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Abstract. In this paper we examine the shape of a triangle by means

of a ternary operation which satisfies some properties. We prove that each
system of the shapes of triangles can be obtained by means of the field
with defined ternary operation. We give a geometric model of the shapes
of triangles on the set of complex numbers which motivate us to introduce
some geometric concepts. The concept of transfer is defined and some
interesting properties are explored. By means of transfer the concept of a
parallelogram is introduced.

1. Introduction

The concept of the shapes of triangles in the Euclidean plane is studied
in the papers listed in the references. Two triangles are of the same shape if
they are similar. More precisely, in the case of oriented triangles, the triangles
are of the same shape if they are directly similar.

In [6], it is proved that each triangle with angles A, B and C is assigned
the number ε = 9−4(sin2 A+sin2 B+sin2 C), and the whole class of mutually
similar triangles is represented by one number ε such that 0 ≤ ε ≤ 9. Equilat-
eral triangles, acute triangles, right triangles, obtuse triangles and degenerate
triangles are assigned the number 0, the numbers 0 < ε < 1, the number 1,
the numbers 1 < ε < 9, and the number 9, respectively. By means of the
number ε we “measure” the deviation of an individual class of mutually sim-
ilar triangles from equilateral triangles. In [5], the class of mutually similar
triangles is represented by a triangle from this class which is inscribed in the
unit circle in the Gauss plane. If z1, z2 and z3 are complex coordinates of
the vertices of this triangle, then the numbers σ = z1 + z2 + z3 and R = |σ|2,
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Y = |Im(σ3)| are assigned to the considered class of triangles. The number
R and number Y are called scaleneness and obtuseness of the considered class
of triangles.

In [7] and [1], particular classes of mutually similar triangles, including
degenerate triangles, are mapped to the particular points inside or on the
border of a certain domain in the Euclidean plane and in this way special
classes of triangles (for example, isosceles triangles and right triangles) are
identified as subsets of this domain.

In [3] and [4], the triangle with complex coordinates a, b and c of its
vertices in the Gauss plane is assigned the number ∆ = c−a

b−a
, which is called

the shape of that triangle, and in [2], the shape of the same triangle is defined

as the number φ = 1+ζ∆
ζ+∆ , where ζ = e

2πi

3 .

In this paper, we will show that the algebraic background of the con-
cept of the shape of triangles is one ternary operation with certain properties
characterizing this concept.

2. Definition of the complete system of triangular shapes

Let Q be a given set, in which two different elements are highlighted,
which shall be labelled with 0 and 1, and let the ternary operation [ ] :
Q3 → Q, (a, b, c) 7−→ [abc] is given. For each a ∈ Q the binary operation
·a : Q2 → Q is defined by the formula

x ·a y = [xay].

We shall say that (Q, [ ]) is a complete system of the shapes of triangles if
these seven properties are satisfied:

S1. (Q, ·a) is a quasigroup for each a ∈ Q \ {0, 1}, i.e. for each x, z ∈ Q

there is a unique element y ∈ Q, and for each y, z ∈ Q there is a
unique element x ∈ Q, such that the equality x ·a y = z, i.e. the
equality [xay] = z, holds.

S2. A quasigroup (Q, ·a) is idempotent for each a ∈ Q \ {0, 1}, i.e. the
identity x ·a x = x, i.e. the identity [xax] = x, holds.

S3. Quasigroups (Q, ·a) and (Q, ·b) are mutually medial for each a, b ∈
Q \ {0, 1} i.e. the identity

(x ·a y) ·b (u ·a v) = (x ·b u) ·a (y ·b v),

i.e. identity

[[xay]b[uav]] = [[xbu]a[ybv]],

holds.
S4. The identity [x0y] = x, i.e. the identity x ·0 y = x, holds.
S5. The identity [x1y] = y, i.e. the identity x ·1 y = y, holds.
S6. The identity [0xy] = [0yx] holds.
S7. The identity [a[1b0]c] = [cba] holds.
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For every a ∈ Q the binary operation ·a shall be called a triangular

shape (a). S3 implies that the quasigroup (Q, ·a) is medial, i.e. the identity
(x ·a y) ·a (u ·a v) = (x ·a u) ·a (y ·a v) holds.

