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Abstract. For any continuous single-valued functions f, g : [0, 1] →
[0, 1] we define upper semicontinuous set-valued functions F,G : [0, 1] ⊸
[0, 1] by their graphs as the unions of the diagonal ∆ and the graphs of set-
valued inverses of f and g respectively. We introduce when two functions
are ∆-related and show that if f and g are ∆-related, then the inverse
limits lim

−⊸

F and lim

−⊸

G are homeomorphic. We also give conditions under

which lim

−⊸

G is a quotient space of lim

−⊸

F .

1. Introduction

Given two inverse limits lim−⊸F and lim−⊸G, it is usually a very difficult

problem to see whether lim−⊸F and lim−⊸G are homeomorphic. That is why

there are many authors researching the properties of bonding functions F and
G that guarantee the existence of a homeomorphism from lim−⊸F to lim−⊸G;

for examples see [3, 4, 5, 6, 7]. In present paper we give sufficient conditions
on set-valued functions F and G from a large class of upper semicontinuous
functions such that their inverse limits are homeomorphic.

Our motivation in defining this class of upper semicontinuous functions is
Ingram’s paper [8], where the inverse limits with upper semicontinuous func-
tions whose graphs are unions of graphs of single-valued functions are studied.
In particular, we start with any continuous function f : [0, 1]→ [0, 1] and the
identity function id : [0, 1] → [0, 1], and define the upper semicontinuous
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function F : [0, 1]→ [0, 1] by

Γ(F ) = {(s, t) ∈ [0, 1]× [0, 1] | (t, s) ∈ Γ(f) ∪ Γ(id)}.

Our main result says that if f and g are ∆-related, then the inverse limits
lim−⊸F and lim−⊸G (where F and G are defined as above) are homeomorphic.

We also give conditions under which lim−⊸G is a quotient space of lim−⊸F .

We proceed as follows. In Section 2, the basic definitions and notation
are given. Section 3 serves as an illustrative motivation for our results and in
Section 4, our main results are presented.

2. Definitions and notation

In the paper N denotes the set of all positive integers and N0 the set of
all nonnegative integers. A continuum is a nonempty compact and connected
metric space.

For each x = (x1, x2, x3, . . .) in the Hilbert cube Q = Π∞

i=1[0, 1] we use
the standard notation for the i-th projection, i.e. πi(x) = xi. We always use
Q to denote the Hilbert cube Π∞

i=1[0, 1].

2[0,1] denotes the set of all nonempty closed subsets of [0, 1]. A function
F : [0, 1] → 2[0,1] is called a set-valued function from [0, 1] to [0, 1]. We use
F : [0, 1] ⊸ [0, 1] to denote such functions.

A function F : [0, 1] ⊸ [0, 1] is upper semicontinuous at the point x ∈ [0, 1]
provided that if V is any open set in [0, 1] containing F (x) then there is an
open set U in [0, 1] containing x such that F (t) ⊆ V for any t ∈ U . A function
F is called upper semicontinuous if it is upper semicontinuous at each point
of [0, 1].

The graph Γ(F ) of a function F : [0, 1] ⊸ [0, 1] is the set of all points
(x, y) ∈ [0, 1]× [0, 1] such that y ∈ F (x).

The following theorem is a well-known characterization of upper semicon-
tinuous functions ([2, Theorem 1.2]).

Theorem 2.1. Let F : [0, 1] ⊸ [0, 1] be a function. Then F is upper
semicontinuous if and only if its graph Γ(F ) is closed in [0, 1]× [0, 1].

In this paper we always deal with inverse sequences {Xi, Fi}
∞

i=1, where
Xi = [0, 1] and Fi : [0, 1] ⊸ [0, 1] is upper semicontinuous function for each
i. We denote them by {[0, 1], Fi}

∞

i=1. The functions Fi are called the bonding
functions.

