ℓ3

I−11,

so L1ω
′

= 0 if and only if ℓ2 = 0. Hence when ℓ2 = 0, by Theorem 5.1 of [15],
the commutant U c of the Heisenberg vertex operator algebra U = VH(ℓ3, 0)

(equipped with the standard conformal vector ω
′

) is a vertex operator algebra

with conformal element ω
′′

= ω − ω
′

.
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The next thing we want to do is to characterize the generators (or even
basis) of the commutant (actually, we get a more powerful result, see below).
We consider ℓ3 6= 0 in the following for necessity.

For the basic notions and results of tensor product vertex operator alge-
bra, see for example [24]. The idea of the following theorem comes from the
paper [6].

Theorem 3.16. When ℓ3 6= 0, VL(ℓ123, 0) is isomorphic to the tensor
product VH(ℓ3, 0)⊗ V ˜V ir(c ˜V ir, 0) as vertex operator algebras, where VH(ℓ3, 0)

is equipped with a nonstandard conformal vector ωH = ω
′

+ ℓ2
ℓ3
I−21 (of central

charge 1− 12
ℓ22
ℓ3
), and ˜V ir is a new Virasoro algebra constructed in the proof

with central charge c ˜V ir = ℓ1 − 1 + 12
ℓ22
ℓ3
.

Proof. Firstly, denote ω̃ = ω − ωH , it is straightforward to show that
ωH and ω̃ satisfy Virasoro algebra relations. So ω̃ gives a Virasoro algebra
which we denoted by ˜V ir and from ˜V ir we get a vertex operator algebra
which we denoted by V ˜V ir(c ˜V ir , 0), it is with conformal vector ω̃ and is of

central charge c ˜V ir = ℓ1− 1+12
ℓ22
ℓ3
. Since (I−21)0 = 0 and (I−21)1 = ω

′

1 − I0,

I0 acts on VH(ℓ3, 0) as zero and ω
′

is a conformal vector, we see that ωH is

also a conformal vector of VH(ℓ3, 0) and is of central charge 1 − 12
ℓ22
ℓ3
. Next,

it is straightforward to show that

ω̃nIm1 = Imω̃n1

for any m,n ∈ Z. At last, we define a map

ϕ : VH(ℓ3, 0)⊗ V ˜V ir(c ˜V ir, 0) −→ VL(ℓ123, 0)

on the basis by

I−k1 · · · I−ks
1⊗ ω̃−m1 · · · ω̃−mr

1 7→ I−k1 · · · I−ks
ω̃−m1 · · · ω̃−mr

1

and extend C-linearly, it is easy to check that ϕ is a linear isomorphism,
ϕ(1⊗ 1) = 1 and ϕ(ωH ⊗ 1+ 1⊗ ω̃) = ω̃ +ωH = ω. It remains to show that
it is a vertex algebra homomorphism. For this, note that

(I−k1 · · · I−ks
ω̃−m1 · · · ω̃−mr

1)n =
∑

i∈Z

(I−k1 · · · I−ks
1)i(ω̃−m1 · · · ω̃−mr

1)n−i−1

on VL(ℓ123, 0) for all n ∈ Z.

Remark 3.17. The equation ω̃nIm1 = Imω̃n1 is important in proving
that ϕ is a vertex algebra homomorphism. Note when ℓ3 = 0, VH(ℓ3, 0) still
has a vertex algebra structure, take ω̃ = ω, so one may think about that
just considering them as vertex algebras, can we characterize VL(ℓ123, 0) ∼=
VH(0, 0)⊗VV ir(ℓ1, 0) as vertex algebras? The answer is not positive since now
we do not have ωnIm1 = Imωn1 in general (even if you require ℓ2 = 0). The
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defined ϕ is a linear isomorphism for sure, but it may not be a vertex algebra
homomorphism anymore.

By the above theorem, we get the following statement.

Proposition 3.18. For any ℓ2 ∈ C, ℓ1 ∈ C, 0 6= ℓ3 ∈ C, the commutant
of VH(ℓ3, 0) (with conformal vector ωH) in VL(ℓ123, 0) is a vertex operator
algebra and is isomorphic to the Virasoro vertex operator algebra V ˜V ir(c ˜V ir , 0)
(whose structure is clear).

Remark 3.19. Note in particular when ℓ2 = 0, VH(ℓ3, 0) is with usual

conformal vector ωH = ω
′

, so we’ve answered the commutant question that
we originally considered.