Example 2.1. If (F,+, ·) is a field and [ ] : F 3 → F a ternary operation
defined by the formula

[xay] = (1− a)x+ ay,

then (F, [ ]) is a complete system of the shapes of triangles. We will show
later that each system of the shapes of triangles can be obtained by means of
some field in this way.

In the special case when F = C is the set of complex numbers, the equality
z = [xay], i.e. z = (1− a)x+ ay, can be written in the form

z − x

y − x
= a =

a− 0

1− 0
,

which means that in the Gauss plane the triangle with the vertices x, y, z is
directly similar to the triangle with the vertices 0, 1, a, which is degenerate in
the case of a real number a. This model of the shapes of triangles motivated
us to define this concept and introduce geometry-related terminology.

3. Transfers

Let (Q, [ ]) be any complete system of the shapes of triangles. The
elements of the set Q will be called points.

For any a ∈ Q\{0, 1} and any p ∈ Q the bijections defined by the formulas

(3.1) aλp(x) = p ·a x = [pax], aρp(x) = x ·a p = [xap]

will be called left transfer aλp and right transfer aρp of a quasigroup (Q, ·a),
respectively.

For any a ∈ Q \ {0, 1} and any p, q ∈ Q the bijections

aλp,q = aλq
−1 ◦ aλp, aρp,q = aρq

−1 ◦ aρp

will be called left and right a-transfer, respectively, where ◦ is the composition
of mapping.

Owing to (3.1), these definitions imply the equivalencies

(3.2) aλp,q(x) = y ⇔ aλp(x) = aλq(y) ⇔ p ·a x = q ·a y,

(3.3) aρp,q(x) = y ⇔ aρp(x) = aρq(y) ⇔ x ·a p = y ·a q.

The equation p ·a x = q ·a y, i.e. x ·a p = y ·a q, has a unique solution p or
q if three other elements are given. Because of that, we have the following
statement.

Theorem 3.1. If the points p, x, y are given, then there is a unique point

q, and if the points q, x, y are given, then there is a unique point p such that

the equality aλp,q(x) = y, i.e. aρp,q(x) = y, holds.
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Theorem 3.2. Let aλp,q = aλr,s or aρp,q = aρr,s. The equalities p = r

and q = s are equivalent.

Proof. Let aλp,q = aλr,s, let x be a given point and let

y = aλp,q(x) = aλr,s(x).

Due to (3.2), we get equalities p ·a x = q ·a y, r ·a x = s ·a y. If p = r, then we
get q ·a y = s ·ay, from where, because of S1, it follows that q = s, and if q = s,
then p ·a x = r ·a x, from where we obtain p = r. The equality aρp,q = aρr,s
can be studied similarly.

Theorem 3.3. Let a, b ∈ Q \ {0, 1}. If aλp,q(u) = bρr,s(u) for some point

u, then bλp,q = aρr,s.

Proof. Let v = aλp,q(u) = bρr,s(u). If x is any point, then let y =

bλp,q(x). Owing to (3.2) and (3.3), we get equalities p·au = q ·av, p·bx = q ·by,
u ·b r = v ·b s. Now property S3 implies

(p ·a u) ·b (x ·a r) = (p ·b x) ·a (u ·b r) = (q ·b y) ·a (v ·b s)

= (q ·a v) ·b (y ·a s) = (p ·a u) ·b (y ·a s),

from where by cancelation in a quasigroup (Q, ·b) (property S1) it follows
x·ar = y ·as, based upon (3.3), it means that y = aρr,s(x) and then bλp,q(x) =

aρr,s(x) for each point x. Therefore bλp,q = aρr,s.