The inverse limit of an inverse sequence {[0, 1], Fi}
∞

i=1 is defined to be
the subspace of the product space

∏
∞

i=1[0, 1] of all x = (x1, x2, x3, . . .) ∈∏
∞

i=1[0, 1], such that xi ∈ Fi(xi+1) for each i. The inverse limit is denoted
by lim−⊸{[0, 1], Fi}

∞

i=1. These inverse limits are a recent generalization (in-

troduced by T. W. Ingram and W. S. Mahavier) of inverse limits of inverse
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sequences {[0, 1], fi}
∞

i=1, where fi : [0, 1] → [0, 1] are continuous functions.
Such inverse limits are usually denoted by lim

←−
{[0, 1], fi}

∞

i=1. Obviously, for

any inverse sequence {[0, 1], fi}
∞

i=1 of compact metric spaces and continuous
bonding functions,

lim
←−
{[0, 1], fi}

∞

i=1 = lim−⊸{[0, 1], Fi}
∞

i=1

if Fi(x) = {fi(x)} for each i and each x ∈ [0, 1].
In the article we deal only with inverse sequences {[0, 1], Fi}

∞

i=1 where all
the bonding functions are the same. In the case where Fi = F for each i, the
inverse limit lim−⊸{[0, 1], Fi}

∞

i=1 will be denoted by lim−⊸F .

Next we introduce some notation that is used in the paper.
For each t ∈ [0, 1] let t = (t, t, t, . . .). Next, let ∆ = {(t, t) | t ∈ [0, 1]} and

L∞ =
{
t | t ∈ [0, 1]

}
.

For any continuous function f : [0, 1]→ [0, 1] we define

f∗ = {(f(x), x) | x ∈ [0, 1]},

L(ni)ki=0

(f)=










t, . . . , t
︸ ︷︷ ︸

n0

, f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, . . . , fk(t), . . . , fk(t)
︸ ︷︷ ︸

nk

, fk+1(t)




|t ∈ [0, 1]







for each k ∈ N0 and for any (k + 1)-tuple (n0, n1, n2, . . . , nk) ∈ N
k+1, and

L(ni)∞i=0
(f) =










t, . . . , t
︸ ︷︷ ︸

n0

, f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, f2(t), . . . , f2(t)
︸ ︷︷ ︸

n2

, . . .




 |t ∈ [0, 1]







for any sequence (n0, n1, n2, . . .) of positive integers.
Next, for each n0 ∈ N we denote

Ln0(f) =
{

L(ni)ki=0

(f) | k ∈ N0 and n1, n2, . . . , nk ∈ N

}

∪
{
L(ni)∞i=0

(f) | ni ∈ N for each i ∈ N
}
,

and
Ln0(f) =

⋃

Ln0(f),

meaning that Ln0(f) is the union of sets from Ln0(f).

3. Motivation examples

In this section we take three simple u.s.c. functions from [0, 1] to [0, 1]
and study relationships of their inverse limits. Those functions will serve as
a motivation for our main results.

We define each of the three functions by defining their graphs. The graph
of each function is the union of the diagonal ∆ and the set f∗ for some
continuous function f : [0, 1]→ [0, 1]. We define the three functions in such a
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way that their inverse limits are not homeomorphic, but still, they are related
in the sense that there is a quotient map from one to another. First we prove
the following proposition.

Proposition 3.1. Let f : [0, 1] → [0, 1] be a continuous function and
F : [0, 1] ⊸ [0, 1] the upper semicontinuous function defined by Γ(F ) = ∆∪f∗.
Then

lim−⊸F = Cl

(
⋃

n0∈N

Ln0(f)

)

=

(
⋃

n0∈N

Ln0(f)

)

∪ L∞.

Proof. The equalities

lim−⊸F =

(
⋃

n0∈N

Ln0(f)

)

∪ L∞

and

Cl

(
⋃

n0∈N

Ln0(f)

)

=

(
⋃

n0∈N

Ln0(f)

)

∪ L∞

are obvious. We leave the details to a reader.

Example 3.2. Let f : [0, 1] → [0, 1] be the piecewise linear function,
whose graph is the union of two straight line segments connecting the points
(0, 1), (12 ,

3
4 ) and (1, 1). We define F : [0, 1] ⊸ [0, 1] by Γ(F ) = ∆ ∪ f∗. See

Figure 1.

0
0

1

1

0.5

0.5

1L(f)

L 8

1

2L(f)

11

L(f)3

Figure 1. Γ(F ) (left) and a homeomorphic copy of lim−⊸F (right)

Then by Proposition 3.1,

lim−⊸F = Cl

(
⋃

n0∈N

Ln0(f)

)

=

(
⋃

n0∈N

Ln0(f)

)

∪ L∞.
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For a geometrical interpretation of the inverse limit, let n0 be arbitrarily
chosen. One can easily see that each element of Ln0(f) is an arc with end-
points (0, 0, . . . , 0

︸ ︷︷ ︸

n0

, 1) and 1, and that Ln0(f) ∩ ({t0} ×Q) is a Cantor set for

each t0 ∈ (0, 1).