Remark 3.20. As explained before in Remark 3.14, with Theorem 3.16,
by the fact that Zhu’s algebra A(V ⊗W ) = A(V ) ⊗A(W ), and the result of
Heisenberg and Virasoro vertex operator algebras, we can immediately have
that A(VL(ℓ123, 0)) is isomorphic to a polynomial algebra in two variables.

3.4. Simple vertex operator algebra and its structure. We now look at the
structure of the simple descendant of VL(ℓ123, 0). The simple vertex operator
algebra comes from VL(ℓ123, 0) is of the form LL(ℓ123, 0) = VL(ℓ123, 0)/T ,
where T is the maximal ideal of VL(ℓ123, 0) (which is equivalent to say that T
is the maximal L-submodule of the L-module VL(ℓ123, 0)). We do not study
the structure of the maximal submodule T directly, instead we use Theorem
3.16 to get a characterization of it and hence of VL(ℓ123, 0)/T .

A vertex operator algebra is simple if it is simple as a vertex algebra,
so simplicity of a vertex operator algebra does not depend on the conformal
vector. We know that VH(ℓ3, 0) (ℓ3 6= 0) with the usual conformal vector ω

′

is simple (of central charge 1), so VH(ℓ3, 0) with a nonstand conformal vector

ωH is also a simple vertex operator algebra (of central charge 1− 12
ℓ22
ℓ3
).

Denote by cp,q = 1 − 6 (p−q)2

pq
, where p, q ∈ {2, 3, 4, . . .} and are relatively

prime, recall (c.f. [35, 24]) the following property.

Proposition 3.21. 1. If c ˜V ir 6= cp,q, then V ˜V ir(c ˜V ir, 0) is a simple
vertex operator algebra.

2. If c ˜V ir = cp,q, then V ˜V ir(c ˜V ir, 0) has the maximal ideal 〈vp,q〉 generated
by a singular vector vp,q of degree (p− 1)(q − 1).

By Corollary 4.7.3 of [13], tensor product of vertex operator algebras is
simple if and only if each term is simple. So we have the statement.

Proposition 3.22. 1. When ℓ3 6= 0 and c ˜V ir 6= cp,q, VH(ℓ3, 0) ⊗
V ˜V ir(c ˜V ir , 0) is a simple vertex operator algebra, and hence VL(ℓ123, 0)
is also a simple vertex operator algebra.
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2. When ℓ3 6= 0 and c ˜V ir = cp,q, V ˜V ir(c ˜V ir, 0) has the maximal ideal gen-
erated by the singular vector vp,q, and the quotient V ˜V ir(c ˜V ir, 0)/〈vp,q〉
is a simple vertex operator algebra with conformal vector ω̃ = ω̃+〈vp,q〉,
hence then VH(ℓ3, 0)⊗(V ˜V ir(c ˜V ir, 0)/〈vp,q〉) is a simple vertex operator
algebra.

And we have the following result.

Proposition 3.23. For c ˜V ir = cp,q and ℓ3 6= 0,

1. VH(ℓ3, 0) ⊗ 〈vp,q〉 is a proper ideal of the vertex operator algebra
VH(ℓ3, 0)⊗ V ˜V ir(c ˜V ir, 0).

2. We have

(VH(ℓ3, 0)⊗ V ˜V ir(c ˜V ir , 0))/(VH(ℓ3, 0)⊗ 〈vp,q〉)
∼= VH(ℓ3, 0)⊗ (V ˜V ir(c ˜V ir, 0)/〈vp,q〉)

as vertex operator algebras. Hence VH(ℓ3, 0) ⊗ 〈vp,q〉 is the maxi-
mal ideal of VH(ℓ3, 0) ⊗ V ˜V ir(c ˜V ir, 0). So the simple vertex operator
algebra LL(ℓ123, 0) is isomorphic to the tensor product VH(ℓ3, 0) ⊗
(V ˜V ir(c ˜V ir, 0)/〈vp,q〉).

Proof. The first one can be proved by definition. For the second one,
construct a map

π : VH(ℓ3, 0)⊗ V ˜V ir(c ˜V ir, 0) −→ VH(ℓ3, 0)⊗ (V ˜V ir(c ˜V ir, 0)/〈vp,q〉)
by v ⊗ w 7→ v ⊗ w and extend linearly. Then clearly π is surjective with
kernel VH(ℓ3, 0) ⊗ 〈vp,q〉, and so induces a desired linear isomorphism. It is
also clear that the induced map takes the conformal vector to the conformal
vector and is a vertex algebra homomorphism, hence it is a vertex operator
algebra isomorphism.