Corollary 3.4. Let a ∈ Q\{0, 1}. If aλp,q(u) = aρr,s(u) for some point

u, then aλp,q = aρr,s.

Theorem 3.5. Let a, b ∈ Q \ {0, 1} and if any three of four points p, q, r

and s are given, then the remaining point of these points is uniquely deter-

mined such that bλp,q = aρr,s.

Proof. Let the points p, q be given. Let the point u be given and let
v = aλp,q(u). According to Theorem 3.1, there is a point s if the point r

is given and there is a point r if the point s is given such that bρr,s(u) = v

in both cases. Therefore, we have aλp,q(u) = bρr,s(u), then Theorem 3.3
implies bλp,q = aρr,s. Now, let bλp,q = aρr,s′ or bλp,q = aρr′,s. Then we get

aρr,s = aρr,s′ , i.e. aρr,s = aρr′,s, and by Theorem 3.2 there follows s′ = s, i.e.
r′ = r. Analogously, it can be proved that with the given points p, r, s and
q, r, s, the point q and the point p are uniquely determined, respectively, so
that bλp,q = aρr,s.

Theorem 3.6. Let a ∈ Q \ {0, 1}. If aλp,q(u) = aλr,s(u) for any point u,

then aλp,q = aλr,s. If aρp,q(u) = aρr,s(u) for any point u, then aρp,q = aρr,s.

Proof. Suppose v = aλp,q(u) = aλr,s(u) and let e be a given point. Ac-
cording to Theorem 3.1, there is a point f such that aρe,f (u) = v. From

aλp,q(u) = aρe,f (u) and Corollary 3.4 there follows aλp,q = aρe,f . Now
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aλr,s(u) = aρe,f (u) and the same corollary imply aλr,s = aρe,f . Hence

aλp,q = aλr,s. The second statement may be proved analogously.

Theorem 3.7. Let a ∈ Q \ {0, 1}. For any three of the points p, q, r and

s there is a unique fourth point such that aλp,q = aλr,s. For any three of the

points p, q, r and s there is a unique fourth point such that aρp,q = aρr,s.

Proof. Let the points p, q be given. Let u be a given point and suppose
that v = aλp,q(u). If the point r is given, then according to Theorem 3.1,
there is a point s, and if the point s is given, then there is a point r such that
the equality aλr,s(u) = v holds in both cases. Therefore we have aλp,q(u) =

aλr,s(u) and then aλp,q = aλr,s follows from Theorem 3.6. Suppose that

aλp,q = aλr,s′ or aλp,q = aλr′,s. Then we get aλr,s = aλr,s′ , i.e. aλr,s = aλr′,s.
Then by Theorem 3.2 there follows s′ = s, i.e. r′ = r. Analogously, it can be
proved that with the given points p, r, s and q, r, s, we uniquely determine the
points q and p, respectively, such that aλp,q = aλr,s. Similarly, we can prove
the second statement of the theorem.

If a, b ∈ Q \ {0, 1} are any points, then by Theorem 3.5 each right a–
transfer is also left b–transfer, and each left b–transfer is also right a–transfer.
Thus for each a ∈ Q \ {0, 1} all left and right a–transfers are simply called
transfers.

Theorem 3.8. The equalities aλp,q(r) = s and aρr,s(p) = q are equiva-

lent.

Proof. By (3.2) and (3.3), both equalities are equivalent to p ·a r = q ·a s.

Theorem 3.9. The equalities aλp,q = aλr,s and aρp,q = aρr,s are equiva-

lent.

Proof. Suppose that aλp,q = aλr,s. Let e, g be any points and f =

aλp,q(e) = aλr,s(e), h = aρp,q(g). By Theorem 3.8, these equalities imply
the equalities aρe,f (p) = q, aρe,f (r) = s, aλg,h(p) = q. The third and the
first of these equalities imply by Theorem 3.3 the equality aλg,h = aρe,f ,
and the second equality implies aλg,h(r) = s. Finally, by Theorem 3.8, we
have aρr,s(g) = h, which together with h = aρp,q(g), by Theorem 3.6, implies

aρp,q = aρr,s. The converse can be proved analogously.