Also, note that Ln0(f) ∩ Ln′

0(f) = {1} if and only if n0 6= n′

0, L
n0(f) ∩

L∞ = {1} for each n0 ∈ N and limn0→∞ Ln0(f) = L∞; see Figure 1.
Next we define the second function of the example.
Let g : [0, 1]→ [0, 1] be the piecewise linear function, whose graph is the

union of four straight line segments connecting the points (0, 1), (14 ,
7
8 ), (

1
2 , 1),

(34 ,
7
8 ) and (1, 1).
We define G : [0, 1] ⊸ [0, 1] by Γ(G) = ∆ ∪ g∗. See Figure 2.

0
0

1

1

0.5

0.5

L 8

1L(g)

2L(g)
3L(g)

Figure 2. Γ(G) (left) and a homeomorphic copy of lim−⊸G(right)

Then by Proposition 3.1,

lim−⊸G = Cl

(
⋃

n0∈N

Ln0(g)

)

=

(
⋃

n0∈N

Ln0(g)

)

∪ L∞.

Let ϕ : lim−⊸F → lim−⊸G be defined by

ϕ




t, t, . . . , t
︸ ︷︷ ︸

n0

, f(t), f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, f2(t), f2(t), . . . , f2(t)
︸ ︷︷ ︸

n2

, . . .






=




t, t, . . . , t
︸ ︷︷ ︸

n0

, g(t), g(t), . . . , g(t)
︸ ︷︷ ︸

n1

, g2(t), g2(t), . . . , g2(t)
︸ ︷︷ ︸

n2

, . . .




 .
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It is easy to see that ϕ is well defined and surjective. Since g is continuous,
ϕ is also a continuous function. This means that ϕ is a quotient map from
lim−⊸F to the lim−⊸G.

Note that ϕ is not injective. For instance, let

xn = (
1

2
, f(

1

2
), f(

1

2
), . . . , f(

1

2
)

︸ ︷︷ ︸

n

, f2(
1

2
)) ∈ L(1,n)(f)

for each positive integer n. Recall that L(1,n)(f) are arcs with

⋂

n∈N

L(1,n)(f) =
{
(0, 1), 1

}
,

and therefore xn 6= xm for each n 6= m. But obviously ϕ(xn) = (12 , 1) for
each positive integer n. See Figure 2, where lim−⊸G is presented.

Finally, the last function of the example is defined.
Let h : [0, 1]→ [0, 1] be the piecewise linear function, whose graph is the

union of four straight line segments connecting the points (0, 1), (14 ,
3
8 ), (

1
2 , 1),

(34 ,
7
8 ) and (1, 1).
We define H : [0, 1] ⊸ [0, 1] by Γ(H) = ∆ ∪ h∗. See Figure 3.

0
0

1

1

0.5

0.5

t
1

t
2

Figure 3. Γ(H)

Then by Proposition 3.1,

lim−⊸H = Cl

(
⋃

n0∈N

Ln0(h)

)

=

(
⋃

n0∈N

Ln0(h)

)

∪ L∞.
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As before, one can easily see that

ψ




t, t, . . . , t
︸ ︷︷ ︸

n0

, g(t), g(t), . . . , g(t)
︸ ︷︷ ︸

n1

, g2(t), g2(t), . . . , g2(t)
︸ ︷︷ ︸

n2

, . . .






=




t, t, . . . , t
︸ ︷︷ ︸

n0

, h(t), h(t), . . . , h(t)
︸ ︷︷ ︸

n1

, h2(t), h2(t), . . . , h2(t)
︸ ︷︷ ︸

n2

, . . .






defines a quotient map lim−⊸G→ lim−⊸H .

L 8

1L(h)1L(h)

3L(h)

2L(h)

Figure 4. A homeomorphic copy of lim−⊸H

We show that ψ is not injective. From the definition of the function h it
follows that there exist t1, t2 ∈ [0, 1] with t1 6= t2 and h(t1) = h(t2) =

1
2 . Let

xn = (t1, g(t1), g
2(t1), g

2(t1), . . . , g
2(t1)

︸ ︷︷ ︸

n

, g3(t1))

and

yn = (t2, g(t2), g
2(t2), g

2(t2), . . . , g
2(t2)

︸ ︷︷ ︸

n

, g3(t2)).
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Since xn,yn ∈ L(1,1,n)(g) and
⋂

n∈N

L(1,1,n)(g) =
{
(0, 0, 1), 1

}
,

it holds that xn 6= xm and yn 6= ym for each n 6= m. But ψ(xn) = (t1,
1
2 , 1)

and ψ(yn) = (t2,
1
2 , 1) for each positive integer n.