Therefore the structure of the simple vertex operator algebra is clear.

Theorem 3.24. 1. When ℓ3 6= 0 and c ˜V ir 6= cp,q, LL(ℓ123, 0) =
VL(ℓ123, 0), so T = 0.

2. When ℓ3 6= 0 and c ˜V ir = cp,q,

LL(ℓ123, 0) = VL(ℓ123, 0)/T ∼= VH(ℓ3, 0)⊗ (V ˜V ir(c ˜V ir, 0)/〈vp,q〉),
where T = ϕ(VH(ℓ3, 0)⊗ 〈vp,q〉) for ϕ defined in Theorem 3.16.

Now for ℓ3 6= 0 and c ˜V ir = cp,q, Zhu’s algebra of the simple vertex opera-
tor algebra LL(ℓ123, 0) is isomorphic to A (VH(ℓ3, 0)⊗ (V ˜V ir(c ˜V ir, 0)/〈vp,q〉))
which is equal to A(VH(ℓ3, 0)) ⊗ A(V ˜V ir(c ˜V ir, 0)/〈vp,q〉). So A(LL(ℓ123, 0))
is isomorphic to C[x] ⊗ (C[y]/(Gp,q(y))) (where (Gp,q(y)) is a polynomial of
degree 1

2 (p − 1)(q − 1)) (c.f. [35, 15]), which is infinite dimensional. There-
fore, the simple vertex operator algebra LL(ℓ123, 0) is also not regular, not
C2-cofinite and not rational.
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3.5. Unitary vertex operator algebra and its unitary module. At the end
of this section, we look at the unitary structure of the simple vertex operator
algebra LL(ℓ123, 0), we follow some related notions by [9].

Definition 3.25. A vertex operator algebra (V, Y,1, ω) is called CFT-
type if Vn = 0 for n < 0 and V0 = C1.

Clearly, our LL(ℓ123, 0) is of CFT-type.

Definition 3.26. Let (V, Y,1, ω) be a vertex operator algebra of CFT-
type. An anti-linear automorphism φ of V is an anti-linear map φ : V −→ V
such that φ(1) = 1, φ(ω) = ω and φ(unv) = φ(u)nφ(v) for any u, v ∈ V and
n ∈ Z.

Definition 3.27. Let (V, Y,1, ω) be a vertex operator algebra of CFT-type
and φ : V −→ V be an anti-linear involution, i.e. an anti-linear automor-
phism of order 2. Then (V, φ) is called unitary if there exists a positive definite
Hermitian form (, ) : V × V −→ C which is C-linear on the first vector and
anti-C-linear on the second vector such that the following invariant property
holds: for any a, u, v ∈ V

(Y (ezL(1)(−z−2)L(0)a, z−1)u, v) = (u, Y (φ(a), z)v)(3.5)

where L(n) is defined by Y (ω, z) =
∑

n∈Z
L(n)z−n−2.

Definition 3.28. Let (V, Y,1, ω) be a vertex operator algebra of CFT-
type and φ : V −→ V be an anti-linear involution, A V -module (M,YM ) is
called a unitary V -module if there exists a positive definite Hermitian form
(, )M : M ×M −→ C which is C-linear on the first vector and anti-C-linear
on the second vector such that the following invariant property holds:

(YM (ezL(1)(−z−2)L(0)a, z−1)w1, w2)M = (w1, YM (φ(a), z)w2)M(3.6)

for any a ∈ V , w1, w2 ∈M.

Remark 3.29. Unitarity is not an isomorphic invariant property of vertex
operator algebras. For example, VH(ℓ3, 0) is isomorphic to VH(1, 0) as vertex
operator algebras for any 0 6= ℓ3 ∈ C, VH(1, 0) is a unitary vertex operator
algebra ([9]), but of course it is not that for any 0 6= ℓ3 ∈ C, VH(ℓ3, 0) is a
unitary vertex operator algebra (for example, the positive definiteness of the
Hermitian form requires ℓ3 ∈ R>0). So even though tensor product of unitary
vertex operator algebras is unitary (Proposition 2.9 of [9]), and we know
(Theorem 3.16, Theorem 3.24) that our LL(ℓ123, 0) is isomorphic to a tensor
product of two unitary vertex operator algebras under certain conditions (c.f.
[9]), we can’t say that VL(ℓ123, 0) is a unitary vertex operator algebra under
those conditions.