Theorem 3.10. The equalities aλp,q = aλr,s, aρp,q = aρr,s, aλp,r = aλq,s,

aρp,r = aρq,s are equivalent.

Proof. First we notice from Theorem 3.9 that it is sufficient to prove the
equivalence of the first and the fourth equality. Suppose that the first equality
is true. Let e, g be given points and f = aλp,q(e) = aλr,s(e), h = aρp,r(g). By
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(3.2) and (3.3) these equalities imply p ·a e = q ·a f , r ·a e = s ·a f , g ·a p = h ·a r,
and by property S3 therefrom follows

(g ·a q) ·a (r ·a f) = (g ·a r) ·a (q ·a f) = (g ·a r) ·a (p ·a e) = (g ·a p) ·a (r ·a e)

= (h ·a r) ·a (s ·a f) = (h ·a s) ·a (r ·a f).

Thus by (3.3) we obtain g ·a q = h ·a s, i.e. aρq,s(g) = h, which together
with h = aρp,r(g) implies aρp,r = aρq,s by Theorem 3.6. The converse can be
proved analogously.

Theorem 3.11. Let T be a set of all transfers. Then (T, ◦) is a commu-

tative group, which acts strictly transitively on the set Q.

Proof. Let τ1, τ2 be any transfers and p a point. By Theorems 3.5 or
3.7 there are points q, r such that τ1 = aλp,q, τ2 = aλp,r and the point s

such that τ1 = aλr,s. Therefore aλp,q = aλr,s, and by Theorem 3.10 it follows

aλp,r = aλq,s and then τ2 = aλq,s. Now we have

τ2 ◦ τ1 = aλq,s ◦ aλp,q = aλs
−1 ◦ aλq ◦ aλq

−1 ◦ aλp = aλs
−1 ◦ aλp = aλp,s,

so τ2 ◦ τ1 is a transfer. On the other hand, we get analogously

τ1 ◦ τ2 = aλr,s ◦ aλp,r = aλp,s = τ2 ◦ τ1.

aλp,p is the identity for any point p. For any two points p, q the inverse of a
transfer aλp,q is a transfer aλq,p because of

aλq,p ◦ aλp,q = aλp,p.

For any two points u, v there is a unique transfer τ such that τ(u) = v.
Indeed, by Theorem 3.1 for a given point p there is a unique point q such that

aλp,q(u) = v. If τ is any transfer such that τ(u) = v, then by Theorems 3.3
or 3.6 there follows τ = aλp,q.

Corollary 3.12. Let a ∈ Q \ {0, 1} be a given point. For every point

p, q and r the following equalities hold:

aλp,q ◦ aλq,r = aλq,r ◦ aλp,q = aλp,r,

aρp,q ◦ aρq,r = aρq,r ◦ aρp,q = aρp,r.

Corollary 3.13. For every point p, q the following equalities hold:

aλp,q
−1 = aλq,p, aρp,q

−1 = aρq,p.

Theorem 3.14. Any two of the three equalities

aλp,r(e) = f, aλq,s(g) = h, aλp·aq,r·as(e ·a g) = f ·a h

imply the remaining one. An analogous statement holds for the right instead

of left transfers.
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Proof. Because of (3.2), the equalities are equivalent successively to the
equalities

p ·a e = r ·a f, q ·a g = s ·a h, (p ·a q) ·a (e ·a g) = (r ·a s) ·a (f ·a h).

By property S3 the last equality is equivalent to (p·ae)·a(q·ag) = (r·af)·a(s·ah)
and the statement of the theorem is now obvious because of property S1.