See Figure 4, where lim−⊸H is presented. On the Figure some special

points of lim−⊸H which are not special for lim−⊸G may be seen; i.e., within the

upper loops, sets of ramification points appear in lim−⊸H : one set associated

with t1 (the ramification points on the left hand part of the upper loops) and
the other set associated with t2 (the ramification points on the right hand
part of the upper loops).

We can define a quotient map lim−⊸F → lim−⊸H by using the same formula

as before.
Note that the harmonic fan (which is homeomorphic to the inverse limit

lim−⊸Λ where Γ(Λ) = ∆∪ ({1}× [0, 1]), see [2, p. 31] for instance) is a quotient

space of each inverse limit from the example. To see this, a reader may follow
a similar arguing as above.

4. Main results

In the present section we give our main results. In particular, for con-
tinuous functions f, g : [0, 1]→ [0, 1] and the upper semicontinuous functions
F,G : [0, 1] ⊸ [0, 1], where

Γ(F ) = ∆ ∪ f∗ and Γ(G) = ∆ ∪ g∗,

we give sufficient conditions on f and g under which inverse limits lim−⊸F and

lim−⊸G are homeomorphic. We introduce some notation first.

For a continuous function f : [0, 1]→ [0, 1] let

A0(f) = {x ∈ [0, 1] | f(x) = x} ,

Ai(f) =
{
x ∈ [0, 1] | f i+1(x) = f i(x)

}
for each i ∈ N,

and let

A(f) =

∞⋃

i=0

Ai(f) .

Definition 4.1. Let f : [0, 1]→ [0, 1] and g : [0, 1]→ [0, 1] be continuous
functions. We say that f and g are ∆-related, if there is an increasing home-
omorphism α : [0, 1]→ [0, 1] such that α(Ai(f)) = Ai(g) for each nonnegative
integer i.
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Note that the condition “α(Ai(f)) = Ai(g) for each nonnegative integer
i” in Definition 4.1 is equivalent to “α(Ai+1(f) \ Ai(f)) = Ai+1(g) \ Ai(g)
for each nonnegative integer i” as well as to “α|Ai(f) : Ai(f) → Ai(g) is an
increasing homeomorphism for each nonnegative integer i”.

Theorem 4.2. Let f, g : [0, 1]→ [0, 1] be ∆-related continuous functions
and let F,G : [0, 1] ⊸ [0, 1] be defined by their graphs:

Γ(F ) = ∆ ∪ f∗, Γ(G) = ∆ ∪ g∗.

Then lim−⊸F is homeomorphic to lim−⊸G.

Proof. Let α : [0, 1] → [0, 1] be an increasing homeomorphism, such
that α(Ai(f)) = Ai(g) for each nonnegative integer i.

We define ϕ : lim−⊸F → lim−⊸G by

ϕ




t, . . . , t
︸ ︷︷ ︸

n0

, f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, f2(t), . . . , f2(t)
︸ ︷︷ ︸

n2

, . . .






=




α(t), . . . , α(t)
︸ ︷︷ ︸

n0

, g(α(t)), . . . , g(α(t))
︸ ︷︷ ︸

n1

, g2(α(t)), . . . , g2(α(t))
︸ ︷︷ ︸

n2

, . . .






and show that ϕ is a homeomorphism. Note that n0 > 0.
Obviously, ϕ is well defined and since α and g are both continuous, ϕ is

also a continuous function. Since for each

y = (t, . . . , t
︸ ︷︷ ︸

n0

, g(t), . . . , g(t)
︸ ︷︷ ︸

n1

, g2(t), . . . , g2(t)
︸ ︷︷ ︸

n2

, . . .) ∈ lim−⊸G

there is

x = (α−1(t), . . . , α−1(t)
︸ ︷︷ ︸

n0

, f(α−1(t)), . . . , f(α−1(t))
︸ ︷︷ ︸

n1

,

f2(α−1(t)), . . . , f2(α−1(t))
︸ ︷︷ ︸

n2

, . . .) ∈ lim−⊸F

such that ϕ(x) = y it follows that ϕ is surjective. To show that ϕ is injective
let ϕ(x1) = ϕ(x2). We already know that there exist t, s ∈ [0, 1] and ni,mi ∈
N ∪ {∞} for each nonnegative integer i such that

ϕ(x1) = ϕ(t, . . . , t
︸ ︷︷ ︸

n0

, f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, . . .)