Define an anti-linear map φ of VL(ℓ123, 0) as follows:

φ : VL(ℓ123, 0) −→ VL(ℓ123, 0),
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I−k1 · · · I−ks
L−m1 · · ·L−mr

1 7→ (−1)sI−k1 · · · I−ks
L−m1 · · ·L−mr

1,

where r, s ≥ 0, m1 ≥ · · · ≥ mr ≥ 2, k1 ≥ · · · ≥ ks ≥ 1.

Lemma 3.30. φ is an anti-linear involution of vertex operator algebra
VL(ℓ123, 0). Furthermore, φ induces an anti-linear involution (also denoted
by φ) of LL(ℓ123, 0).

Proof. φ2 = id, so it is enough to show that φ is an anti-linear auto-
morphism. By definition of our φ above, we have φ(1) = 1, φ(ω) = ω and
φ(I) = −I. Let

U = {u ∈ VL(ℓ123, 0) | φ(unv) = φ(u)nφ(v), ∀ v ∈ VL(ℓ123, 0), n ∈ Z},
then U is a subspace of VL(ℓ123, 0). It is straightforward to show that if
a, b ∈ U , then amb ∈ U for any m ∈ Z. Now we show that the generators ω
and I of VL(ℓ123, 0) are in U . For any v ∈ VL(ℓ123, 0), n ∈ Z,

φ(ωnv) = φ(Ln−1v) = Ln−1φ(v) = ωnφ(v) = (φ(ω))nφ(v),

φ((I)nv) = φ(Inv) = −Inφ(v) = φ(I)nφ(v),

so ω, I ∈ U , and then we have VL(ℓ123, 0) = U . Thus φ is an anti-linear
involution of VL(ℓ123, 0).

Let T be the maximal proper L-submodule of VL(ℓ123, 0), we have φ(T )
is a proper L-submodule of VL(ℓ123, 0), so φ(T ) ⊆ T . Hence φ induces an
anti-linear involution of LL(ℓ123, 0).

Note that for the two Lie algebras D̂ and L defined in [2] and [5] respec-
tively, there exists a Lie algebra isomorphism between them (for notations

related to D̂ we follow [2])

ρ : L −→ D̂;

Lm 7→ dm, c1 7→ c, c3 7→ ca, In 7→ zn −
√
−1δn,0c3, c2 7→ −

√
−1c3,

which then induces an isomorphism between the Verma modules (as L-
modules and as D̂-modules via ρ)

ML(ℓ123, h1, h2) ∼= R̃(ℓ1, h1, ℓ3, h2 − ℓ2,
√
−1ℓ2),

and hence an isomorphism of irreducible L-modules

LL(ℓ123, h1, h2) ∼= R(ℓ1, h1, ℓ3, h2 − ℓ2,
√
−1ℓ2).

In particular,

LL(ℓ123, 0) ∼= R(ℓ1, 0, ℓ3,−ℓ2,
√
−1ℓ2)

as irreducible L-modules, where as irreducible L-modules LL(ℓ123, 0) =
LL(ℓ123, 0, 0).
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And via the isomorphism ρ, the anti-linear anti-involution ∗ defined in [2]
induces an anti-linear anti-involution σ (see also [5]) on L defined as

σ(Ln) = L−n, σ(In) = I−n − 2δn,0c2,

σ(c1) = c1, σ(c3) = c3, σ(c2) = −c2.

Then the unique contravariant (under ∗) Hermitian form in Section 6 of [2]
induces a unique Hermitian form ( , ) on LL(ℓ123, h1, h2) such that (w,w) = 1
for a highest weight vector w and is contravariant with respect to the anti-
involution σ, i.e.

(xu, v) = (u, σ(x)v), x ∈ L, u, v ∈ LL(ℓ123, h1, h2).

In particular,

(Inu, v) = (u, σ(In)v), (Lnu, v) = (u, σ(Ln)v), u, v ∈ LL(ℓ123, h1, h2).

Denote by cm = 1 − 6
m(m+1) ,, h

m
r,s = (r(m+1)−sm)2−1

4m(m+1) , 1 ≤ s ≤ r ≤
m− 1, m ∈ Z≥2. Then for the positive definiteness of the Hermitian form, by
Theorem 6.6 of [2] we get the following statement.

