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Abstract. We determine the occurrence and explicitly describe the
theta lifts on all levels of all the irreducible generic representations of the
odd orthogonal group defined over a local nonarchimedean field of charac-
teristic zero.

1. Introduction

In this paper, we investigate the representation theory of the odd-orthogo-
nal group O(V ) defined over a nonarchimedean local field F of characteristic 0.
Our main results describe the theta correspondence for generic representations
of O(V ).

To explain the contents of this paper in detail, let us briefly recall the
basic setting of theta correspondence. Let Vm be a quadratic space of odd
dimension m over F (i.e., a space endowed with a non-degenerate symmetric
F-bilinear form). The odd orthogonal group is the corresponding group of
isometries, denoted O(Vm). In order to introduce theta correspondence we
need to consider another group, the so-called metaplectic group. To define
it, we let Wn be a symplectic space of (even) dimension n over F. The
corresponding group in this case is the symplectic group Sp(Wn). We define
the metaplectic group Mp(Wn) as the (unique) non-trivial central extension

1 → {±1} → Mp(Wn) → Sp(Wn) → 1

(see section 2.1). The groups O(Vm) and Mp(Wn) form a dual pair inside a
larger metaplectic group Mp(Wmn). Fixing a non-trivial additive character
ψ of F, we obtain the so-called Weil representation of the metaplectic group
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Mp(Wmn). Restricting this representation to O(Vm)×Mp(Wn) we obtain the
Weil representation ωm,n of this dual pair.

For any π ∈ Irr(O(Vm)) we may look at the maximal π-isotypic quotient
of ωm,n. We denote it Θ(π,Wn) and call it the full theta lift of π to V . This
representation, when non-zero, has a unique irreducible quotient, denoted
θ(π,Wn)—the small theta lift of π. This basic fact, called the Howe duality
conjecture, was first formulated by Howe in [14], proven by Waldspurger in
[34] (for odd residue characteristic) and by Gan and Takeda ([8]) in general.

The Howe duality establishes a map π 7→ θ(π) which is called the theta
correspondence. It is an exceptionally useful tool in the representation theory
of p-adic groups. However, its importance also stems from number-theoretic
considerations, since the global variant of theta correspondence can be used for
constructing automorphic representations. For this reason, theta correspon-
dence has been an area of active research for the last forty years. The study of
theta correspondence was initiated by Roger Howe in [14, 15] and continued
by Kudla in [16, 17], Rallis in [27], Kudla-Rallis in [18], Moeglin-Vigneras-
Waldspurger in [20], Waldspurger in [34] and many others. In recent years
this topic has seen a major revival of interest, with many new developments
and many old problems being resolved. However, the two main problems con-
cerning theta lifts still remain open: determining when Θ(π,Wn) is non-zero
and identifying θ(π,Wn) explicitly. The main contribution of this paper is
the complete resolution of these problems when π is a generic representation
of the odd orthogonal group.

To explain our results, we first recall the definition of generic represen-
tations (see section 2.7 for additional details). Let B = TU be the standard
Borel subgroup of O(Vm). Every non-trivial additive character ψ of F induces
a non-degenerate character χ of U . We say that a representation (π, V ) of
O(Vm) is χ-generic if there is a non-trivial linear functional lπ : V → C such
that

lπ(π(u)v) = χ(u)lπ(v).

for all v ∈ V and u ∈ U . If χ is fixed, we often say simply that π is generic. An
important result concerning generic representations is the so-called standard
module conjecture, proven by Muić in [21]. It asserts that any generic repre-
sentation of Irr(O(Vm)) is isomorphic to its standard module. This allows us
to prove the following (cf. Theorem 4.1).

Theorem 1.1. The first non-zero lift of a generic representation π ∈
Irr(O(Vm)) occurs at n = m− 1.

To interpret this theorem, we recall a basic fact about theta correspon-
dence in towers (cf. Proposition 3.3): if Θ(π,Wn) 6= 0, then Θ(π,Wn+2) 6= 0.
Thus, to answer the question of occurrence, it is enough to know the first non-
zero occurrence of π, which is given by the above theorem. Note also that any
π ∈ Irr(O(Vm)) comes paired with π⊗det. It is natural to consider the lifts of
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these two representations simultaneously. The above theorem states that one
of the two representations {π, π ⊗ det} first appears on level n = m− 1. The
conservation relation (see §3.2) then implies that the other must first appear
when n = m+1. To differentiate the two, we use the results of Gan and Savin
from [7].

The second problem, i.e. that of explicitly describing the theta lifts
θ(π,Wn) is resolved by the following theorem (see Theorem 5.1). To sim-
plify our calculations we modify the notation: for π ∈ Irr(O(Vm) we denote
θ(π,Wn) by θl(π), where l = m− n− ǫ. We have the following result.

Theorem 1.2. Let π be an irreducible generic representation of Irr(O(Vm))
isomorphic to its standard module,

χW δrν
sr × · · · × χW δ1ν

s1 ⋊ π0.

Let l be an even integer such that θl(π) 6= 0. Then

χV δrν
sr × · · · × χV δ1ν

s1 ⋊ θl(π0) ։ θl(π).

Furthermore, if θl(π0) = L(χV δ
′
kν

s′k×· · ·×χV δ
′
1ν

s′1⋊τ), then θl(π) is uniquely
determined by

θl(π) = L(χV δrν
sr , . . . , χV δ1ν

s1 , χV δ
′
kν

s′k , . . . , χV δ
′
1ν

s′1 ; τ).

This paper is the continuation of that of M. Hanzer and the author [4].
Together, these two papers provide a complete description of theta lifts of
generic representations for the dual pair (Mp(Wn),O(Vm)). Analogous results
were obtained in [3] for the dual pair (Sp(Wn),O(Vm)) when m is even. The
results and techniques we use in this paper are similar to those of [3] and [4].
We rely heavily on Jacquet module computations similar to those utilized by
Muić in [22, 24, 25]. We also use the results of Muić from [21] and Hanzer
from [12] on generic representations, the results of Atobe and Gan from [2]
on the lifts of tempered representations and those of Gan and Savin from [7]
on the theta correspondence for the dual pair (Mp(Wn),O(Vm)).

Let us briefly describe the contents of this paper. In Section 2 we go
over the basic notation and the results regarding the representation theory
of the (quasi-split) classical p-adic groups. In Section 3 we review the main
results concerning theta correspondence in general. We also derive a number
of useful corollaries (3.6, 3.7, 3.8) of Kudla’s filtration (Theorem 3.4) which we
use in subsequent sections. Section 4 contains the proof of Theorem 4.1 which
determines the first occurrence index. The proof relies on Kudla’s filtration
and the standard module conjecture to reduce the question of occurrence to
the case of tempered representations, which is known by the work of Atobe
and Gan ([2]). In the fifth section we state our main result and prove it in
some special cases. Section 6 contains a number of auxiliary technical results
based on the work of Zelevinsky ([35]). These results are used in Section 7,
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which contains the rest of the proof of Theorem 5.1, providing a complete
description of the lifts.

2. Preliminaries

2.1. Groups. Let F be a nonarchimedean local field of characteristic 0 and
let | · | be the absolute value on F (normalized as usual).

All the groups considered in this paper will be defined over F. For ǫ = ±1
fixed, we let

{
Wn = a (−ǫ)-Hermitian space of dimension n,

Vm = an ǫ-Hermitian space of dimension m.

When ǫ = 1, this means that Wn is symplectic, whereas Vm is a quadratic
space. In this case we denote by Sp(Wn) the symplectic group (i.e., the
group of isometries ofWn) and we define the corresponding metaplectic group
Mp(Wn) as the unique non-trivial central extension

1 → {±1} → Mp(Wn) → Sp(Wn) → 1

with Rao’s cocycle ([28]) used to define the extension. Although Mp(Wn)
is not a linear group, it inherits a number of structural properties from the
symplectic group—most importantly, we can define the standard parabolic
subgroups (§2.3). For detailed accounts of the structural theory of the meta-
plectic group we refer to [17, 28, 9, 13]. Set

H(Vm) =

{
O(Vm) (the orthogonal group) if ǫ = 1,

Mp(Vm) (the metaplectic group) if ǫ = −1,

and define G(Wn) similarly by switching the roles of the groups. These groups
will also be denoted Hm and Gn. Furthermore, let GL(X) denote the general
linear group of a vector space X over F. Note that all the groups considered
here are totally disconnected locally compact topological groups.

2.2. Witt towers. Every Hermitian space Vm has a Witt decomposition

Vm = Vm0 + Vr,r (m = m0 + 2r),

where Vm0 is anisotropic and Vr,r is split (i.e. a sum of r hyperbolic planes).
The space Vm0 is unique up to isomorphism, and so is the number r > 0,
which is called the Witt index of Vm. The collection of spaces

V = {Vm0 + Vr,r : r > 0}

is called a Witt tower. Since

det(Vm0+2r) = (−1)r det(Vm0) ∈ F×/(F×)2,

the quadratic character

χV (x) = (x, (−1)
m(m−1)

2 det(V ))F
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is the same for all the spaces V in a single Witt tower (see [17, §V.1]; here
(·, ·)F denotes the Hilbert symbol).

Remark 2.1. In this paper we consider Witt towers of odd dimension;
this implies m0 = dim(Vm0) ∈ {1, 3}. However, if dim(Vm0) = 3, the orthog-
onal groups in the corresponding tower are not quasi-split, and thus have no
generic representations. Consequently, we assume m0 = 1 in the rest of the
paper.

The symplectic spaces Wn can be organized in a Witt tower in the same
way. This case is somewhat simpler: since the only anisotropic symplectic
space is the trivial one, there is only one tower of symplectic spaces. The
corresponding character χW is trivial.

2.3. Parabolic subgroups. Let Vm be a Hermitian space with a non-
degenerate form (·, ·) and let Vm0 ⊕ Vr,r be its Witt decomposition. We can
choose a basis {u1, . . . , ur, u

′
1, . . . , u

′
r} for Vr,r such that (u1, u

′
j) = δij . Such a

basis determines a choice of a standard minimal parabolic (i.e. Borel, ifH(Vm)
is quasi-split) subgroup. Furthermore, for any t 6 r we can decompose

Vm = Ut ⊕ Vm−2t ⊕ U ′
t

where Ut = span{u1, . . . , ut} and U ′
t = span{u′1, . . . , u

′
t} are isotropic sub-

spaces of Vm. The subgroup Pt of O(Vm) which stabilizes Ut is a maximal
parabolic subgroup; it has a Levi decomposition Pt = MtNt, with Levi com-
ponent M = GL(Ut)×O(Vm−2t) (we identify GL(Ut) with GLt(F)).

By letting t vary, we obtain a set {Pt : t ∈ {1, . . . , r}} of standard maximal
parabolic subgroups. By further partitioning t, we get the rest of the stan-
dard parabolic subgroups—generally, the Levi factor of a standard parabolic
subgroup is of the form

GLt1(F)× · · · ×GLtk(F)×O(Vm−2t) (t = t1 + · · ·+ tk).

The standard parabolic subgroups of Sp(Wn) are constructed in the same

way. For any parabolic subgroup Q of Sp(Wn) we denote by Q̃ its preimage
in Mp(Wn). This way, we obtain the set of standard parabolic subgroups of

Mp(Wn). From the Levi decomposition Q =MN we get Q̃ = M̃N ′ where N ′

is the image in Mp(Wn) of the unique monomorphism from N to Mp(Wn). In

this case M̃ is not a product of GL factors and a metaplectic group of smaller
rank, but there is an epimorphism

G̃Lt1(F)× · · · × G̃Ltk(F)×Mp(Wn′ ) ։ M̃.

Here G̃Lt(F) denotes the twofold cover of GLt(F ), i.e. GLt(F ) × {±1} with
multiplication given by (g1, ǫ1)(g2, ǫ2) = (g1g2, ǫ1ǫ2(det g1, det g2)F). This al-

lows us to view any representation π of M̃ as a representation ρ1⊗· · ·⊗ρk⊗σ

of G̃Lt1(F)× · · · × G̃Ltk(F)×Mp(Wn′), where ρ1, . . . , ρk and σ are all either
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trivial or non-trivial when restricted to µ2 = {±1}. Further information can
be found in [13] and [31, Chapter 4].

We denote the maximal standard parabolic subgroups of H(Vm) and
G(Wn) by Pt and Qt, respectively.

2.4. Representations. Let G be a reductive p-adic group, such as O(Vm).
By a representation of G we mean a pair (π, V ) where V is a complex vector
space and π is a homomorphism G → GL(V ). With V∞ we denote the sub-
space of V comprised of all the smooth vectors, i.e. those having an open stabi-
lizer in G. If V = V∞, we say that the representation (π, V ) is smooth. Unless
otherwise stated, we will assume that all the representations are smooth; the
category of all smooth complex representations of G will be denoted A(G).
The set of equivalence classes of smooth irreducible representations of G will
be denoted Irr(G). All these concepts also apply in case G is the metaplectic
group. In this paper, we only consider genuine representations of the meta-
plectic group, i.e. those which do not factor through the underlying symplectic
group.