= (α(t), . . . , α(t)
︸ ︷︷ ︸

n0

, g(α(t)), . . . , g(α(t))
︸ ︷︷ ︸

n1

, . . .)
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and

ϕ(x2) = ϕ(s, . . . , s
︸ ︷︷ ︸

m0

, f(s), . . . , f(s)
︸ ︷︷ ︸

m1

, . . .)

= (α(s), . . . , α(s)
︸ ︷︷ ︸

m0

, g(α(s)), . . . , g(α(s))
︸ ︷︷ ︸

m1

, . . .).

It follows that α(t) = α(s) and therefore t = s since α is bijective. We have

ϕ(x1) =(α(t), . . . , α(t)
︸ ︷︷ ︸

n0

, g(α(t)), . . . , g(α(t))
︸ ︷︷ ︸

n1

, g2(α(t)), . . . , g2(α(t))
︸ ︷︷ ︸

n2

, . . .)

=(α(t), . . . , α(t)
︸ ︷︷ ︸

m0

, g(α(t)), . . . , g(α(t))
︸ ︷︷ ︸

m1

, g2(α(t)), . . . , g2(α(t))
︸ ︷︷ ︸

m2

, . . .)

=ϕ(x2).

Suppose that n0 6= m0. Then g(α(t)) = α(t) and therefore α(t) ∈ A0(g). It
follows that t ∈ A0(f) and x1 = t = x2.

Next, suppose that there exists k ∈ N such that ni = mi for each i < k

and nk 6= mk.
Then gk+1(α(t)) = gk(α(t)) and therefore α(t) ∈ Ak(g) and t ∈ Ak(f).

Thus πi(x1) = t = πi(x2) for each i ≥ k and since (by the assumption)
πi(x1) = πi(x2) for each i < k, it follows that x1 = x2. Therefore ϕ is a
homeomorphism.

Next we interpret the relation “to be ∆-related functions” for the class
of continuous functions f : [0, 1] → [0, 1], such that A(f) is finite. This
interpretation gives an easy tool to detect ∆-related functions.

Note that if A(f) is finite, then also Ai(f) is finite for each i and since
Ai(f) ⊆ Ai+1(f) for each i, there is k ∈ N such that Ai(f) = Ai+1(f) for
each i ≥ k.

Theorem 4.3. Let f, g : [0, 1]→ [0, 1] be continuous functions such that
A(f) and A(g) are finite and let for each i ∈ N0, Ai(f) = {a

i
1, a

i
2, . . . , a

i
ni
},

where aij < aij+1 for each j ∈ {1, 2, . . . , ni− 1}, and Ai(g) = {b
i
1, b

i
2, . . . , b

i
mi
},

where bij < bij+1 for each j ∈ {1, 2, . . . ,mi − 1}. Then f and g are ∆-related
if and only if the following hold true

1. |Ai(f)| = |Ai(g)| for each i ∈ N0,
2. 0 ∈ Ai(f) if and only if 0 ∈ Ai(g) for each i ∈ N0,

1 ∈ Ai(f) if and only if 1 ∈ Ai(g) for each i ∈ N0,
3. |Ai+1(f) ∩ [0, aij]| = |Ai+1(g) ∩ [0, bij]| for each j ∈ {1, 2, . . . , ni}.

Note that (3) of Theorem 4.3 is equivalent to (3’) and (3”) below

(3’) |Ai+1(f) ∩ [aij , 1]| = |Ai+1(g) ∩ [bij, 1]| for each j ∈ {1, 2, . . . , ni}.
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(3”) |Ai+1(f)∩ [0, a
i
1]| = |Ai+1(g)∩ [0, b

i
1]|, |Ai+1(f)∩ [a

i
ni
, 1]| = |Ai+1(g)∩

[bini
, 1]| and |Ai+1(f) ∩ [aij , a

i
j+1]| = |Ai+1(g) ∩ [bij, b

i
j+1]| for each j ∈

{1, 2, . . . , ni − 1}.