Theorem 3.15. Any two of the three equalities

tλa,c = tλe,g,(3.4)

tλb,d = tλf,h,(3.5)

tλa·tb,c·td = tλe·tf,g·th(3.6)

imply the remaining one. An analogous statement holds for the right instead

of left transfers.

Proof. Suppose that (3.4) and (3.5) hold and let p¸ and r be given
points. Set q = tλa,c(p) = tλe,g(p), s = tλb,d(r) = tλf,h(r). According to

tλa,c(p) = q, tλb,d(r) = s, namely tλe,g(p) = q, tλf,h(r) = s, by Theorem 3.14
we obtain tλa·tb,c·td(p ·t r) = q ·t s, i.e. tλe·tf,g·th(p ·t r) = q ·t s. However, by
Theorem 3.6, the equality tλa·tb,c·td(p ·t r) = tλe·tf,g·th(p ·t r) implies equality
(3.6). Now suppose that (3.4) and (3.6) hold and let p, u be given points. Set
q = tλa,c(p) = tλe,g(p), v = tλa·tb,c·td(u) = tλe·tf,g·th(u). Then there exist
the points r, s such that p ·t r = u, q ·t s = v. By Theorem 3.14, the equalities

tλa,c(p) = q, tλa·tb,c·td(p ·t r) = q ·t s and tλe,g(p) = q, tλe·tf,g·th(p ·t r) = q ·t s
imply that tλb,d(r) = s and tλf,h(r) = s, respectively. However, by Theorem
3.6, the equality tλb,d(r) = tλf,h(r) implies equality (3.5). Implication (3.5)
& (3.6) ⇒ (3.4) can be proved analogously.

4. Parallelograms

We say that the points a, b, c, d form a parallelogram and write Par(a, b,
c, d) if there exists a transfer, which maps the points a and d successively to
the points b and c. If by τa,b we denote a transfer mapping the point a to the
point b, then the equivalence

Par(a, b, c, d) ⇔ τa,b(d) = c

holds.

Theorem 4.1. Par(a, b, c, d) holds if and only if tλa,b = tλd,c for some

point t.

Proof. By Theorem 3.3 each transfer is a right t–transfer. Then
Par(a, b, c, d) is equivalent to the fact that there exist the points p, q such
that tρp,q(a) = b, tρp,q(d) = c, i.e. by (3.3) it follows a ·tp = b ·t q, d ·t p = c ·t q,
i.e. by (3.2) it follows tλa,b(p) = q, tλd,c(p) = q, which is by Theorem 3.6
equivalent to tλa,b = tλd,c.
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Corollary 4.2. If the point t is given, the statement Par(a, b, c, d) holds
if and only if there exist the points p, q such that

a ·t p = b ·t q, d ·t p = c ·t q.

Corollary 4.3. If the statement Par(a, b, c, d) holds, then the equalities

a ·t p = b ·t q, d ·t p = c ·t q are equivalent.

Corollary 4.4. Let Par(a, b, c, d). If one of the points p, q satisfying

a ·t p = b ·t q, d ·t p = c ·t q is given, then the second one is uniquely determined.

Theorems analogous to Theorem 4.1 and Corollaries 4.2–4.4 are the fol-
lowing four statements.

Theorem 4.5. Par(a, b, c, d) holds if and only if tρa,b = tρd,c for some

point t.

Corollary 4.6. With the given point t the statement Par(a, b, c, d) holds
if and only if there exist the points p, q such that

p ·t a = q ·t b, p ·t d = q ·t c.

Corollary 4.7. Let Par(a, b, c, d). The equalities p·ta = q·tb, p·td = q·tc
are equivalent.

Corollary 4.8. Let Par(a, b, c, d). If one of the points p, q, such that

p ·ta = q ·t b, p ·td = q ·t c, is given, then the second one is uniquely determined.