For each parabolic subgroup P = MN of G we have the (normalized)

induction and localization (Jacquet) functors, IndG
P : A(M) → A(G) and

RP : A(G) → A(M). These are connected by the standard Frobenius reci-
procity

HomG(π, Ind
G
P (π

′)) ∼= HomM (RP (π), π
′)

and by the second (Bernstein) form of Frobenius reciprocity,

HomG(Ind
G
P (π

′), π) ∼= HomM (π′, RP (π))

(here P =MN is the parabolic subgroup opposite to P ).
If P = MN is a parabolic subgroup of O(Vm) with Levi factor M =

GLt1(F)× · · · ×GLtk(F)×O(Vm−2t), we write

τ1 × · · · × τk ⋊ π0

for Ind
O(V )
P (τ1⊗· · ·⊗τk⊗π0), where τi is a representation of GLti(F) and π0 is

a representation of O(Vm−2t) (with t = t1+· · ·+tk). We use the same notation
to denote the genuine representation of Mp(Wn) induced from τ1, . . . , τk and
a genuine representation π0 of Mp(Wn−2t). This notation implies that the
GL-representations τi are lifted to representations of the respective double
covers which are all genuine; see Section 4.1 of [13] or Section 4.1 of [31].

To obtain a complete list of irreducible representations of H(Vm), we
use the Langlands classification: let δi ∈ GLti(F), i = 1, . . . , r be irreducible
discrete series representations, and let τ be an irreducible tempered represen-
tation of H(Vm−2t) (for t = t1 + · · ·+ tr). Any representation of the form

νsr δr × · · · × νs1δ1 ⋊ τ,

where sr > · · · > s1 > 0 (and where ν denotes the character |det| of
the corresponding general linear group) is called a standard representation
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(or a standard module). It possesses a unique irreducible quotient, the so-
called Langlands quotient, denoted L(νsrδr × · · · × νs1δ1 ⋊ τ). Occasionally,
we will also write L(νsrδr, . . . , ν

s1δ1; τ), implying that the representations
{νsrδr, . . . , ν

s1δ1} are to be sorted decreasingly with respect to si’s before
taking the quotient. Conversely, every irreducible representation can be rep-
resented as the Langlands quotient of a unique standard representation. In
this way, we obtain a complete description of Irr(H(Vm)). We note that the
proof of the Langlands classification in cases which interest us (i.e. for O(V )
and Mp(W )) was provided by Ban and Jantzen ([5, 6]).

We will use this (quotient) form of the Langlands classification inter-
changeably with the subrepresentation form, by means of the following lemma
([2, Lemma 2.2]).

Lemma 2.2. Let P be a standard parabolic subgroup of H(Vm) with
Levi component equal to GLt1(F) × · · · × GLtr (F) ⋊ H(Vm0). Then, for
τi ∈ Irr(GLti(F)), π0 ∈ Irr(H(Vm0 )) and π ∈ Irr(H(Vm)) the following state-
ments are equivalent:

(i) π →֒ τ1 × · · · × τr ⋊ π0;
(ii) τ∨1 × · · · × τr

∨ ⋊ π0 ։ π.

Here (and in the rest of this paper) τ∨ denotes the contragredient rep-
resentation. When dealing with tempered representations, we often need the
following result of Goldberg ([10], Theorems 6.4 and 6.5)

Lemma 2.3. Let δi ∈ Irr(GLti(F)) for i = 1, . . . , k and π00 ∈ IrrH(V )
be discrete series representations. Then the induced representation δ1 × · · · ×
δk ⋊ π00 is a direct sum of mutually non-equivalent tempered representations.
It is of length 2L where L is the number of non-equivalent δi such that δi⋊π00
reduces.

This result is originally stated for the split classical groups, but it extends
to representations of the metaplectic group ([11, Theorem 3.5]) and the full
orthogonal group O(V ). The latter is a consequence of the following fact:
since O(V ) = SO(V )×{±I}, the restriction of any irreducible representation
of O(V ) to SO(V ) is also irreducible.

Remark 2.4. This connection between O(V ) and SO(V ) means that most
of our results can be stated for either one of those groups. We note that any
irreducible representation of SO(V ) extends to two irreducible representations
of O(V ), π and π ⊗ det, which differ by their central character ν ∈ {±I}.

2.5. Computing Jacquet modules. We need to compute the Jacquet mod-
ules of various representations on a number of occasions. For any π ∈
Irr(GLn(F)) we let m∗(π) denote the sum of the semi-simplifications of RP (π)
when P varies over the set of maximal standard parabolic subgroups of
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GLn(F). The basic fact due to Zelevinsky (see Section 1.7 of [35] for ad-
ditional details) is that

m∗(π1 × π2) = m∗(π1)×m∗(π2).

Furthermore, this will mostly be required in the case when π = δ([ρ, ρνk])
is an essentially square integrable representation corresponding to a segment
[ρ, ρνk] of cuspidal representations (see section 6). In that case, we have

(JM1) m∗(δ[ρ, νkρ]) =

k∑

i=−1

δ([νi+1ρ, νkρ])⊗ δ([ρ, νiρ]).

This theory was extended by Tadić to the case of classical groups in [32]. For
any π ∈ Irr(H(Vm)) we let µ∗(π) be the sum of the semi-simplifications of
RP (π) when P varies over the set of maximal standard parabolic subgroups
of H(Vm). The relevant formula is now

µ∗(δ ⋊ π) =M∗(δ)⋊ µ∗(π).

The definition of M∗ can be found in [32, Theorem 5.4], but we shall need it
here only in the special case when δ = δ([ρ, ρνk]); in this case, we have ([33,
§14])

M∗([ρ, νkρ]) =

k∑

i=−1

k∑

j=i

δ([ν−iρ∨, ρ∨])× δ([νj+1ρ, νkρ])⊗ δ([νi+iρ, νjρ]).

The above results extend in the same form to the case of the metaplectic
group ([13]).

2.6. Local Langlands Correspondence. Another way of classifying the ir-
reducible representations of H(Vm) is by means of the Local Langlands Corre-
spondence (LLC). We use it mainly to harvest the results on lifts of tempered
representations established recently by Atobe and Gan in [2]. Without go-
ing into detail, we give a brief description of the basic features of LLC; a
concise overview of the theory along with the key references can be found in
appendices A and B of [2].

The LLC parametrizes Irr(H(Vm)) by representations of the Weil-Deligne
group, WDF = WF × SL2(C) (here WF denotes the Weil group of F). More
precisely, we define Φ(H(Vm)) as a set of equivalence classes:

{
Φ(Mp(Vm)) = {φ : WDF → Sp(m,C)}/ ∼=, (m is even)

Φ(O(Vm)) = {φ : WDF → Sp(m− 1,C)}/ ∼= (m is odd).

The irreducible representations of H(Vm) are then parametrized by the so
called L-parameters, i.e., pairs of the form (φ, η), where φ ∈ Φ(H(Vm)), and
η is a character of the (finite) component group of the centralizer of Im(φ).
The set of representations which correspond to the same φ is called an L-
packet attached to φ.
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Any φ ∈ Φ(H(Vm)) can be decomposed as

φ =
⊕

n>1

φn ⊗ Sn,

where φn is a representation of WF, whereas Sn denotes the unique alge-
braic representation of SL2(C) of dimension n. Tempered representations are
parametrized by pairs (φ, η) in which φ(WF) is bounded; the discrete series
representations correspond to parameters which are bounded and multiplicity
free.

Note that, unlike φ, the choice of η is non-canonical: it depends on the
choice of a Whittaker datum of H(Vm) (see [2, Remark B.2]). This choice will
be fixed, and will correspond to the characters used in the definition of generic
representations and the Weil representation (see Remark 2.5 and section 3.1).

2.7. Generic representations. Let B = TU be the standard Borel sub-
group of O(Vm) as fixed in section 2.3. Recall that we are assuming that
O(Vm) is quasi-split (see Remark 2.1), so that the Borel subgroup is indeed
defined over F. Every non-trivial additive character ψ of F induces a non-
degenerate character χ of U (see e.g. [26, §1]). We say that a representa-
tion (π, V ) of O(Vm) is χ-generic if there is a non-trivial linear functional
lπ : V → C such that

lπ(π(u)v) = χ(u)lπ(v).

for all v ∈ V and u ∈ U .

Remark 2.5. The character χ of U will be fixed throughout our calcu-
lations; this allows us to shorten the notation: instead of χ-generic, we will
often simply refer to π being generic. Moreover, the choice of Whittaker da-
tum needed to fix the LLC in section 2.6 coincides with the one we make
here. Matching these choices has an important consequence: if (φ, η) is an
L-parameter of a χ-generic representation, then η is necessarily equal to the
trivial character, as shown by H. Atobe in Desideratum 1 of [1].

The following theorem contains the most important properties of generic
representations which we often use. The first two (established by F. Rodier in
[29]) are known as the heredity and the uniqueness of the Whittaker model,
respectively. The third one is the standard module conjecture, established by
G. Muić in [21].

Theorem 2.6. (i) If τi ∈ Irr(GLti(F)), i = 1, . . . , r are irreducible
generic representations, and π0 is an irreducible representation of
O(Vm), then τ1×· · ·×τk⋊π0 is χ-generic if and only if π0 is χ-generic.

(ii) If π0, τi ∈ Irr(GLti(F)), i = 1, . . . , r are irreducible generic representa-
tions of O(Vm), then τ1 × · · · × τk ⋊ π0 contains a unique irreducible
generic subquotient, which has multiplicity one.
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(iii) The standard module of any irreducible generic representation of O(Vm)
is itself irreducible.

Note that the (iii) can be viewed as a consequence of the so-called gen-
eralized injectivity conjecture, established by M. Hanzer in [12]. We often
combine it with the following result ([23, Introduction]).

Proposition 2.7. A standard representation of the form νsrδr × · · · ×
νs1δ1 ⋊ τ reduces if and only if one of the following holds

(i) νsiδi × νsjδj reduces for some pair i 6= j;
(ii) νsiδi × ν−sjδj

∨ reduces for some pair i 6= j;
(iii) νsi ⋊ τ reduces for some i.

3. Theta correspondence

In this section, we review the basic facts concerning the local theta cor-
respondence established in [16, 14, 34]. We also fix the notation, roughly
following [17].

3.1. Howe duality. Let ωm,n be the Weil representation of H(Vm) ×
G(Wn). The Weil representation depends on the choice of a non-trivial ad-
ditive character ψ : F → C. This character will be fixed throughout (see the
end of section 2.6 for the choice we make), so we omit it from the notation.
Similarly, if the dimensions m and n are known, we will often simply write ω
instead of ωm,n.

For any π ∈ Irr(H(Vm)), a basic structural fact about the Weil representa-
tion ([20, Chapter II, III.4]) guarantees that the maximal π-isotypic quotient
of ωm,n is of the form

π ⊗Θ(π,Wn)

for a certain smooth representation Θ(π,Wn) of G(Wn), called the full theta
lift of π. When the target Witt tower is fixed, we will often denote it by
Θ(π, n) or, more often, by Θl(π), where l = m− n− ǫ.

The key result which establishes the theta correspondence is the following:

Theorem 3.1 (Howe duality). If Θ(π,Wn) is non-zero, it possesses a
unique irreducible quotient, denoted θ(π,Wn).

Originally conjectured by Howe in [14, p. 279], it was first proven by
Waldspurger in [34] when the residual characteristic of F is different from
2, and by Gan and Takeda in [8] in general. The representation θ(π,Wn) is
called the (small) theta lift of π; like the full lift, it will also be denoted θ(π, n)
and θl(π).

For future reference, we state the following simple but useful fact from
[24, Lemma 1.1].

Lemma 3.2. For π ∈ Irr(H(Vm)) we have

Θ∨(π, n) = HomH(Vm)(ωm,n, π)∞.
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3.2. First occurrence in towers. The study of theta correspondence in
towers is motivated by the following facts (Propositions 4.1 and 4.3 of [17]).

Proposition 3.3. Let π be an irreducible representation of H(Vm).

(i) If Θ(π,Wn) 6= 0, then Θ(π,Wn+2r) 6= 0 for all r > 0.
(ii) For n large enough, we have Θ(π,Wn) 6= 0.

The above proposition implies that we can define, for any Witt tower
W = (Wn),

nW(π) = min{n > 0 : Θ(π,Wn) 6= 0}.

This number (also denoted n(π) when the choice of W is implicit) is called
the first occurrence index of π. Note that we are using the term ”index” here
to signify the dimension, although it would be more appropriate to use it for
the Witt index of the corresponding space.

An important result which helps us compute the first occurrence indices
is the so-called conservation relation. The Witt towers of quadratic spaces
can be appropriately organized into pairs, with the towers comprising a pair
denoted W+ and W− (a complete list of pairs of dual towers can be found
in [17, Chapter V]). Thus, instead of observing just one target tower, we can
simultaneously look at two of them. This way, for each π ∈ Irr(H(Vm)) we
get two corresponding first occurrence indices, n+(π) and n−(π).

If ǫ = 1 then Vm is a quadratic space, and there is only one tower of
symplectic spaces (Wn). We proceed as follows: since H(Vm) is now equal to
O(Vm), any π ∈ Irr(O(Vm)) is naturally paired with its twist, π ⊗ det. This
allows us to define

n±(π) = min{n(π′) : π′ ∈ {π, π ⊗ det} such that π′(−I) = ±id}.