Proposition 3.31. The contravariant Hermitian form ( , ) on the mod-
ule LL(ℓ123, h1, h2) is positive definite in precisely the following cases:

1. ℓ3 = 0, then ℓ2 = 0, h2 = 0, and ℓ1 ∈ R≥1, h1 ∈ R≥0 or ℓ1 = cm, h1 =
hmr,s, 1 ≤ s ≤ r ≤ m− 1, m ∈ Z≥2;

2. ℓ3 ∈ R>0, then either

ℓ1 − 12
ℓ22
ℓ3

∈ R≥2, h1 −
(h2 − ℓ2)

2 + (
√
−1ℓ2)

2

2ℓ3
∈ R≥0,

or

ℓ1 − 12
ℓ22
ℓ3

= 1 + cm, h1 −
(h2 − ℓ2)

2 + (
√
−1ℓ2)

2

2ℓ3
= hmr,s,

where 1 ≤ s ≤ r ≤ m− 1, m ∈ Z≥2.

For the unitary property of LL(ℓ123, 0) we need to show (3.5) holds, and
we only need to show this for the generators I, ω of LL(ℓ123, 0) by Proposition
2.11 of [9]. For ω we can show in the same way as Theorem 4.2 of [9]. For
I, we need to do some more work since the anti-involution now is defined
differently. For any u, v ∈ LL(ℓ123, 0),

(
Y (ezL1(−z−2)L0I, z−1)u, v

)

=
(
Y (−z−2I, z−1)u, v

)
=
∑

n∈Z

−(Inu, v)z
n−1

=
∑

n6=0

−(Inu, v)z
n−1 + (−(I0u, v)z

−1)
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=
∑

n6=0

−(u, I−nv)z
n−1 − (u, I0v)z

−1 + 2ℓ2(u, v)z
−1

= −
∑

n∈Z

(u, I−nv)z
n−1 + 2ℓ2(u, v)z

−1

= (u, Y (φ(I), z)v) + 2ℓ2(u, v)z
−1.

In order that (3.5) holds for I, we need to require that ℓ2 = 0.
The above shows that the following theorem holds.

Theorem 3.32. (LL(ℓ123, 0), φ) is a unitary vertex operator algebra if and
only if one of the following holds:

1. ℓ2 = 0, ℓ3 = 0, ℓ1 ∈ R≥1 or ℓ1 = cm,m ∈ Z≥2;
2. ℓ2 = 0, ℓ3 ∈ R>0, ℓ1 ∈ R≥2 or ℓ1 = 1 + cm,m ∈ Z≥2.

Similar to the proof of Theorem 3.32, we can get the following statement.

Theorem 3.33. Let φ be defined as above. Then LL(ℓ123, h1, h2) is a
unitary module of (LL(ℓ123, 0), φ) if and only if one of the following holds:

1. ℓ2 = 0, ℓ3 = 0, h2 = 0, ℓ1 ∈ R≥1, h1 ∈ R≥0 or ℓ1 = cm, h1 = hmr,s,
1 ≤ s ≤ r ≤ m− 1, m ∈ Z≥2;

2. ℓ2 = 0, ℓ3 ∈ R>0, ℓ1 ∈ R≥2, h1 − (h2)
2

2ℓ3
∈ R≥0, or ℓ1 = 1 + cm,

h1 − (h2)
2

2ℓ3
= hmr,s, 1 ≤ s ≤ r ≤ m− 1, m ∈ Z≥2.

4. Rank two case with φ-coordinated modules

In this section, we associate the rank two twisted Heisenberg-Virasoro
algebra L∗ with the vertex algebra V

L̂∗(ℓ1234, 0) in terms of its φ-coordinated
module. More specifically, we show that there is a one-to-one correspondence
between restricted L∗-modules of level ℓ1234 and φ-coordinated modules for

the vertex algebra V
L̂∗(ℓ1234, 0), where L̂∗ is a newly defined Lie algebra.

We first recall from [33] the definition of rank two twisted Heisenberg-
Virasoro algebra.