Theorem 4.9. The structure (Q,Par) is the parallelogram space, i.e.

the following properties are satisfied:

P1. For any three points a, b and c there is a unique point d such that

Par(a, b, c, d).
P2. Par(a, b, c, d) implies Par(e, f, g, h), where (e, f, g, h) is any cyclic

permutation of (a, b, c, d) or (d, c, b, a).
P3. Par(a, b, c, d) and Par(c, d, e, f) imply Par(a, b, f, e).

Proof. Property P1 is an immediate consequence of Theorems 4.1 and
3.7. Suppose Par(a, b, c, d) holds. Then, by Theorem 4.1, tλa,b = tλd,c holds
for some point t. To prove property P2 it is sufficient to prove Par(d, c, b, a)
and Par(b, c, d, a), i.e. the equalities tλd,c = tλa,b and tλb,c = tλa,d. However,
by Theorem 3.10, tλa,b = tλd,c implies tλa,d = tλb,c. Let us prove now
property P3. By Theorem 4.1 Par(a, b, c, d) and Par(c, d, e, f) imply tλa,b =

tλd,c and tλc,d = tλf,e, i.e. by Corollary 3.13 tλd,c = tλe,f . Therefore we have

tλa,b = tλe,f , i.e. by Theorem 4.1, the statement Par(a, b, f, e).

Theorem 4.10. For any point a, b and c Par(a, a, b, c) holds if and only

if b = c.

Proof. It is the consequence of the equivalence tλa,a = tλc,b ⇔ b = c

from Theorem 3.2.
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The next result immediately follows from property P2.

Corollary 4.11. Par(a, a, b, b) and Par(a, b, b, a) hold for any two

points a, b.

Theorem 4.12. Par(a, b, d, e) and Par(b, c, e, f) imply Par(c, d, f, a).

Proof. By P1 there exists a point g such that Par(a, b, c, g). By P3 we
obtain now the implications

Par(c, g, a, b) & Par(a, b, d, e) ⇒ Par(c, g, e, d),

Par(g, a, b, c) & Par(b, c, e, f) ⇒ Par(g, a, f, e),

Par(c, d, e, g) & Par(e, g, a, f) ⇒ Par(c, d, f, a).

We have used P2 here several times.

Theorem 4.13. Any two of three statements Par(a, b, c, d), Par(e, f, g, h)
and Par(a ·t e, b ·t f, c ·t g, d ·t h) imply the remaining statement for any point

t.

Proof. The statement immediately follows from Theorem 3.15.

By (3.1) from Theorem 4.13 we get the following statement.

Corollary 4.14. Par(a, b, c, d) and Par(e, f, g, h) imply

Par([ate], [btf ], [ctg], [dth])

for any point t.

5. Addition and multiplication of points

Let 0 and 1 be the points (from Introduction) satisfying S4 – S7. For any
two points a, b we will define sum a+ b by the equivalence

(5.1) c = a+ b ⇔ Par(0, a, c, b).

It means that Par(0, a, a+ b, b) holds for any two points a, b.
Let us consider the function ϕ mapping the set of all transfers T into the

set of all points Q defined by ϕ(tλ0,a) = a for some point t. By Theorems
3.5 and 3.7 for each transfer τ there is a unique point a such that τ = tλ0,a

and hence ϕ is a bijection. Now let tλ0,a and tλ0,b be any two transfers. As
Par(0, a, a + b, b), by Theorem 4.1 it follows tλ0,a = tλb,a+b. According to
Corollary 3.12, we get successively

ϕ(tλ0,a ◦ tλ0,b) = ϕ(tλb,a+b ◦ tλ0,b) = ϕ(tλ0,a+b) = a+ b = ϕ(tλ0,a)+ϕ(tλ0,b),

so ϕ is an isomorphism of groupoids (T, ◦) and (Q,+). Then by Theorem
3.11 we obtain the following statement.

Theorem 5.1. (Q,+) is a commutative group with the neutral element

0, which is isomorphic to group (T, ◦).
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Theorem 5.2. The statements Par(a, b, c, d) and a+ c = b+d are equiv-

alent.