We are now able to set

ndown(π) = min{n+(π), n−(π)}, nup(π) = max{n+(π), n−(π)}

regardless of whether ǫ = 1 or ǫ = −1. The conservation relation (first
conjectured by Kudla and Rallis in [19], completely proven by Sun and Zhu
in [30]) states that

nup(π) + ndown(π) = 2n− 2ǫ+ 2.

The tower in which n(π) = ndown(π) (resp. nup) is often called the going-down
(resp. going-up) tower. As we have already noted, there is only one possible
target tower when lifting from the orthogonal group. However, we still use
the tower terminology to differentiate between the two possible series of lifts,
i.e. those of π or those of π ⊗ det.

3.3. Kudla’s filtration. One of our main tools is Kudla’s filtration of
RP (ω), the Jacquet module of the Weil representation ([16, Theorem 2.8]).
We state it here (formulated as in [2, Theorem 5.1]) along with a few useful
corollaries.



432 P. BAKIĆ

Theorem 3.4. The Jacquet module RPk
(ωm,n) possesses an GLk(F) ×

H(Vm−2k)×G(Wn)-equivariant filtration

RPk
(ωm,n) = R0 ⊃ R1 ⊃ · · · ⊃ Rk ⊃ Rk+1 = 0

in which the successive quotients Ja = Ra/Ra+1 are given by

Ja = Ind
GLk×Hm−2k×Gn

Pk−a,a×Hm−2k×Qa

(
χW |detGLk−a

|λk−a ⊗ Σa ⊗ ωm−2k,n−2a

)
,

where

• λk−a = (n−m+ k − a+ ǫ)/2;
• Pk−a,a is the standard parabolic subgroup of GLk with Levi component

GLk−a ×GLa;
• Σa = C∞

c (GLa(F)), the space of locally constant compactly supported
functions on GLa(F). The action of GLa(F)×GLa(F) on Σa is given
by

[(g, h) · f ](x) = χW (det(g))χV (det(h))f(g
−1 · x · h).

If n− 2a is less than the dimension of the first (anisotropic) space in W, we
put Ra = Ja = 0.

We will often use the following proposition (see [24, Corollary 3.2], [2,
Proposition 5.2]) derived from the previous theorem:

Proposition 3.5. Assume l = m − n − ǫ > 0 and k > 0. Let
π0 ∈ Irr(Hm−2k) and let δ be an irreducible essentially square integrable rep-
resentation of GLk(F). Then the space HomGLk(F)×Hm−2k

(Ja, χW δ∨ ⊗ π0)∞,
viewed as a representation of Gn, is isomorphic to




χ−1
V δ∨ ⋊HomHm−2k

(ωm−2k,n−2k, π0)∞, if a = k,

χ−1
V Stk−1ν

k−l+1
2 ⋊ HomHm−2k

(ωm−2k,n−2k+2, π0)∞, if

a = k − 1

&

δ = Stkν
l−k
2

,

0, otherwise.

Recall that, in the above proposition, we have HomG(ω, π)∞ = Θ∨(π).
Furthermore, Stk denotes the so-called Steinberg representation of GLk(F),
the square integrable representation attached to the segment [| · |

1−k
2 , | · |

k−1
2 ]

(see the beginning of section 6).
We now list a few useful corollaries of Proposition 3.5. The first one is

Corollary 5.3 of [2]. See also [24, Corollary 3.2].

Corollary 3.6. Let π ∈ Irr(Hm), π0 ∈ Irr(Hm−2k) and let δ be an
irreducible essentially square integrable representation of GLk(F). Assume

that δ ≇ Stkν
l−k
2 , where l = m− n− ǫ. Then

χW δ ⋊ π0 ։ π
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implies

χV δ ⋊Θl(π0) ։ Θl(π).

The second corollary we state is a slight modification of the first: this
time, we are unable to obtain information about the full lift Θl(π), but we

allow the special case δ ∼= Stkν
l−k
2 .

Corollary 3.7. Let δ be an irreducible essentially square integrable rep-
resentation of GLk(F) and let π ∈ Irr(HM ), π0 ∈ Irr(Hm−2k) be such that

χW δ ⋊ π0 ։ π,

as in the preceding corollary. Then one of the following is true:

(i) χV δ ⋊Θl(π0) ։ θl(π); or
(ii) χV δ([| · |

a, | · |b−1])⋊Θl−2(π0) ։ θl(π).

Option (ii) is possible only if δ is attached to the segment [| · |a, | · |b] with

b = l−1
2 , i.e., δ ∼= Stkν

l−k
2 for some positive integer k.

Proof. According to Lemma 2.2 we have π →֒ χW δ∨ ⋊ π0, and so

Θ∨
l (π)

∼= HomHm
(ωm,n, π)∞

→֒ HomHm
(ωm,n, χW δ∨ ⋊ π0)∞

∼= HomGLk×Hm−2k
(RPk

(ωm,n), χW δ∨ ⊗ π0)∞.

We now use Kudla’s filtration to analyze RPk
(ωm,n). For each index a =

0, . . . , k we have an exact sequence

0 → Hom(Ja, χW δ∨ ⊗ π0)∞ → Hom(Ra, χW δ∨ ⊗ π0)∞

→ Hom(Ra+1, χW δ∨ ⊗ π0)∞.

Since we know, by Proposition 3.5, that the space Hom(Ja, χW δ∨ ⊗ π0)∞ is
trivial for a = 0, . . . , k − 2, this leads to an inclusion

HomGLk×Hm−2k
(RPk

(ωm,n), χW δ∨ ⊗ π0)∞

→֒ HomGLk×Hm−2k
(Rk−1, χW δ∨ ⊗ π0)∞.

In particular, we have Θ∨
l (π) →֒ HomGLk×Hm−2k

(Rk−1, χW δ∨ ⊗ π0)∞. As
θ∨l (π) is a subrepresentation of Θ∨

l (π), we conclude that there is an injective
equivariant map

f : θ∨l (π) →֒ HomGLk×Hm−2k
(Rk−1, χW δ∨ ⊗ π0)∞.

On the other hand, we have the exact sequence

0 → Hom(Jk−1, χW δ∨ ⊗ π0)∞
g
→ Hom(Rk−1, χW δ∨ ⊗ π0)∞

h
→ Hom(Jk, χW δ∨ ⊗ π0)∞.

We now consider two options:
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(i) If Im(f) ∩Ker(h) = 0, then we have an injective map

h ◦ f : θ∨l (π) →֒ Hom(Jk, χW δ∨ ⊗ π0)∞.

Proposition 3.5 describes Hom(Jk, χW δ∨ ⊗ π0)∞; by taking the contra-
gredient we get

χV δ ⋊Θl(π0) ։ θl(π).

(ii) If Im(f) ∩Ker(h) 6= 0, then the irreducibility of θl(π) implies θ∨l (π) →֒
Ker(h). By the exactness of the above sequence we have Ker(h) = Im(g),
and since g is injective, we also have Im(g) ∼= Hom(Jk−1, χW δ∨ ⊗ π0)∞.
Thus, we can write

θ∨l (π) →֒ Hom(Jk−1, χW δ∨ ⊗ π0)∞

from which, by looking at the contragradient (and using Proposition
3.5), we arrive at

χV δ([| · |
a, | · |b−1])⋊Θl−2(π0) ։ θl(π).

Note that this second option is only possible if Hom(Jk−1, χW δ∨⊗π0)∞
is non-trivial; in particular, by Proposition 3.5, δ = δ([| · |a, | · |b]) with
b = l−1

2 is a necessary condition.

Finally, we state a generalization of the above corollary. The same proof, with
an additional application of the exactness of the induction functor, yields the
following result.

Corollary 3.8. Let δ be an irreducible essentially square integrable rep-
resentation of GLk(F) and let π ∈ Irr(Gn), π0 ∈ Irr(Hm−2k) be such that

χW δ ⋊ π0 ։ π.

Furthermore, let A be an irreducible representation of a general linear group.
Assume that an irreducible representation σ satisfies

χVA⋊Θl(π) ։ σ,

where l = n−m− ǫ. Then one of the following is true:

(i) χVA× χV δ ⋊Θl(π0) ։ σ; or
(ii) χVA× χV δ([| · |

a, | · |b−1])⋊Θl−2(π0) ։ σ.

Option (ii) is possible only if δ is attached to the segment [| · |a, | · |b] with
b = l−1

2 .

Remark 3.9. At some point it will be useful to use the same notation
for the outcomes of both options (i) and (ii). With this in mind, we set

(δ) =

{
δ, if we used option (i)

δ([| · |a, | · |b−1]), if we used option (ii).
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3.4. Discrete series and tempered representations. In this section we go
over some of the important results concerning the theta lifts of discrete series
and tempered representations. First, we recall the main results of Muić from
[24] (Theorems 6.1 and 6.2), which give a complete description of theta lifts
for discrete series representations, along with an insight into the structure of
the full theta lift.

Theorem 3.10. Let σ ∈ Irr(Hm) be a discrete series representation. Set

ntemp(σ) =

{
n(σ), n(σ) > m− ǫ

m− ǫ, n(σ) 6 m− ǫ.

Then

(i) Θ(σ, n) is an irreducible tempered representation for n(σ) 6 n 6

ntemp(σ).
(ii) If n > ntemp(σ), then θ(σ, n) is the unique irreducible (Langlands) quo-

tient of

χV | · |
n−m+ǫ−1

2 × . . .× χV | · |
ntemp(σ)−m+ǫ+1

2 ⋊ θ(σ, ntemp(σ)).

The remaining subqoutients of Θ(σ, n) are either tempered, or equal to
the Langlands quotient of

χV | · |
n−m+ǫ−1

2 × . . .× χV | · |
n1−m+ǫ+1

2 ⋊ σ(n1),

where σ(n1) is a tempered irreducible subquotient of Θ(σ, n1) for some
n > n1 > ntemp(σ).

Proof. The above theorem is a summary of Theorems 6.1 and 6.2 of
[24], which, although stated for a different dual pair (symplectic–even orthog-
onal), transfer easily to our setting. Furthermore, in [24] it is assumed that
the residual characteristic of F is different from 2. We point out that this as-
sumption is no longer needed, due to the fact that Howe duality is now proven
in all cases ([8]). Finally, note that the first part of (ii) and the tempered-
ness of Θ(σ, n) for n < ntemp also follow from the results of [2] on tempered
representations (Theorems 4.3, 4.5 and Proposition 5.4).

As mentioned earlier, the recent results of Atobe and Gan ([2]) on theta
lifts of tempered representations subsume most of the aforeknown results on
the lifts of discrete series. For the sake of brevity, we do not state the relevant
theorems here; we shall however use them on more than one occasion in the
following sections. For now, we state a useful auxiliary result concerning
tempered representations, see [2, Proposition 5.5, Lemma 6.4].

Proposition 3.11. Let π ∈ Irr(G(Wn)) be such that Θ(π, Vm) 6= 0.

(1) If one of the following is satisfied
(i) π is tempered and m 6 n+ 1 + ǫ;
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(ii) π is in discrete series and Θ(π, Vm) is the first lift to the going-up
tower,

then all the irreducible subquotients of Θ(π, Vm) are tempered.
(2) If all the irreducible subquotients of Θ(π, Vm) are tempered, then they all

belong to the same L-packet.

4. First occurrence

In this section we describe the first occurrence index of a generic repre-
sentation π ∈ Irr(O(Vm)). We now fix ǫ = 1 so that H(Vm) = O(Vm). Note
that this also implies χW = 1. Recall that ndown(π) denotes the lower of the
two possible first occurrence indices, n+(π) and n−(π). We set

l(π) = m− 1− ndown(π).

This notation is motivated by the one used by Atobe and Gan, but does not
have quite the same meaning as in their paper [2]. By the standard module
conjecture, π is isomorphic to its standard module:

π ∼= δrν
sr × · · · × δ1ν

s1 ⋊ π0,

where δi ∈ IrrdiscGLmi
(i = 1, . . . , r), sr > · · · > s1 > 0, and π0 ∈

IrrtempO(Vm0 ) for m0 = m −
∑r

i=1 2mi. Note that π0 is also generic by
the hereditary property.

The first occurrence index is determined by the following theorem:

Theorem 4.1. Let π ∈ Irr(O(Vm)) be a generic representation. Then
l(π) = 0.

Since the first occurrence of tempered representations is described by [2,
Theorem 4.1], it will be enough to show that l(π) = l(π0). Indeed, if (φ, η)
is the L-parameter of π0, we know that η must be trivial, since π0 is generic
(see Remark 2.5). This means that the alternating property of Theorem 4.1
in [2] is never satisfied, so that l(π0) = 0.

Note that this gives us ndown(π) = m− 1 and nup(π) = m+ 1.

Remark 4.2. Before proving the theorem, we remind the reader of the
notation: recall that Θl(π) = Θ(π,m− ǫ − l). Combined with our definition
of l(π) and the conservation relation, this means that Θl(π) denotes the first
non-zero lift of π precisely when

l =

{
l(π), in the going-down tower;

−l(π)− 2, in the going-up tower.