Definition 4.1. The rank two twisted Heisenberg-Virasoro algebra L∗ is
a vector space spanned by tm1 t

n
2 , Em,n,Ki, i = 1, 2, 3, 4, for m,n ∈ Z2\{(0, 0)},

with the following Lie brackets:

[tm1 t
n
2 , t

r
1t

s
2] = 0; [Ki,L∗] = 0, i = 1, 2, 3, 4;

[tm1 t
n
2 , Er,s] = (nr −ms)tm+r

1 tn+s
2 + δm+r,0δn+s,0(mK1 + nK2);

[Em,n, Er,s] = (nr −ms)Em+r,n+s + δm+r,0δn+s,0(mK3 + nK4),

for (m,n), (r, s) ∈ Z2\{(0, 0)}.
We form the generating functions as

Tm(x) =
∑

n∈Z

tm1 t
n
2x

−n, Em(x) =
∑

n∈Z

Em,nx
−n.(4.1)
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Rewriting the Lie brackets as

[tm1 t
n
2 , Er,s] = (n(m+ r)−m(n+ s)) tm+r

1 tn+s
2 + δm+r,0δn+s,0(mK1 + nK2),

[Em,n, Er,s] = (n(m+ r) −m(n+ s))Em+r,n+s + δm+r,0δn+s,0(mK3 + nK4),

we can get the following generating function brackets:

(4.2)

[Tm(x1), Er(x2)]

= (m+ r)Tm+r(x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

+m

(
x2

∂

∂x2
Tm+r(x2)

)
δ

(
x2
x1

)

+mδm+r,0δ

(
x2
x1

)
K1 + δm+r,0

(
x2

∂

∂x2

)
δ

(
x2
x1

)
K2,

and

(4.3)

[Em(x1), Er(x2)]

= (m+ r)Em+r(x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

+m

(
x2

∂

∂x2
Em+r(x2)

)
δ

(
x2
x1

)

+mδm+r,0δ

(
x2
x1

)
K3 + δm+r,0

(
x2

∂

∂x2

)
δ

(
x2
x1

)
K4.

Definition 4.2. An L∗-module W is said to be restricted if for any w ∈
W, (m,n), (r, s) ∈ Z2\{(0, 0)}, tm1 tn2w = 0 for n sufficiently large and Er,sw =
0 for s sufficiently large, or equivalently, if Tm(x) ∈ E(W ) and Er(x) ∈ E(W )
for m, r ∈ Z. We say an L∗-module W is of level ℓ1234 if the central element
Ki acts as scalar ℓi for i = 1, 2, 3, 4.

Next we associate the Lie algebra L∗ with a specific vertex algebra and
its φ-coordinated modules. We first construct a new Lie algebra.

Definition 4.3. Let L̂∗ be a vector space spanned by Tm⊗ tn, Er⊗ ts,Ki

for (m,n), (r, s) ∈ Z2\{(0, 0)}, i = 1, 2, 3, 4, we define

[Tm ⊗ tn, T r ⊗ ts] = 0; [Ki, L̂∗] = 0, for i = 1, 2, 3, 4;

[Tm ⊗ tn, Er ⊗ ts]

= (nr −ms)Tm+r ⊗ tn+s−1 +mδm+r,0δn+s+1,0K1 + nδm+r,0δn+s,0K2;

[Em ⊗ tn, Er ⊗ ts]

= (nr −ms)Em+r ⊗ tn+s−1 +mδm+r,0δn+s+1,0K3 + nδm+r,0δn+s,0K4.

It is straightforward to check that these are Lie brackets, so L̂∗ is a
Lie algebra. For (m,n), (r, s) ∈ Z2\{(0, 0)}, we denote Tm ⊗ tn, Er ⊗ ts
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by (Tm)n, (E
r)s, and set

Tm(x) =
∑

n∈Z

(Tm)nx
−n−1 Er(x) =

∑

s∈Z

(Er)sx
−s−1.(4.4)

Then the defining relations of L̂∗ amount to:

(4.5)

[Tm(x1), E
r(x2)]

= (m+ r)Tm+r(x2)
∂

∂x2
x−1
1 δ

(
x2
x1

)

+m

(
∂

∂x2
Tm+r(x2)

)
x−1
1 δ

(
x2
x1

)

+mδm+r,0x
−1
1 δ

(
x2
x1

)
K1 + δm+r,0

∂

∂x2
x−1
1 δ

(
x2
x1

)
K2,

and

(4.6)

[Em(x1), E
r(x2)]

= (m+ r)Em+r(x2)
∂

∂x2
x−1
1 δ

(
x2
x1

)

+m

(
∂

∂x2
Em+r(x2

)
x−1
1 δ

(
x2
x1

)

+mδm+r,0x
−1
1 δ

(
x2
x1

)
K3 + δm+r,0

∂

∂x2
x−1
1 δ

(
x2
x1

)
K4.