Proof. From Par(0, a, a + c, c) and Par(a, b, c, d) by Theorem 4.12 it
follows Par(b, a + c, d, 0), i.e., Par(b, 0, d, a + c) by P2. However, from
Par(0, b, b+d, d), by P2 we get Par(b, 0, d, b+d) and by P1 we get a+c = b+d.
Conversely, if a+ c = b+ d, then Par(0, a, a+ c, c) and Par(0, b, b+ d, d) can
be written in the form Par(a, 0, c, a+ c) (by P2) and Par(0, b, a+ c, d), which
by Theorem 4.12 implies Par(b, c, d, a), i.e. Par(a, b, c, d) by P2.

On the set Q we are going to define multiplication · by the formula

(5.2) a · b = [0ab].

Theorem 5.3. (Q\{0}, ·) is a commutative group with the neutral element

1 and for each point a there holds a · 0 = 0.

Proof.

(5.3) a · (b · c) = b · (a · c)

holds for each a, b and c ∈ Q. Indeed, we get successively

a · (b · c)
(5.2)
= [0a[0bc]]

S2
= [[0b0]a[0bc]]

S3
= [[0a0]b[0ac]]

S2
= [0b[0ac]]

(5.2)
= b · (a · c).

The equality

(5.4) a · b = b · a

holds by S6 for each a, b ∈ Q. Now, for each a, b, c ∈ Q

(a · b) · c
(5.4)
= c · (a · b)

(5.3)
= a · (c · b)

(5.4)
= a · (b · c)

holds. For each a ∈ Q we have

1 · a
(5.2)
= [01a]

S5
= a.

For each a ∈ Q \ {0, 1}, by S1 there exists a point denoted by a−1, such that
[0aa−1] = 1, i.e. by (5.2) a · a−1 = 1. Moreover, 1−1 = 1 since 1 · 1 = 1. For
each a ∈ Q

a · 0
(5.2)
= [0a0]

S2
= 0

holds.

Theorem 5.4. (Q,+, ·) is a field with the additive identity 0 and the

multiplicative identity 1.

Proof. By Theorems 5.1 and 5.3 it is sufficient to prove that for each
a, b and c ∈ Q it holds

(5.5) a · (b+ c) = a · b+ a · c.

However, as a ∈ Q\{0, 1}, then Par(0, 0, 0, 0), which is true by Corollary 4.11,
and Par(0, b, b+c, c) by Corollary 4.14 imply Par([0a0], [0ab], [0a(b+c)], [0ac]),
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i.e. by S2 and (5.2) Par(0, a · b, a · (b + c), a · c), which by (5.1) imply (5.5).
For a = 0 or a = 1 equality (5.5) is obvious.

Theorem 5.5. The formula

(5.6) [abc] = (1− b)a+ b · c

holds for all points a, b and c.

Proof. First, let b ∈ Q\{0, 1}. By Corollary 4.11 we have Par(0, 1, 1, 0)
and Par(0, 0, 1, 1), which by Corollary 4.14 imply Par([0b0], [1b0], [1b1], [0b1]),
and by S2 it follows (5.2) Par(0, [1b0], 1, b). Then by (5.1) it holds [1b0]+b = 1,
namely the equality

(5.7) [1b0] = 1− b.

By Corollary 4.11 there hold Par(0, a, a, 0) and Par(0, 0, c, c). By Corol-
lary 4.14, these imply Par([0b0], [ab0], [abc], [0bc]), namely by S2 and S7
Par(0, [0[1b0]a], [abc], [0bc]), which, by (5.1) and (5.2), can be written in the
form

[abc] = [1b0] · a+ b · c,

and by (5.7) in the form (5.6). For b = 1 or b = 0 equality (5.6) is obvious
since by S5 we have [a1c] = c, and by S4 we get [a0c] = a.

From Theorem 5.5 it follows that each system of triangle shapes can be
obtained from some field in the manner described in the example.
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