Proof of Theorem 4.1. We first consider the going-up tower with re-
spect to π0. We compute Θl(π) with l = −l(π0). Since si > 0, we know
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that δiν
si 6= Stkν

l−k
2 for all 1, . . . , r. This allows us to use Corollary 3.6.

Repeatedly applying it to

(∗) δrν
sr × · · · × δ1ν

s1 ⋊ π0 ։ π

we get

χV δrν
sr × · · · × χV δ1ν

s1 ⋊Θl(π0) ։ Θl(π).

This being the going-up tower, we have Θl(π0) = 0 (see Remark 4.2). Since
the above map is surjective, this implies Θl(π) = 0. We deduce that

• the going-up tower for π is the same as for π0;
• we have −l(π) 6 l, i.e. l(π) > l(π0).

Now set l = l(π0)+2; this time we consider the going-down tower with respect
to π0. We repeat the above argument to show that

χV δrν
sr × · · · × χV δ1ν

s1 ⋊Θl(π0) ։ Θl(π).

In this case it can happen that for some i we have δiν
si = Stkν

l−k
2 . To justify

the use of Corollary 3.6, we need a simple application of the MVW involution:
since δrν

sr × · · · × δ1ν
s1 ⋊ π0 is irreducible, we have

δrν
sr × · · · × δiν

si × · · · × δ1ν
s1 ⋊ π0 ∼= δrν

sr × · · · × δiν
−si × · · · × δ1ν

s1 ⋊ π0.

We can thus replace δiν
si with δiν

−si in (∗) and thus bypass the restriction of
Corollary 3.6. Since l > l(π0), we have Θl(π0) = 0, so the above map implies
Θl(π) = 0 (see Remark 4.2). This means that l(π) < l, i.e. l(π) 6 l(π0).

Combining the two inequalities we get the desired result, l(π) = l(π0).
It is worth mentioning the following fact obtained in the proof: the going-up
(going-down) tower for π coincides with the going-up (going-down) tower for
π0.

5. The lifts

We are now ready to state the main result of this paper. The following
theorem fully describes the theta lifts of a generic irreducible representation
of Irr(O(Vm)).

Theorem 5.1. Let π be an irreducible generic representation of Irr(O(Vm))
isomorphic to its standard module,

δrν
sr × · · · × δ1ν

s1 ⋊ π0.

Let l be an even integer such that θl(π) 6= 0. Then

χV δrν
sr × · · · × χV δ1ν

s1 ⋊ θl(π0) ։ θl(π).

Furthermore, if θl(π0) = L(χV δ
′
kν

s′k×· · ·×χV δ
′
1ν

s′1⋊τ), then θl(π) is uniquely
determined by

θl(π) = L(χV δrν
sr , . . . , χV δ1ν

s1 , χV δ
′
kν

s′k , . . . , χV δ
′
1ν

s′1 ; τ).
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In order to sketch our general approach, we now prove this theorem in case
when θl(π0) is tempered. The rest of the proof is more involved and will be
given in several steps in §7.

Proof. Theorem 4.1 shows that we need only consider θl(π) for l 6 0.
With this in mind, Theorems 4.3 and 4.5 of [2] imply that the only cases in
which θl(π0) is tempered are the first lifts of π0: l = 0 in the going-down
tower and l = −2 in the going-up tower. We treat them separately.

Case 1: l = 0, going-down tower
Since the left-hand side of

δrν
sr × · · · × δ1ν

s1 ⋊ π0 ։ π

has a unique irreducible quotient, we can repeatedly apply Corollary 3.6 to
arrive at

(1) χV δrν
sr × · · · × χV δ1ν

s1 ⋊Θ0(π0) ։ Θ0(π).

The use of Corollary 3.6 is justified: since l = 0 and si > 0, none of δiν
si are

defined by a segment ending in | · |−
1
2 .

Notice that Θ0(π0) is irreducible and tempered: writing π0 as a quo-
tient of its tempered support, we let δ′1, . . . , δ

′
k and π00 be the discrete series

representations such that

δ′1 × · · · × δ′k ⋊ π00 ։ π0

In this situation we can also use Corollary 3.6: the segment defining δ′i cannot

end in | · |−
1
2 (which is the exceptional case for l = 0). We get

χV δ
′
1 × · · · × χV δ

′
k ⋊Θ0(π00) ։ Θ0(π0).

We can now use Theorem 3.10: Θ0(π00) is irreducible and tempered. This
shows, by Lemma 2.3, that the left-hand side in the above map is completely
reducible, and that all of its irreducible subquotients are tempered. Thus, the
same must hold for Θ0(π0). Since Θ0(π0) has a unique irreducible quotient,
complete reducibility implies that Θ0(π0) is itself irreducible (and tempered).

This shows that the left-hand side of (1) is a standard module. Further-
more, since Θ0(π) ։ θ0(π), we can write

χV δrν
sr × · · · × χV δ1ν

s1 ⋊Θ0(π0) ։ θ0(π)

instead of (1) and in this way arrive at the standard module for θ0(π).

Case 2: l = −2, going-up tower
This case is treated just like the previous one. Using Corollary 3.6 we get

χV δrν
sr × · · · × χV δ1ν

s1 ⋊Θ−2(π0) ։ Θ−2(π)

and it only remains to show that Θ−2(π0) is irreducible and tempered. Again
we look at the tempered support of π0; then the first lift of π00(the classical
part of the support) is also Θ−2(π00). By Theorem 3.10, this means that
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Θ−2(π00) is irreducible and tempered, so we can deduce the same properties
for Θ−2(π0) just like in Case 1.

6. Interlude: irreducibility in GLn(F)

Before advancing to the main part of the proof of Theorem 5.1, we prove
some auxiliary results concerning certain induced representations of GLn(F)
which appear in our calculations. The reader is advised to skim through this
section at first reading, since only the statements (and not their proofs) are
crucial for the next section.

We recall the work of Zelevinsky ([35]): to each segment [ρ, νkρ], k ∈ Z>0,
of irreducible cuspidal representations we can attach the induced representa-
tion

νkρ× νk−1ρ× · · · × νρ× ρ.

A representation of this form has a unique Langlands quotient, but also a
unique subrepresentation, denoted δ = δ([ρ, νkρ]). Such a representation
is essentially square integrable; conversely, any essentially square integrable
representation of the general linear group can be obtained in this way from
a (uniquely determined) segment. In what follows, we will assume that ρ is
always equal to the trivial character 1 of GL1(F), although the same proofs
work for any cuspidal ρ. Therefore we modify the traditional notation and
omit ρ: the unique quotient of νbρ × · · · × νaρ attached to [νaρ, νbρ] will be
denoted simply by ζ(a, b), and we will write δ([a, b]) instead of δ([νaρ, νbρ]).
At various points of this section, we freely use the terminology and results of
[35] on linked segments.

We begin with the following lemma. We say that two (or more) numbers
are congruent modulo Z if their difference is an integer.

Lemma 6.1. Let c 6 a 6 d < b ∈ R be congruent mod Z. Then

ζ(a, b)× δ([c, d]) and δ([c, d]) × ζ(a, b)

are irreducible and isomorphic.

Notice that c 6 a 6 d < b implies that the segment [a, b] intersects [c, d]
from ”above”. We first prove this in a special case when a = d and b = d+1.

Lemma 6.2. The representation ζ(d, d+ 1)× δ([c, d]) is irreducible.

Proof. We give a proof by induction on d− c. Set k = d− c+3, so that
ζ(d, d+1)×δ([c, d]) is a representation of GLk(F). The base case, i.e. the fact
that ζ(d, d+ 1)× | · |d is irreducible, is known from [35].

Now let c < d; assume that the statement is true for all c′ such that
c < c′ < d.

We compute the Jacquet modules (their semi-simplifications, to be pre-
cise) of ζ(d, d + 1) × δ([c, d]) with respect to standard parabolic subgroups
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Pk−1,1, Pk−2,2 i Pk−2,1,1. We aim to apply a criterion of Tadić on the ir-
reducibility of induced representations; see e.g. [33, §21]. To compute the
semi-simplifications, we use the well known formula for m∗ (see (JM1) in sec-
tion 2.5) and an analogous formula for m∗((a, b). Using this, we find that
the semi-simplifications of the Jacquet modules with respect to Pk−1,1, Pk−2,2

and Pk−2,1,1 are given by direct sums of the following representations:
Pk−1,1 :

| · |d × δ([c, d])⊗ | · |d+1(A)

ζ(d, d + 1)× δ([c+ 1, d])⊗ | · |c(B)

Pk−2,2 :

δ([c, d]) ⊗ ζ(d, d+ 1)(1)

ζ(d, d+ 1)× δ([c+ 2, d])⊗ δ([c, c+ 1])(2)

| · |d × δ([c+ 1, d])⊗ | · |d+1 × | · |c(3)

Pk−2,1,1 :

δ([c, d])⊗ | · |d ⊗ | · |d+1(A1)

ζ(d, d + 1)× δ([c+ 2, d])⊗ | · |c+1 ⊗ | · |c(B2)

| · |d × δ([c+ 1, d])⊗ | · |d+1 ⊗ | · |c(B3)

| · |d × δ([c+ 1, d])⊗ | · |c ⊗ | · |d+1(A3)

Notice that all of the above representations are irreducible by the induction
hypothesis. Furthermore, Pk−1,1 shows that the length of ζ(d, d+1)×δ([c, d])
is at most 2; if it equals 2, then one subquotient accounts for (A), and the
other for (B). On the other hand, from the fact that (3) splits into (A3) and
(B3) wee see that (A) and (B) come from the same subquotient as (3). In
particular, (A) and (B) come from the same subquotient, which shows that
the length of ζ(d, d + 1)× δ([c, d]) is 1, not 2.

This proves the lemma; the fact that ζ(d, d + 1) × δ([c, d]) ∼= δ([c, d]) ×
ζ(d, d + 1) follows from the irreducibility.

We are now ready to prove Lemma 6.1.

Proof. First, we claim that

Π = | · |b × | · |b−1 × · · · × | · |a × δ([c, d])

has a unique irreducible quotient.
We reduce this to the corresponding claim about standard representa-

tions. Set s = c+d
2 , the midpoint of [c, d]. Recall that c 6 a 6 d < b. In

particular, this means that b > c+d
2 . Therefore, we can find the smallest

element of [a, b] which is greater than s; denote it by b0.
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We then have the following:

| · |b × | · |b−1 × | · |b0 × δ([c, d])× | · |b0−1 · · · × | · |a

possesses a unique (Langlands) irreducible quotient (which appears with mul-
tiplicity 1). Since a, a+1, . . . , b0−1 are contained in [c, d], δ([c, d]) can switch
places with | · |i, for all i = a, . . . , b0 − 1. Therefore, the above standard
representation in isomorphic to

| · |b × | · |b−1 × | · |b0 × | · |b0−1 × · · · × | · |a × δ([c, d]) = Π.

It follows that Π has a unique irreducible quotient as well – we denote this
unique quotient by π. We have thus shown that Π possesses a unique ir-
reducible quotient. Furthermore, we obviously have a surjective map Π ։

ζ(a, b)×δ([c, d]), so that π is a unique irreducible quotient of ζ(a, b)×δ([c, d]).
However, we also have Π ։ Π′, where

Π′ = | · |b × | · |b−1 × · · · × | · |d+2 × ζ(d, d+ 1)× | · |d−1 × · · · × | · |a × δ([c, d])

(note that the segment [d+2, b] and [a, d− 1] can be empty, but this does not
change the argument). It follows that π is also a unique irreducible quotient
of Π′.

As before, we have

Π′ ∼= | · |b × | · |b−1 × · · · × | · |d+2 × ζ(d, d+ 1)× δ([c, d])× | · |d−1 × · · · × | · |a

because a, . . . , d − 1 are contained in δ([c, d]). By Lemma 6.2 we know that
ζ(d, d + 1)× δ([c, d]) is irreducible, so that ζ(d, d + 1)× δ([c, d]) ∼= δ([c, d]) ×
ζ(d, d + 1). Thus

Π′ ∼= | · |b × | · |b−1 × · · · × | · |d+2 × δ([c, d])× ζ(d, d+ 1)× | · |d−1 × · · · × | · |a.

Finally, none of the numbers d + 2, . . . , b are linked to [c, d] so we can move
them as well:

Π′ ∼= δ([c, d])× | · |b × | · |b−1 × · · · × | · |d+2 × ζ(d, d+ 1)× | · |d−1 × · · · × | · |a.

Since π is the unique irreducible quotient of the above representation, which
maps onto δ([c, d])×ζ(a, b), we deduce that π is the unique irreducible quotient

δ([c, d]) × ζ(a, b).

This shows that both δ([c, d]) × ζ(a, b) and ζ(a, b) × δ([c, d]) have π as an
irreducible quotient which appears with multiplicity one. It follows that the
two representations are irreducible and isomorphic.