Set

L̂∗
≥0 =

∐

m∈Z

(Tm ⊗ C[t])⊕
∐

r∈Z

(Er ⊗ C[t])⊕
4∑

i=1

CKi,

L̂∗
<0 =

∐

m∈Z

(
Tm ⊗ t−1

C[t−1]
)
⊕
∐

r∈Z

(
Er ⊗ t−1

C[t−1]
)
.

We see that L̂∗
≥0 and L̂∗

<0 are Lie subalgebras and L̂∗ = L̂∗
≥0 ⊕ L̂∗

<0 as
a vector space. Let ℓi ∈ C, i = 1, 2, 3, 4, we denote by Cℓ1234 = C the one-

dimensional L̂∗
≥0-module with

∐
m∈Z

(Tm ⊗ C[t]) ⊕
∐

r∈Z
(Er ⊗ C[t]) acting

trivially and Ki acting as ℓi for i = 1, 2, 3, 4. Form the induced module

V
L̂∗(ℓ1234, 0) = U(L̂∗)⊗

U(L̂∗
≥0)

Cℓ1234 .

Set 1 = 1⊗ 1 ∈ V
L̂∗(ℓ1234, 0), define a linear operator d on L̂∗ by

d(Ki) = 0, for i = 1, 2, 3, 4,

d(Tm ⊗ tn) = −nTm ⊗ tn−1, and d(Er ⊗ ts) = −sEr ⊗ ts−1.

By Theorem 5.7.1 of [24], V
L̂∗(ℓ1234, 0) is a vertex algebra, which is uniquely

determined by the condition that 1 is the vacuum vector and

Y ((Tm)−11, x) = Tm(x),(4.7)
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Y ((Er)−11, x) = Er(x)(4.8)

for (Tm)−1, (E
r)−1 ∈ L̂∗,m, r ∈ Z. Furthermore, {(Tm)−11, (E

r)−11 |m, r ∈
Z} is a generating subset of V

L̂∗(ℓ1234, 0).
Similarly, V

L̂∗(ℓ1234, 0) has its universal property like Remark 2.7 and
Remark 2.11. As one of our main results in this section, we have the following
theorem.

Theorem 4.4. Let W be a restricted L∗-module of level ℓ1234. Then there
exists a φ-coordinated V

L̂∗(ℓ1234, 0)-module structure YW (·, x) on W , which is
uniquely determined by

YW ((Tm)−11, x) = Tm(x) and YW ((Em)−11, x) = Em(x) for m ∈ Z.

Proof. Since {(Tm)−11, (E
r)−11 | m, r ∈ Z} generates V

L̂∗(ℓ1234, 0) as
a vertex algebra, the uniqueness is clear. We now prove the existence. Set
UW = {1W } ∪ {Tm(x), Em(x) | m ∈ Z} ⊂ E(W ). From (4.2) and (4.3), by
using Lemma 2.1 of [29] we see that

(x1 − x2)
2[Tm(x1), Er(x2)] = 0 and (x1 − x2)

2[Em(x1), Er(x2)] = 0.(4.9)

Then UW is a local subset of E(W ). By Theorem 2.3, UW generates a vertex al-
gebra 〈UW 〉e under the vertex operator operation Y e

E with W a φ-coordinated
module, where YW (a(x), z) = a(z) for a(x) ∈ 〈UW 〉e. With (4.2) and (4.3), by
using Lemma 4.13 or Proposition 4.14 of [29], we have

Tm(x)eiEr(x) = 0 for i ≥ 2,

Tm(x)e1Er(x) = (m+ r)Tm+r(x) + δm+r,0ℓ21W ,

Tm(x)e0Er(x) = m

(
x
∂

∂x
Tm+r(x)

)
+mδm+r,0ℓ11W ,

and
Em(x)eiEr(x) = 0 for i ≥ 2,

Em(x)e1Er(x) = (m+ r)Em+r(x) + δm+r,0ℓ41W ,

Em(x)e0Er(x) = m

(
x
∂

∂x
Em+r(x)

)
+mδm+r,0ℓ31W .

Then again by Borcherds’ commutator formula we have

[Y e
E (Tm(x), x1), Y

e
E (Er(x), x2)]

=
∑

i≥0

Y e
E (Tm(x)eiEr(x), x2)

1

i!