Remark 6.3. In a similar way (but easier, because Lemma 6.2 isn’t nec-
essary) one shows that

ζ(a, b)× δ([c, d]) and δ([c, d])× ζ(a, b)

are irreducible and isomorphic when [a, b] and [c, d] are not linked.
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Remark 6.4. A similar argument shows that, when the two segments
are linked (a = d + 1), then δ([c, d]) × ζ(d + 1, b) has exactly two irreducible
subquotients:

L(| · |b × · · · × | · |d+1 × δ([c, d])) and L(| · |b × · · · × | · |d+2 × δ([c, d+ 1])).

The above remark will often be combined with the following lemma.

Lemma 6.5. Denote by L the representation L(|·|b×. . .×|·|d+1×δ([c, d]))
which appears in the above remark – note that it is a unique irreducible quo-
tient of ζ(b, d+ 1)× δ([c, d]). Then

L× δ([c, d]) and δ([c, d]) × L

are irreducible and isomorphic.

Proof. We first prove L× δ([c, d]) ∼= δ([c, d])× L. Notice that

L× δ([c, d]) →֒ δ([c, d])× ζ(d+ 1, b)× δ(c, d).

On the other hand, we have an intertwining map

T : δ([c, d])× ζ(d+ 1, b)× δ(c, d) → δ([c, d])× L

with kernel ker(T ) isomorphic to δ(c, d)×L(| · |b × . . .× | · |d+2 × δ([c, d+1]))
(Remark 6.4).

Restricting T to L × δ([c, d]) we get an intertwining T̃ : L × δ([c, d]) →
δ([c, d])× L. We want to show that it is injective; to prove this, it suffices to
check that L× δ([c, d]) ∩ ker(T ) = {0}.

Notice that ker(T ) has a unique irreducible subrepresentation τ – it is the
Langlands quotient of

| · |b × . . .× | · |d+2 × δ([c, d+ 1])× δ([c, d]).

This uniqueness implies the following: if L × δ([c, d]) ∩ ker(T ) is non-trivial,
it contains τ .

We now look at Jacquet modules again. It is easy to see that the Jacquet
module of τ with respect to the appropriate standard parabolic subgroup P
contains a subquotient of the form

δ([c, d])⊗ δ([c, d+ 1])⊗ ζ(d+ 2, b).

If we can show that RP (L× δ([c, d])) does not have a subquotient of this
form, L× δ([c, d]) ∩ ker(T ) = {0} will follow.

By Remark 6.4 the representation

A := δ([c, d])× ζ(d+ 1, b)× δ([c, d])

has only two subquotients:

L× δ([c, d]) and L′ × δ([c, d]),
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where L′ = L(| · |b × . . .× | · |d+2 × δ([c, d+ 1])). A simple application of the
fact that m∗(π1 × π2) = m∗(π1)×m∗(π2) shows that RP (A) contains

δ([c, d])⊗ δ([c, d+ 1])⊗ ζ(d+ 2, b)

with multiplicity 2. It suffices to prove that both of those subquotients are
accounted for by RP (L

′ × δ([c, d])).
We have L′ →֒ δ([c, d+1])×ζ(d+2, b), but also L′ →֒ |·|d+1×δ([c, d])×ζ(d+

2, b). From here, we easily deduce thatm∗(L′) contains δ([c, d+1])⊗ζ(d+2, b)
and | · |d+1 ⊗ δ([c, d]) × ζ(d + 2, b). This shows (using the multiplicativity of
m∗ again) that m∗(L′ × δ([c, d])) contains

δ([c, d+ 1])× δ([c, d]) ⊗ ζ(d+ 2, b)⊕ | · |d+1 × δ([c, d])⊗ δ([c, d]) × ζ(d+ 2, b)

Applying the Jacquet functor (with respect to the appropriate parabolic sub-
group) we see that the Jacquet module of both summands contains a subquo-
tient of the form δ([c, d]) ⊗ δ([c, d + 1]) ⊗ ζ(d + 2, b). This shows that both
appearances of this subquotient come from RP (L

′ × δ([c, d])).

We have now shown that L×δ([c, d])∩ker(T ) = {0}, i.e. that T̃ is injective.

Since L× δ([c, d]) and δ([c, d])× L are of equal length, if follows that T̃ is an
isomorphism, so that

L× δ([c, d]) ∼= δ([c, d])× L.

It is now easy to show that these representations are isomorphic. Let π be
the unique irreducible quotient of sL× δ([c, d]). Then π →֒ δ([c, d])×L. From
here, we get

π →֒ δ([c, d])× L ∼= L× δ([c, d]) ։ π.

Note that π appears in L × δ([c, d]) with multiplicity 1, because it is in fact
the Langlands quotient of

| · |b × . . .× | · |d+1 × δ([c, d]) × δ([c, d]).

This shows that the above sequence of intertwining maps is possible only if
δ([c, d])× L ∼= L× δ([c, d]) are irreducible.

Finally, we point out another consequence of the results of [35, §9] which
finds its use in determining the standard modules of higher lifts:

Remark 6.6. Let ∆1 and ∆2 be segments of cuspidal representations.
Following [35, §7], we may consider a so-called elementary operation {∆1,∆2}
7→ {∆∪,∆∩}, where

∆∪ = ∆1 ∪∆2, ∆∩ = ∆1 ∩∆2.

We apply this to draw conclusions about standard modules of G(Wn)-repre-
sentations: let σ and σ0 be irreducible, such that

δkν
sk × · · · × δ1ν

s1 ⋊ σ0 ։ σ,
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where δ1, . . . , δk are irreducible discrete series representations, and sk > · · · >
s1 > 0. If σ0 is tempered, the left-hand side is the standard module for σ.
Otherwise, we have σ0 = L(δ′lν

s′l , . . . , δ′1ν
s′1 ; τ) for some δ′1, . . . , δ

′
l in discrete

series and some tempered τ . Setting Π = δkν
sk×· · ·×δ1ν

s1×δ′lν
s′l×· · ·×δ′1ν

s′1

we thus get

Π⋊ τ ։ σ.

It follows that Π possesses an irreducible subquotient, say π, such that π⋊τ ։

σ. Furthermore, by [35, §9], we know that π is the quotient of a standard
representation obtained from Π by a sequence of elementary operations.

We thus have the following conclusion on the shape of the standard mod-
ule of σ:

• the tempered part is equal to the tempered representation τ which
appears in the standard module of σ0;

• the GL-part is obtained by performing a sequence of elementary oper-
ations on the segments defining δ′1ν

s′1 , . . . , δ′lν
s′l and δ1ν

s1 , . . . , δkν
sk .

We use this standard module ”mixing” on more than one occasion in the
following section.

Before proceeding to the proof of Theorem 5.1, we address one more tech-
nical question. The results of this section concern representations of GLn(F);
we apply them in the following section to various GL-factors which appear
in induced representations of orthogonal and metaplectic groups. In case
of Mp(W )-representations, this requires some justification, as the Levi sub-
groups of the metaplectic group are not isomorphic to a product of a (smaller)
metaplectic group and some GL-factors. However, the representation theory

of GL is the same as that of genuine representations of the double cover G̃L
(see Section 4.1 [13]). This, combined with the exactness of the induction
functor defined in Section 4.1 [31] allows us to apply the results of this section
to GL-factors in induced representations of the metaplectic group.

7. Higher lifts

We are now ready to prove the rest of Theorem 5.1. Recall that we have
already settled the cases in which θl(π0) is tempered. In all the remaining
cases l = m− ǫ− n is negative (and even), so we adjust the notation: letting
l > 0 be an arbitrary even integer, we want to determine θ−l(π).

7.1. Subquotients of Θ(π0). We fix l > 0 even and set σ = θ−l(π); our
goal is to determine σ. Since π ∈ Irr(O(Vm)) is generic, it is isomorphic to its
standard module:

π ∼= δrν
sr × · · · × δ1ν

s1 ⋊ π0.

Applying Corollary 3.6 just like in Section 5, we get

(0) χV δrν
sr × · · · × χV δ1ν

s1 ⋊Θ−l(π0) ։ Θ−l(π) ։ θ−l(π) = σ.
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Our main task is to determine the irreducible subquotient of Θ−l(π0) which
participates in the above epimorphism. To describe it, we need to further
analyze π0. Using the tempered support of π0 we can write

δ′1 × · · · × δ′k ⋊ π00 ։ π0,

where δ′1, . . . , δ
′
k, π00 are irreducible discrete series representations. Setting

∆ = δ′1 × · · · × δ′k and applying Corollary 3.6 again, we get

χV ∆⋊Θ−l(π00) ։ Θ−l(π0).

Thus

(1) χV δrν
sr × · · · × χV δ1ν

s1 × χV ∆⋊Θ−l(π00) ։ σ.

We would now like to identify the irreducible subquotient (call it σ0) of
Θ−l(π00) which participates in the above epimorphism. To be precise, we
say that an irreducible subquotient σ0 of T participates in an epimorphism
f : A⋊ T → σ if there is a filtration of T

0 = T0 ⊆ T1 ⊆ · · · ⊆ Tl = T

such that Ti/Ti−1 is irreducible for all i = 1, . . . , l, and there is an index
j ∈ {1, . . . , l} such that f(Tj−1) = 0, f(Tj) 6= 0 and Tj/Tj−1

∼= σ0. In that
case, we have a map A⋊ σ0 → σ. We will show the following:

Proposition 7.1. There is a unique irreducible subquotient of Θ−l(π00)
which participates in (1); it is equal to θ−l(π00).

Remark 7.2. We recall the results of [24] and [2] (see Theorem 3.10):
θ−l(π00) is the Langlands quotient of

(∗) χV | · |
l−1
2 × χV | · |

l−3
2 × · · · × χV | · |

1+l0
2 ⋊ θ−l0(π00)

where l0 = min{l > 0 : θ−l(π00) 6= 0}. As π00 is generic (by the hereditary
property), we have l0 ∈ {0, 2} (see discussion after statement of Theorem 4.1).

Any other irreducible subquotient of Θ−l(π00) is either:

• tempered; or
• the Langlands quotient of

χV | · |
l−1
2 × χV | · |

l−3
2 × · · · × χV | · |

1+l′

2 ⋊ σ′
0,

where σ′
0 is a tempered subquotient of Θ−l′(π00) for some l′ > l0.

Note that the Langlands quotient described here is also the unique quotient

of χV ζ
(

1+l′

2 , l−1
2

)
⋊ σ′

0 (using the notation of Section 6).

We are now ready to prove the proposition.
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Proof. Assume, with the above remark in mind, that the subquotient
of Θ−l(π00) we want to find (and which we denote by σ0) is isomorphic to the
unique irreducible quotient of

χV ζ

(
1 + l′

2
,
l − 1

2

)
⋊ σ′

0.

Here we allow the segment [ 1+l′

2 , l−1
2 ] to be empty, i.e. that σ0 = σ′

0 is tem-
pered. We want to prove that l′ = l0, so that σ0 is given by the quotient of
(∗) in the above remark.

Since σ0 participates in (1), we have

χV Π× χV ∆× χV ζ

(
1 + l′

2
,
l − 1

2

)
⋊ σ′

0 ։ σ,

where we used Π to denote δrν
sr×· · ·×δ1ν

s1 . We are now in a situation which

matches the requirements of Lemma 6.1: ζ
(

1+l′

2 , l−1
2

)
can switch places with

(almost) all of δ′i which define ∆. This allows us to write

(I) χV Π× χV ζ

(
1 + l′

2
,
l − 1

2

)
× χV ∆× σ′

0 ։ σ.

The only case in which we cannot proceed as above is the one in which

[ 1+l′

2 , l−1
2 ] is adjacent to the segment defining δ′i for some i ∈ {1, . . . , k},

that is, when

δ′i = δ([| · |
1−l′

2 , | · |
l′−1

2 ]) = Stl′ .

This does not cause severe complications: without loss of generality we may
assume that δ′1, δ

′
2, . . . , δ

′
i, . . . , δ

′
k are ordered increasingly with respect to the

length of the defining segments. We can apply Lemma 6.1 to swap ζ(1+l′

2 , l−1
2 )

with δ′i+1, . . . , δ
′
k. After this, we arrive at the following situation:

· · · × χV δ
′
i × χV ζ

(
1 + l′

2
,
l− 1

2

)
× . . .։ σ.

Now, Remark 6.4 implies that we have

· · · × χV ζ

(
1 + l′

2
,
l − 1

2

)
× χV δ

′
i × · · · ։ σ

or

· · · × χV ζ

(
3 + l′

2
,
l − 1

2

)
× χV δ([| · |

1−l′

2 , | · |
l′+1

2 ])× · · · ։ σ.

The first case leads us to the same conclusion as in (I), whereas the second—

having in mind that we can now swap ζ(3+l′

2 , l−1
2 ) with all the δ′1, . . . , δ

′
i−1—

leads to

(II) χV Π× χV ζ

(
3 + l′

2
,
l − 1

2

)
× χV δ([| · |

1−l′

2 , | · |
l′+1

2 ])× χV ∆
′ ⋊ σ′

0 ։ σ,
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where ∆′ ∼= δ′1 × · · · × δ̂′i × · · · × δ′k (here δ̂′i signifies that we omit δ′i from the
product).

In both cases I and II we can do the same: using Remark 6.6 (more

generally, the results of [35]), Π× ζ
(

1+l′

2 , l−1
2

)
(resp. Π× ζ

(
3+l′

2 , l−1
2

)
× δ([| ·

|
1−l′

2 , | · |
l′+1

2 ])) can be rearranged into

Π′ = δtν
et × · · · × δ1ν

e1 ,

where δi are irreducible discrete series representations and et > · · · > e1 > 0).
In other words, we get a standard module

χV Π
′ ⋊ τ ։ σ

for σ, where τ is an irreducible (and obviously tempered) subquotient of
χV ∆⋊ σ′

0 (in case I), or χV ∆
′ ⋊ σ′

0 (in case II).
This shows the following:

(I) In case (I), the cuspidal support of Π′ consists of |·|
l−1
2 , |·|

l−3
2 , . . . , |·|

l′+1
2

in addition to the cuspidal support of Π.

(II) In case (II), the cuspidal support of Π′ consists of | · |
l−1
2 , | · |

l−3
2 , . . . , | ·

|
l′+1

2 and the segment [ 1−l′

2 , l
′−1
2 ] in addition to Π.

We now use Kudla’s filtration to return to the (Vm) tower: we want to get
θl(σ) (while knowing that θl(σ) = π) by repeated use of Corollary 3.8 on

χV δtν
et × · · · × χV δ1ν

e1 ⋊ τ ։ σ.

If we apply the corollary exactly t times, we get

(δtν
et)× · · · × (δ1ν

e1 )⋊Θl−2k(τ) ։ π.

Here we use the notation (δνe) introduced in Remark 3.9. Furthermore, k
denotes the number of segments on which option (ii) of Corollary 3.8 is used,
which is why Θl becomes Θl−2k.

Again we rearrange the representations (δiν
ei) in order to get a stan-

dard module (i.e. so that the midpoints of the corresponding segments form
a decreasing sequence).

We need to show that this is actually possible. Each δiν
ei = δ([ρiν

−ai+ei ,
ρiν

ai+ei ]) is defined by a segment with midpoint ei > 0 (here ai is a non-
negative half-integer). After applying Corollary 3.8 and bringing them in
front of Θl−2k(τ), some of the (δiν

ei ) (namely, those obtained via option (ii))
are defined by slightly modified segments of the form [ρiν

−ai+ei , ρiν
ai+ei−1],

with midpoint (ei −
1
2 ). We have the following possibilities:

• If ai = 0, then [ρiν
−ai+ei , ρiν

ai+ei−1] is empty; therefore (δiν
ei)

doesn’t exist.
• It is possible that ei −

1
2 = 0, i.e. that 0 is the midpoint of the new

segment.
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• All the other segments satisfy ei −
1
2 > 0: if we use option (ii) in

Corollary 3.8, this implies (among other things) that ei is a half-integer;
in particular, ei >

1
2 .

Furthermore, note that we can really reorder the (δiν
ei) to obtain a decreasing

sequence of exponents. Namely, if this requires us to swap (δi+1ν
ei+1) and

(δiν
ei), this means the following: the ordering has changed because δi+1ν

ei+1

was obtained by means of option (ii), whereas option (i) was used on δiν
ei –

otherwise, they would still be ordered correctly. This implies

(δi+1ν
ei+1) = δ([| · |ai+1+ei+1 , | · |−ai+1+ei+1−1]),

(δiν
ei) = δ([ρν−ai+ei , ρνai+ei ]).

If we assume that these segments are linked, then ρ = 1 and the following
holds:

• the segments are linked, so we have ei − ei+1 ∈ 1
2Z;

• they need to be swapped, so ei+1 −
1
2 < ei;

• the original ordering implies ei+1 > ei.

This is only possible if ei = ei+1. From here we easily deduce that the
segments cannot really be linked, so they can freely switch places.

We have thus shown that the desired rearrangement is indeed possible.
In short, we can write

Π′′ × ∆′′ ⋊Θl−2k(τ) ։ π.

Here Π′′ ×∆′′ denotes the product of (δiν
ei) (in decreasing order of ei); here

we have grouped all the segments of the form δ([| · |−a, | · |a]) into ∆′′.
We know that all the subquotients of Θl−2k(τ) are tempered (obviously

l − 2k > 0 so this follows from Proposition 3.11), we see that the standard
module of π is equal to

Π′′ ⋊ π′′
0 ,

where π′′
0 is a (tempered) irreducible subquotient of ∆′′ ⋊ Θl−2k(τ). The

uniqueness of the standard module now forces

Π′′ = Π and π′′
0
∼= π0.

In particular, Π′′ and Π have the same cuspidal support. We have already
compared the cuspidal supports of Π and Π′. On the other hand, since option
(ii) of Corollary 3.8 was applied exactly k times, we see that, compared to Π′,
the cuspidal support of Π′′ is missng

| · |
l−1
2 , | · |

l−3
2 , . . . , | · |

l+1
2 −k,

along with all the segments grouped into ∆′′.
In both cases I and II this comparison of the cuspidal supports easily

leads to the conclusion l′ = l− 2k.
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Remark 7.3. It is easy to see that, in case (I), none of the representa-
tions can end up in ∆′′, while in case (II) ∆′′ can (and must) only contain

[ 1−l′

2 , l
′−1
2 ], which arrived from the tempered part in the first place.

We now use the other condition: ∆′′ ⋊Θl′(τ) has an irreducible subquo-
tient isomorphic to π0. The following lemma shows that this is only possible
if l′ = l0.

Lemma 7.4. If l′ > l0 then ∆′′ ⋊ Θl′(τ) does not contain a subquotient
isomorphic to π0.

Proof. Recall that l0 is the smallest even non-negative integer such that
θ−l0(π00) is non-zero. Recall that θ−l0(π00) is tempered, whereas all the lifts
θ−l′(π00) for l′ > l0 are non-tempered (see Theorem 3.10). We also know
that θ−l0(π0) is tempered whenever it is non-zero. We first lay out the proof
assuming ∆′′ is empty (case (I)).

Let τ be an irreducible tempered representation of Mp(Wn) and l′ > l0
such that Θl′(τ) contains a subquotient isomorphic to π0 (in particular, such
that Θl′(τ) 6= 0). We then have two possibilities, depending on whether or
not τ contains χV Stl′ in its tempered support.

If τ does not contain χV Stl′ in its tempered support, then Θl′(τ) is easily
shown to be irreducible (e.g. [2, Proposition 5.4]). This would imply that
θl′(τ) = π0, i.e. θ−l′(π0) = τ . On the other hand, we know that this is not
possible because θ−l′(π0) is not tempered for l′ > l0.

Thus τ contains χV Stl′ in the tempered support and we may use a very
similar argument. However, we do not know if Θl′(τ) is irreducible, so further
analysis is required. We can represent τ as a direct summand of

(∗) χV δ1 × · · · × χV δi × χV (Stl′ , h)⋊ τd.

here δ1, . . . , δi, τd are discrete series representations, and h denotes the number
of occurrences of χV Stl′ in the tempered support (also, (Stl′ , h) = Stl′ × · · ·×
Stl′ h times). Again we differentiate two cases: Θl′(τd) 6= 0 and Θl′(τd) = 0.

a) Let Θl′(τd) 6= 0. We have

χV ∆× χV (Stl′ , h)⋊ τd ։ τ

where ∆ is temporarily used to denote δ1×· · ·×δi. Since we are looking for
subquotients of Θl′(τ), we can use Proposition 3.5 and the same arguments
as in the proof of Corollary 3.7. We get that π0 is a subquotient of one of
the following:

• ∆× (Stl′ , h)⋊Θl′(τd);

• ∆× (Stl′ , h− 1)× δ([| · |
1−l′

2 , | · |
l′−3

2 ])⋊Θl′−2(τd).
Both Θl′(τd) and Θl′−2(τd) are irreducible discrete series representations by

Theorem 3.10; furthermore, Θl′−2(τd) is a subquotient of | · |
l′−1

2 ⋊Θl′(τd)
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so that π0 is in fact a subquotient of

∆× (Stl′ , h)⋊Θl′(τd)(i)

or ∆× (Stl′ , h− 1)× δ([| · |
1−l′

2 , | · |
l′−3

2 ])× | · |
l′−1

2 ⋊Θl′(τd).(ii)

Consider the representation δ([| · |
1−l′

2 , | · |
l′−3

2 ])× | · |
l′−1

2 which appears in
(ii). It has two irreducible subquotients, namely Stl′ and the correspond-
ing Langlands subrepresentation which we denote by L (see §6). Therefore,
any irreducible subquotient of (ii) is either a subquotient of (i), or a sub-
quotient of ∆× (Stl′ , h− 1)×L⋊Θl′(τd). This representation, however,
cannot contain π0 (by heredity) since L is not generic. This shows that π0
is necessarily a subquotient of (i).

By the uniqueness of the tempered support, we now conclude that
Θl′(τd) = π00. However, this implies that θ−l′(π00) = τd is in discrete
series despite l′ > l0. This contradicts the remarks at the beginning of this
proof and shows that l′ > l0 is impossible.

b) It remains to see what happens when Θl′(τd) = 0. Recall that τ is a
direct summand of its tempered support, (∗). Choosing the appropriate
irreducible (tempered) subquotient τ1 of Stl′⋊τd, we define τj+1 = Stl′⋊τj
for j = 1, 2, . . . , h− 1 and see that τ is a direct summand of χV ∆⋊ τh. As
before, we use Corollary 3.6 to get

∆⋊Θl′(τh) ։ Θl′(τ).

Using an inductive argument, we now show that the left-hand side of the
above epimorphism cannot possess an irreducible subquotient isomorphic
to π0 if l′ > l0.

Note that we have Θl′(τd) = 0, but are working with Θl′(τh) 6= 0.
This implies that Θl′(τj) 6= 0 for j = 1, . . . , h − 1 as well, and that the
L-parameter of τd does not contain χV S

′
l . If it did contain χV S

′
l , this

would mean that Θl′(τd) is equal to zero because the alternating condition
of [2, Theorem 4.1] fails. This would also imply that it fails for all the τj ,
further implying Θl′(τj) = 0.

Assume the contrary, i.e. that π0 appears as a subquotient in the above
representation. Just as in case a), this means that π0 is a subquotient of

∆× Stl′ ⋊Θl′(τh−1)(i)

or ∆× δ([| · |
1−l′

2 , | · |
l′−3

2 ])× | · |
l′−1

2 ⋊ θl′(τh−1)(ii)

(it is easy to see that Θl′−2(τh−1) is irreducible, so we can write it as a

subquotient of | · |
l′−1

2 ⋊ θl′(τh−1)). Again, the reasoning from case a)
shows that π0 has to be a subquotient of (i).

Repeating this argument h− 1 times, we get that π0 is a subquotient
of

∆× (Stl′ , h− 1)⋊Θl′(τ1).
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But now all the irreducible subquotients of Θl′(τ1) are in discrete series—
this follows from the fact that the L-parameter of τd does not contain χV S

′
l

(as discussed above)—so that (by Howe duality) Θl′(τ1) is an irreducible
discrete series representation. This means that the above representation
is in fact the tempered support of π0. In particular, we have θl′(τ1) = π00.
This forces θ−l′(π00) = τ1 to be tempered, which is again impossible for
l′ > l0.

We point out that, in all the cases, our proof boils down to the fact that
Θl′(τd) has to be (and cannot be, for l′ > l0) isomorphic to π00; this shows
that the same proof works even when ∆′′ is non-empty (see Remark 7.3).

This completes our proof of 7.1: we have shown that l′ = l0, which implies
that the subquotient which participates in (1) is equal to θ−l(π00). Therefore,
we have

(2) χV δrν
sr × · · · × χV δ1ν

s1 × χV ∆⋊ θ−l(π00) ։ σ.

7.2. Determining the standard modules. The above epimorphism (2) pro-
vides valuable information, but is not sufficient to uniquely determine σ. To
do this, we will have to find the standard module of σ; we do so in this section.
Before we start, let us return for a moment to (0), section 7.1. Our goal is to
show two things (see Theorem 5.1):

• the subquotient of Θ−l(π0) which participates in that epimorphism is
θ−l(π0);

• the standard module of σ is obtained by adding χV δ1ν
s1 , . . . , χV δrν

sr

to the standard module of θ−l(π0) (and sorting the representations
decreasingly with respect to the exponents).

The shape of θ−l(π0) is completely determined by Theorems 4.3 and 4.5 of
[2]; as it is useful to have in mind during the ensuing calculations, we compile
the results of these theorems in the following proposition.

Proposition 7.5. Let π0 ∈ Irr(O(Vm)) be tempered and generic; let (φ, η)
be its L-parameter and let l > 0 be even. We have two cases

(i) On the going-down tower, θ0(π0) is the first lift of π0; it is tempered.
For l > 0 we have

χV | · |
l−1
2 × · · · × χV | · |

1
2 ⋊ θ0(π0) ։ θ−l(π0).