(
∂

∂x2

)i

x−1
1 δ

(
x2
x1

)

= mY e
E (x

∂

∂x
Tm+r(x), x2)x

−1
1 δ

(
x2
x1

)
+mδm+r,0ℓ11Wx−1

1 δ

(
x2
x1

)

+ (m+ r)Y e
E (Tm+r(x), x2)

∂

∂x2
x−1
1 δ

(
x2
x1

)
+ δm+r,0ℓ21W

∂

∂x2
x−1
1 δ

(
x2
x1

)
,
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and

[Y e
E (Em(x), x1), Y

e
E (Er(x), x2)]

=
∑

i≥0

Y e
E (Em(x)eiEr(x), x2)

1

i!

(
∂

∂x2

)i

x−1
1 δ

(
x2
x1

)

= mY e
E (x

∂

∂x
Em+r(x), x2)x

−1
1 δ

(
x2
x1

)
+mδm+r,0ℓ31Wx−1

1 δ

(
x2
x1

)

+ (m+ r)Y e
E (Em+r(x), x2)

∂

∂x2
x−1
1 δ

(
x2
x1

)
+ δm+r,0ℓ41W

∂

∂x2
x−1
1 δ

(
x2
x1

)
.

Similar as in the proof of Theorem 2.12 we get that W is a φ-coordinated
module with

YW ((Tm)−11, x) = Tm(x) and YW ((Em)−11, x) = Em(x) for m ∈ Z.

On the other hand, we have the following statement.

Theorem 4.5. Let W be a φ-coordinated V
L̂∗(ℓ1234, 0)-module. Then W

is a restricted L∗-module of level ℓ1234 with Tm(x) = YW ((Tm)−11, x), and
Em(x) = YW ((Em)−11, x) for m ∈ Z.

Proof. For m, r ∈ Z, since Y ((Tm)−11, x) = Tm(x), Y ((Em)−11, x) =
Em(x), with (4.5) and (4.6), by using (2.1) we see that

(x1 − x2)
2[Y ((Tm)−11, x1), Y ((Er)−11, x2)] = 0,

(x1 − x2)
2[Y ((Em)−11, x1), Y ((Er)−11, x2)] = 0.

Note that for m, r ∈ Z, i ≥ 0

((Tm)−11)i(E
r)−11 = (Tm)i(E

r)−11 = [Tm ⊗ ti, Er ⊗ t−1]1

= (ri +m)Tm+r ⊗ ti−2
1+mδm+r,0δi,0ℓ11+ iδm+r,0δi−1,0ℓ21.

and

((Em)−11)i(E
r)−11 = (Em)i(E

r)−11 = [Em ⊗ ti, Er ⊗ t−1]1

= (ri +m)Em+r ⊗ ti−2
1+mδm+r,0δi,0ℓ31+ iδm+r,0δi−1,0ℓ41.

By Proposition 5.9 of [28], we have

[YW ((Tm)−11, x1), YW ((Er)−11, x2)]

= Resx0x
−1
1 δ

(
x2e

x0

x1

)
x2e

x0YW (Y (Tm, x0)E
r, x2)

= mYW ((Tm+r)−21, x2)δ

(
x2
x1

)
+mδm+r,0δ

(
x2
x1

)
ℓ11W

+ (m+ r)YW ((Tm+r)−11, x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)
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+ δm+r,0

(
x2

∂

∂x2

)
δ

(
x2
x1

)
ℓ21W ,

and

[YW ((Em)−11, x1), YW ((Er)−11, x2)]

= Resx0x
−1
1 δ

(
x2e

x0

x1

)
x2e

x0YW (Y (Em, x0)E
r, x2)

= mYW ((Em+r)−21, x2)δ

(
x2
x1

)
+mδm+r,0δ

(
x2
x1

)
ℓ31W

+ (m+ r)YW ((Em+r)−11, x2)

(
x2

∂

∂x2

)
δ

(
x2
x1

)

+ δm+r,0

(
x2

∂

∂x2

)
δ

(
x2
x1

)
ℓ41W ,

then we can prove as Theorem 2.13 that W is a restricted L∗-module of
level ℓ1234 with Tm(x) = YW ((Tm)−11, x), and Em(x) = YW ((Em)−11, x) for
m ∈ Z.
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ŝl2
(n, 0) in the vertex operator algebra

L
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