(ii) On the going-up tower, θ−2(π0) is the first lift of π0; it is tempered. For
l > 2 we have

χV | · |
l−1
2 × · · · × χV | · |

3
2 ⋊ θ−2(π0) ։ θ−l(π0).
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Our proof starts by analyzing the map (2) established by Proposition 7.1.
We have a few cases depending on the shape of π0, each of them corresponding
to one of the cases of the previous Proposition. All the cases share the same
basic approach and result in analogous conclusions. However, we do have to
treat them separately, mainly because of the exceptional cases which arise
in some of them. The first case contains all the key ideas (and no tricky
exceptions), so we present it full detail.
Case 1: the going-down tower

In this case we know that θ−l(π00) is the Langlands quotient of

χV | · |
l−1
2 × · · · × χV | · |

1
2 ⋊ θ0(π00).

This also implies that θ−l(π00) is the unique quotient of

χV ζ(
1

2
,
l − 1

2
)⋊ θ0(π00)

(see the notation of Section 6). Combining this with the epimorphism in (2)
we get

χV δrν
sr × · · · × χV δ1ν

s1 × χV ∆× χV ζ(
1

2
,
l − 1

2
)⋊ θ0(π00) ։ σ.

We now use Lemma 6.1: χV ζ(
1
2 ,

l−1
2 ) can switch places with all the δ′i ap-

pearing in ∆. This means that we can write

(3) χV δrν
sr × · · · × χV δ1ν

s1 × χV ζ(
1

2
,
l − 1

2
)× χV ∆⋊ θ0(π00) ։ σ.

Finally, we observe that there is an irreducible subquotient τ of χV ∆⋊θ0(π00)
such that

(4) χV δrν
sr × · · · × χV δ1ν

s1 × χV ζ(
1

2
,
l − 1

2
)⋊ τ ։ σ.

Note that τ is tempered, because θ0(π00) is, too (moreover, in this case,
θ0(π00) is in discrete series), as are all the irreducible subquotients of ∆. We
now claim the following:

Lemma 7.6. The representation appearing on the left-hand side of (4)
has a unique irreducible quotient.

Proof. We will show that the representation in question is itself a quo-
tient of a standard module, and the conclusion will follow. We use Lemma
6.1. Let [ρνc, ρνd] be the segment which defines δ1ν

s1 (in particular, we have
s1 = c+d

2 ). Assume that ρ is equal to the trivial character 1 of GL1(F) = F×

and that c, d ∈ 1
2 + Z are half-integers. If these conditions are not met, the

proof is the same, only simpler, because Lemma 6.1 is not needed.
If s1 >

l−1
2 then the representation in question is a quotient of the stan-

dard module

χV δrν
sr × · · · × χV δ1ν

s1 × χV | · |
l−1
2 × · · ·χV | · |

1
2 ⋊ τ,
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and we are done. If s1 <
l−1
2 we use the following technical observation, based

on Lemma 6.1 (we use the notation of §6).

Lemma 7.7. Let σ be an irreducible representation of Mp(Wn) and as-
sume that

A× δ([a, b])× ζ(c, d) ⋊ σ0 ։ σ

for a+b
2 6 d and some representations A and σ0 . If

(i) c 6= b+ 1

then setting s = min{s′′ ∈ [c, d] : s′′ ≥ a+b
2 } we have

A× ζ(s, d)× δ([a, b])× ζ(c, s− 1)⋊ σ0 ։ σ.

Here, the segment [c, s− 1] can be empty (i.e., s = c can happen). Assume, a
fortiori, that [c, d] and [a, b] satisfy

(ii) c �
a+ b

2
+ 1

(notice that this implies (i)). Then, for any [a′, b′] with a′+b′

2 >
a+b
2 the

segments [s, d] and [a′, b′] also satisfy the above condition (ii) (i.e. we have

s � a′+b′

2 + 1).

Proof. We know that ζ(c, d) is a quotient of ζ(s, d) × ζ(c, s− 1), so we
have

A× δ([a, b])× ζ(s, d) × ζ(c, s− 1)⋊ σ0 ։ σ.

If (i) holds, then Lemma 6.1 (along with Remark 6.3) shows that δ([a, b]) and
ζ(s, d) can switch places. We thus get

A× ζ(s, d)× δ([a, b])× ζ(c, s− 1)⋊ σ0 ։ σ,

as required.
For the second part of the claim, assume that [c, d] and [a, b] satisfy con-

dition (ii). Then s > a′+b′

2 + 1 would imply

s >
a′ + b′

2
+ 1 >

a+ b

2
+ 1 > c.

Now s > c implies s− 1 ∈ [c, d], but we also have s− 1 >
a+b
2 , contradicting

our choice of s.

We apply Lemma 7.7 inductively—first with δ([a, b]) = δ1ν
s1 and ζ(c, d) =

ζ(12 ,
l−1
2 ), then δ([a, b]) = δ2ν

s2 and ζ(c, d) = ζ(s, l−1
2 ), etc.—we show that

the representation appearing in (4) is indeed a quotient of a standard repre-
sentation. Notice that condition (ii) is fulfilled already in the first step (this
ensures that we can proceed with the induction): we have a+b

2 > 0 and c = 1
2 .

This proves Lemma 7.6.
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Note that the Lemma 7.6 determines the appearance of the standard mod-

ule for σ: the representations χV | · |
l−1
2 , . . . , χV | · |

1
2 are simply inserted among

χV δrν
sr , . . . , χV δ1ν

s1 so that the exponents form a decreasing sequence. The
only thing that remains to be determined is the tempered part, i.e. τ .

We have shown that χV δrν
sr ×· · ·×χV δ1ν

s1 ×χV ζ(
1
2 ,

l−1
2 )⋊τ appearing

in (4) has a unique irreducible quotient. Therefore, we have

(5) χV δrν
sr × · · · × χV δ1ν

s1 ⋊ τ ′ ։ σ

where τ ′ is the unique irreducible quotient of χV ζ(
1
2 ,

l−1
2 ) ⋊ τ (that is, the

Langlands quotient of χV | · |
l−1
2 × · · · × χV | · |

1
2 ⋊ τ). It is now important to

note the following:

Lemma 7.8. The representation τ ′ is a subquotient of Θ−l(π0).

Proof. We revisit the maps we have used so far: (0), (1), (2), (4) and
(5). Let Π denote δrν

sr × · · · × δ1ν
s1 . Starting from

T : χV ∆⋊Θ−l(π00) ։ Θ−l(π0)

we induce to obtain

Ind(T ) : χV Π× χV ∆⋊Θ−l(π00) ։ χV Π⋊Θ−l(π0).

Composing this with (0) (which is given by S : χV Π ⋊ Θ−l(π0) ։ σ) we get
epimorphism (1):

S ◦ Ind(T ) : χV Π× χV ∆⋊Θ−l(π00) ։ σ.

Proposition 7.1 shows that no subquotient of Θ−l(π00) except θ−l(π00) can
participate in the above epimorphism; in other words, we have χV Π×χV ∆⋊
Θ0 ⊆ kerS ◦ Ind(T ) where we have used Θ0 to denote the maximal proper
subrepresentation of Θ−l(π00).

Taking the quotient of S ◦ Ind(T ) by χV Π×χV ∆⋊Θ0 we get a new map,
(2):

˜S ◦ Ind(T ) : χV Π× χV ∆⋊ θ−l(π00) ։ σ.

By the construction of this map it is obvious that any subquotient τ ′ of
χV ∆⋊θ−l(π00) participating in the above epimorphism must be a subquotient
of Θ−l(π0), so we get (5). This subquotient is written as a subquotient of
χV ζ(

1
2 ,

l−1
2 ) ⋊ τ in (4), and Lemma 7.6 shows that τ ′ is in fact a quotient of

χV ζ(
1
2 ,

l−1
2 )⋊ τ .

Finally, it remains to verify the following.

Lemma 7.9. The only subquotient of Θ−l(π0) with standard module of the

form χV | · |
l−1
2 × · · · × χV | · |

1
2 ⋊ τ is θ−l(π0).



THETA LIFTS OF GENERIC REPRESENTATIONS 455

Proof. Let τ ′ be a subquotient of Θ−l(π0) such that

χV | · |
l−1
2 × · · · × χV | · |

1
2 ⋊ τ ։ τ ′

for some tempered τ . Denote by τ1 the Langlands quotient of χV | · |
l−3
2 ×

· · · × χV | · |
1
2 ⋊ τ , so that χV | · |

l−1
2 ⋊ τ1 ։ τ ′, i.e. τ ′ →֒ χV | · |

1−l
2 ⋊ τ1.

We now use Kudla’s filtration: the map we’ve just obtained shows that

Hom(τ ′, χV | · |
1−l
2 ⋊ τ1) 6= 0. Using Frobenius reciprocity, this means that

Hom(RQ1(τ
′), χV | · |

1−l
2 ⊗τ1) 6= 0, where Q1 denotes the appropriate standard

maximal parabolic subgroup of Mp(Wn). From here, we deduce that χV | ·

|
1−l
2 ⊗ τ1 is a quotient of RQ1(τ

′)
χV |·|

1−l
2
, which implies that it is also a

subquotient of RQ1(Θ−l(π0))
χV |·|

1−l
2
.

On the other hand, π0 ⊗ RQ1(Θ−l(π0))
χV |·|

1−l
2

is obviously a quotient

of RQ1(ωm0,n0)—here m0 is defined by π0 ∈ Irr(O(Vm0 )), n0 = m0 − 1 + l,
and ωm0,n0 is the corresponding Weil representation. Kudla’s filtration of
RQ1(ωm0,n0) is

J0 = χV | · |
1−l
2 ⊗ ωm0,n0−2 (the quotient)

J1 = Ind(Σ1 ⊗ ωm0−2,n0−2) (the subrepresentation).

It is now easy to show that J1 cannot participate in the epimorphism
RQ1(ωm0,n0) ։ π0 ⊗ RP ′

1
(Θ−l(π0))

χV |·|
1−l
2
. Otherwise, an application of the

second Frobenius reciprocity would show that RP 1
(π0) (where P 1 denotes the

parabolic subgroup opposite to P1) has a quotient of the form | · |
l−1
2 ⊗ π1.

As π0 is tempered, and l−1
2 > 0, Casselman’s criterion shows that this is

impossible.
This means that π0 ⊗ RQ1(Θ−l(π0))

χV |·|
1−l
2

is a quotient of J0, which

immediately implies that τ1 is a subquotient of Θ2−l(π0).
Inductively repeating this argument shows that τ is a subquotient of

Θ0(π0); however, Θ0(π0) is irreducible, so we must have τ = Θ0(π0) = θ0(π0).
This proves that τ ′ is the Langlands quotient of

χV | · |
l−1
2 × · · · × χV | · |

1
2 ⋊ θ0(π0).

By Proposition 7.5 (i), we conclude that τ ′ = θ−l(π0).

This completes case (1). Let us summarize: we have shown that

χV Π⋊ θ−l(π0) ։ θ−l(π),

and we have determined the standard module of θ−l(π):

θ−l(π) = L(χV δrν
sr , . . . , χV δ1ν

s1 , χV | · |
l−1
2 , . . . , χV | · |

1
2 ; θ−1(π0)).
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Case 2: the going-up tower
Recall that the going-up tower for π0 is the same as the going-up tower for
π00. In other words, π00 first appears on this tower when l = −2. Further-
more, Proposition 7.5 shows that θ−2(π00) is tempered, whereas for l > 2 the
representation θ−l(π00) is the Langlands quotient of

χV ν
l−1
2 × · · · × χV ν

3
2 ⋊ θ−2(π00),

that is, the unique quotient of

χV ζ(
3

2
,
l − 1

2
)⋊ θ−2(π00).

Using this in (2) we get

(6) χV δrν
sr × · · · × χV δ1ν

s1 × χV ∆× χV ζ(
3

2
,
l − 1

2
)⋊ θ−2(π00) ։ σ.

We proceed like in Case 1: according to Lemma 6.1 and Remark 6.3,
χV ζ(

3
2 ,

l−1
2 ) can switch places with all the representations which define χV ∆,

except χV St2 = χV δ([| · |
− 1

2 , | · |
1
2 ]). Thus, we initially assume that St2 does

not appear in the definition of ∆ or, equivalently:

Case 2.1: St2 does not appear in the tempered support of π0.
By the discussion above, in this case we have

χV δrν
sr × · · · × χV δ1ν

s1 × χV ζ(
3

2
,
l − 1

2
)× χV ∆⋊ θ−2(π00) ։ σ.

This implies that there is an irreducible tempered subquotient τ of χV ∆ ⋊
θ−2(π00) such that

χV δrν
sr × · · · × χV δ1ν

s1 × χV ζ(
3

2
,
l − 1

2
)⋊ τ ։ σ.

We can now repeat the arguments of Case 1—we apply Lemmas 7.6, 7.7, 7.8
and 7.9 the same way to show that

χV δrν
sr × · · · × χV δ1ν

s1 ⋊ θ−l(π0) ։ σ

and that

θ−l(π) = L(χV δrν
sr , . . . , χV δ1ν

s1 , χV | · |
l−1
2 , . . . , χV | · |

3
2 ; θ−2(π0)).

The only part we need to check are the conditions of Lemma 7.7. In Case 1
we had (using the notation of 7.7) c = 1

2 , so that condition (ii) of the Lemma
was automatically satisfied. In this case, we have a different situation: since

c = 3
2 , condition (i) of the Lemma can be violated if δ1ν

s1 = | · |
1
2 .

First, we note that (by Lemma 6.1) we can swap ζ(32 ,
l−1
2 ) with any δiν

s
i

such that si =
1
2 , except maybe | · |

1
2 . However, it is easy to show that | · |

1
2

cannot appear in the standard module for π: it would force the standard
module to reduce (cf. Propositions 4.5 and 4.8 of [12]), and this is impossible
by the standard module conjecture.
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Any other δ1ν
s1 = δ([a, b]) with a, b ∈ 1

2+Z satisfies si =
a+b
2 > 1

2 . Therefore,
condition (ii) of Lemma 7.7 is fulfilled, and we can proceed with the inductive
procedure of Lemma 7.6.

Case 2.2: St2 appears in the tempered support of π0.
Let h be the number of times St2 appears in the tempered support. Setting
(St2, h) = St2 × · · · × St2 (h times), we write ∆ = ∆′ × (St2, h) where ∆′ is
the representation induced from all the other representations which appear in
the tempered support. Rewriting (6), we thus get

χV δrν
sr ×· · ·×χV δ1ν

s1 ×χV ∆
′×χV (St2, h)×χV ζ(

3

2
,
l − 1

2
)⋊θ−2(π00) ։ σ.

This brings us to the technical difficulty we pointed out above: since St2
cannot simply switch places with ζ(32 ,

l−1
2 ), we cannot immediately conclude

that

χV δrν
sr ×· · ·×χV δ1ν

s1 ×χV ζ(
3

2
,
l− 1

2
)×χV ∆

′×χV (St2, h)⋊θ−2(π00) ։ σ

holds, as we did in Case 2.1. To remedy this problem, we divide Case 2.2 into
two more subcases:

Subcase 2.2.1: the parameter of π00 contains S2.
Under this assumption, θ−2(π00) is no longer in discrete series; rather, the
multiplicity of χV S2 in its parameter is two (see Theorem 4.5 in [2]). This
means that there is an irreducible tempered representation σ00 such that
θ−2(π00) →֒ χV St2 ⋊ σ00. This implies that θ−l(π00) is a quotient of

χV | · |
l−1
2 × · · · × χV | · |

3
2 × χV St2 ⋊ σ00.

From here, one can easily show that θ−l(π00) is in fact a quotient of χV L⋊σ00
where we have used L to denote the Langlands quotient of | · |

l−1
2 × · · · × | ·

|
3
2 × St2.

Using this in (6), we get

χV δrν
sr × · · · × χV δ1ν

s1 × χV ∆
′ × χV (St2, h)× χV L⋊ σ00 ։ σ.

Now L can switch places with all the St2, so we have

χV δrν
sr × · · · × χV δ1ν

s1 × χV ∆
′ × χV L× χV (St2, h)⋊ σ00 ։ σ.

Recall that L is a quotient of ζ(32 ,
l−1
2 ) × St2, and that ζ(32 ,

l−1
2 ) can freely

switch places with all the representations in ∆′. Taking this into account, we
may write

χV δrν
sr × · · · ×χV δ1ν

s1 ×χV ζ(
3

2
,
l − 1

2
)×χV ∆

′ ×χV (St2, h+1)⋊ σ00 ։ σ.
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The above map implies that there is an irreducible (and necessarily tempered)
subquotient τ of χV ∆

′ × χV (St2, h+ 1)⋊ σ00 such that

χV δrν
sr × · · · × χV δ1ν

s1 × χV ζ(
3

2
,
l − 1

2
)⋊ τ ։ σ.

We can now finish the proof just like we did in Case 2.1.

Subcase 2.2.2: the parameter of π00 does not contain S2.
Keeping the notation of Subcase 2.2.1. and returning to (6) again, we have

χV δrν
sr ×· · ·×χV δ1ν

s1 ×χV (St2, h)×χV ∆
′×χV ζ(

3

2
,
l − 1

2
)⋊θ−2(π00) ։ σ.

Again, ζ(32 ,
l−1
2 ) can switch places with all the representations in ∆′. As in

the previous case, we cannot immediately swap ζ(32 ,
l−1
2 ) and (St2, h). More-

over, since θ−2(π00) is now a discrete series representation, we do not have
a workaround like in Subcase 2.2.1. In fact, Remark 6.4 shows that we have
two distinct options:

(i) there exists an irreducible (tempered) subquotient τ1 of χV ∆⋊θ−2(π00)
such that

χV δrν
sr × · · · × χV δ1ν

s1 × χV ζ(
3

2
,
l − 1

2
)⋊ τ1 ։ σ

(ii) there exists an irreducible (tempered) subquotient τ2 of χV (St2, h−1)×
χV ∆

′ ⋊ θ−2(π00) such that

χV δrν
sr × · · · × χV δ1ν

s1 × χV L
′ ⋊ τ2 ։ σ,

where L′ denotes the Langlands quotient of | · |
l−1
2 ×· · ·×| · |

5
2 ×St3ν

1
2 , that is,

the unique irreducible quotient of ζ(52 ,
l−1
2 )× St3ν

1
2 . If we can show that (i)

always holds, then we can finish the proof like we did in Case 2.1 (or Subcase
2.2.1). Let us therefore show that option (ii) is impossible.

Assume the contrary. Then we can adjust the proof of Lemma 7.6 to show
that the representation on the left-hand side of (ii) has a unique irreducible
quotient. First, by Lemma 6.1, ζ(52 ,

l−1
2 ) can switch places with all the δiν

si

for which si 6
3
2 ; the only exceptions are |·|

3
2 , δ([|·|

1
2 , |·|

3
2 ]) and δ([|·|−

1
2 , |·|

3
2 ]).

However, |·|
3
2 and δ([|·|

1
2 , |·|

3
2 ]) cannot appear among δ1ν

s1 , . . . , δrν
sr—since

π0 contains St2 in its tempered support, this would cause the standard module

of π to reduce. On the other hand, Lemma 6.5 shows that δ([| · |−
1
2 , | · |

3
2 ]) is

not problematic, since L′×δ([| · |−
1
2 , | · |

3
2 ]) ∼= δ([| · |−

1
2 , | · |

3
2 ])×L′. All the other

si satisfy si >
3
2 , which means that condition (ii) of Lemma 7.7 is satisfied.

We can thus apply Lemma 7.7 inductively to complete the argument.
We can now use the arguments of Case 1 to arrive at a contradiction. In

particular, we now know that the irreducible subquotient of χV L
′ ⋊ τ2 which

participates in the above map (ii) is in fact its (unique) irreducible quotient,

i.e. L(χV | · |
l−1
2 × · · · × χV | · |

5
2 ×χV St3ν

1
2 ⋊ τ2). Repeating the arguments of
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Lemma 7.8, we show that this irreducible quotient must also be a subquotient
of Θ−l(π0). This implies, using the inductive procedure from Lemma 7.9, that

L(χV St3ν
1
2 ⋊ τ2) is an irreducible subquotient of Θ−4(π0).

We complete the proof by showing that this is not possible. Recall that
π0 is a subquotient of (St2, h)⋊ π′

0, where π
′
0 is an irreducible subquotient of

∆′ ⋊ π00. In fact, since the parameter of π′
0 no longer contains S2, Lemma

2.3 shows that (St2, h) ⋊ π′
0 decomposes as a direct sum of two irreducible

tempered representations. This means that there is an irreducible tempered
representation π1 such that

(St2, h)⋊ π′
0
∼= π0 ⊕ π1.

This implies

Hom(ω, (St2, h)⋊ π′
0)∞ = Hom(ω, π0)∞ ⊕Hom(ω, π1)∞

= Θ∨
−4(π0)⊕Θ∨

−4(π1),

where ω denotes the appropriate Weil representation. We now repeat the
computations of Corollary 3.7 to show that Hom(ω, (St2, h)) →֒ χV (St2, h)⋊
Θ∨

−4(π
′
0). Taking contragredients we thus arrive at

(∗) χV (St2, h)⋊Θ−4(π
′
0) ։ Θ−4(π0)⊕Θ−4(π1).

We now need

Lemma 7.10. The only non-tempered irreducible subquotient of Θ−4(π
′
0)

is θ−4(π
′
0), i.e., L(χV | · |

3
2 ⋊ θ−2(π

′
0)).

Proof. Any non-tempered subquotient of Θ−4(π
′
0) is easily shown to

be a subquotient of χV | · |
3
2 ⋊ θ−2(π

′
0)). However, π′

0 does not contain S2,
so θ−2(π

′
0)) is a discrete series representation. A simple application of Cas-

selman’s criterion now shows that χV | · |
3
2 ⋊ θ−2(π

′
0)) has no non-tempered

subquotients apart from its Langlands quotient.

As a consequence of this lemma, any non-tempered irreducible subquotient
of Θ−4(π0) must also be a subquotient χV (St2, h)× χV | · |

3
2 ⋊Θ−2(π

′
0). Fur-

thermore, we have

Lemma 7.11. The representation χV (St2, h)×χV | · |
3
2 ⋊Θ−2(π

′
0) contains

a unique irreducible subquotient whose standard module is of the form χV δ([| ·

|−
1
2 , | · |

3
2 ])⋊ τ2.

Proof. Let ξ be such a subquotient. Then χV δ([| · |
− 1

2 , | · |
3
2 ])⋊ τ2 ։ ξ

is equivalent to ξ →֒ χV δ([| · |
− 3

2 , | · |
1
2 ])⋊ τ2, which implies RQ3(ξ) ։ χV δ([| ·

|−
3
2 , | · |

1
2 ])⊗τ2. An easy application of Tadić’s formula for µ∗ (cf. Section 2.5)

and Casselman’s criterion now show that the only irreducible subquotient of

RQ3(χV (St2, h)×χV |·|
3
2 ⋊Θ−2(π

′
0)) in which GL3(F ) acts by χV δ([|·|

− 3
2 , |·|

1
2 ])
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is in fact χV δ([| · |
− 3

2 , | · |
1
2 ])⊗ χV (St2, h)⋊Θ−2(π

′
0). Thus τ2 = χV (St2, h)⋊

Θ−2(π
′
0).

On the other hand, ξ is either a subquotient of A = χV (St2, h − 1) ×

χV δ([| · |
− 1

2 , | · |
3
2 ]) ⋊ Θ−2(π

′
0), or of B = χV (St2, h − 1) × χV L ⋊ Θ−2(π

′
0),

where we have used L to denote the Langlands quotient of | · |
3
2 × St2.

In the first case, we have A ∼= χV δ([|·|
− 1

2 , |·|
3
2 ])×χV (St2, h−1)⋊Θ−2(π

′
0),

so that ξ is in fact the Langlands quotient of A (note that the parameter of
Θ−2(π

′
0) contains χV S2, so that χV (St2, h− 1)⋊Θ−2(π

′
0) is irreducible). As

the Langlands quotient appears with multiplicity one, it remains to show that
ξ cannot appear in B.

Note that we have B ∼= χV L×χV (St2, h−1)⋊Θ−2(π
′
0), so B has a unique

irreducible quotient, which is L(χV ν
3
2 ; (χV St2, h)⋊Θ−2(π

′
0)). We claim that

this is the only non-tempered subquotient of B. To prove this, observe that
this Langlands quotient is equal to the image of the intertwining operator

T : χV (St2, h− 1)× χV L⋊Θ−2(π
′
0) → χV (St2, h− 1)× χV L

∨ ⋊Θ−2(π
′
0).

Therefore, any other non-tempered subquotient of B must lie in the kernel
of this intertwining operator. However, this operator is a restriction of the
intertwining operator

χV (St2, h)× χV ν
3
2 ⋊Θ−2(π

′
0) → χV (St2, h)× χV ν

− 3
2 ⋊Θ−2(π

′
0),

which is induced from

T0 : χV ν
3
2 ⋊Θ−2(π

′
0) → χV ν

− 3
2 ⋊Θ−2(π

′
0).

From here we see that kerT ⊆ χV (St2, h) ⋊ kerT0. On the other hand, we

have already seen (cf. Lemma 7.10) that χV ν
3
2 ⋊Θ−2(π

′
0) has no non-tempered

subquotients apart from its Langlands quotient. In particular, kerT0 contains
only tempered subquotients, which implies the same for kerT . We have thus
shown that there are no non-tempered subquotients of B apart from its unique
quotient. This completes the proof of the lemma.

Returning to the discussion before Lemma 7.10, we notice that θ−4(π1)
has a standard module of the form described in Lemma 7.11 (cf. Theorem 4.5
(3) of [2]). However, we have just proved that χV (St2, h)⋊Θ−4(π

′
0) contains

only one irreducible subquotient which satisfies this property. In other words,
the unique irreducible subquotient of χV (St2, h) ⋊ Θ−4(π

′
0) with a standard

module of the prescribed form belongs to Θ−4(π1). Taking (∗) into account,
this means that it cannot appear in θ−4(π0). This completes the proof of our
Claim, and with it, the final step of our proof in Subcase 2.2.2.

We have thus analyzed all the cases obtained by considering different
possibilities with respect to the target tower and the L-parameter of π0. Along
with the first lifts determined in Section 5 this provides a comprehensive
description of all the lifts we have considered. The results are summarized in
Theorem 5.1.
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