Proof. First we prove that if f and g are ∆-related, then (1), (2) and
(3) follows. Let α : [0, 1] → [0, 1] be an increasing homeomorphism with
α(Ai(f)) = Ai(g) for each nonnegative integer i. Since 0 ≤ ai1 < ai2 < . . . <

aini
≤ 1 for each nonnegative integer i, it follows that α(0) = 0, α(1) = 1

and α(aij) = bij for each j ∈ {1, 2, . . . , ni} and therefore (1) and (2) obviously

hold true. Suppose that Ai+1(f) ∩ [0, aij] = {a
i+1
1 , ai+1

2 , . . . , ai+1
k } for some

k ≤ ni+1. Since α([0, aij ]) = [0, bij] and α(Ai+1(f)) = Ai+1(g) it follows that

(note that α is an increasing homeomorphism and Ai+1(f), Ai+1(g) are finite)
α(Ai+1(f) ∩ [0, aij]) = Ai+1(g) ∩ [0, bij] and therefore (3) follows.

To prove the other implication, suppose that (1), (2) and (3) hold true.
Let α : [0, 1] → [0, 1] be the increasing piecewise linear function, such that
α(0) = 0, α(1) = 1 and α(aij) = bij for each i ∈ N0 and each j ∈ {1, 2, . . . , ni}.
Obviously α is an increasing homeomorphism with α(Ai(f)) = Ai(g) for each
nonnegative integer i and therefore f and g are ∆-related.

The following is an easy corollary of Theorem 4.2 and Theorem 4.3.

Corollary 4.4. Let f, g : [0, 1] → [0, 1] be continuous functions such
that A(f) and A(g) are finite. Further, suppose that the following hold true

1. |Ai(f)| = |Ai(g)| for each i ∈ N0,
2. 0 ∈ Ai(f) if and only if 0 ∈ Ai(g) for each i ∈ N0,

1 ∈ Ai(f) if and only if 1 ∈ Ai(g) for each i ∈ N0,
3. |Ai+1(f) ∩ [0, aij]| = |Ai+1(g) ∩ [0, bij]| for each j ∈ {1, 2, . . . , ni}.

Then lim−⊸F is homeomorphic to lim−⊸G.

Example 4.5. Let F,G : [0, 1] ⊸ [0, 1] be defined by their graphs Γ(F )
and Γ(G), as shown on Figure 5. Then by Corollary 4.4 lim−⊸F is homeomor-

phic to lim−⊸G.

In Theorem 4.6, conditions on f and g are presented, under which the
existence of a quotient map (and not necessarily a homeomorphism) from
lim−⊸F to lim−⊸G is accomplished.

Theorem 4.6. Let f, g : [0, 1]→ [0, 1] be continuous functions such that
Ai(f) ⊆ Ai(g) for each nonnegative integer i. Further, let F,G : [0, 1] ⊸ [0, 1]
be defined by Γ(F ) = ∆∪ f∗, Γ(G) = ∆∪ g∗. Then lim−⊸G is a quotient space

of lim−⊸F .
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Figure 5. Γ(F ) (left) and Γ(G) (right)

Proof. We define ϕ : lim−⊸F → lim−⊸G by

ϕ




t, . . . , t
︸ ︷︷ ︸

n0

, f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, f2(t), . . . , f2(t)
︸ ︷︷ ︸

n2

, . . .






=




t, . . . , t
︸ ︷︷ ︸

n0

, g(t), . . . , g(t)
︸ ︷︷ ︸

n1

, g2(t), . . . , g2(t)
︸ ︷︷ ︸

n2

, . . .






and show that ϕ is a quotient map. It is easy to see that ϕ is well defined
and surjective since Ai(f) ⊆ Ai(g) for each nonnegative integer i. Since g is
continuous, ϕ is also a continuous function.

Remark 4.7. Let ϕ be the function from the proof of Theorem 4.6 and
suppose that A(f) and A(g) are finite. The quotient map ϕ helps picturing the
inverse limit lim−⊸G by gluing some points from lim−⊸F together. We continue

by listing such points.
We show that ϕ is injective if and only Ai(f) = Ai(g) for each nonnegative

integer i. If Ai(f) = Ai(g) for each i, then by taking α : [0, 1]→ [0, 1], α(t) = t

we can see that f and g are ∆-related and ϕ is a homeomorphism. Suppose
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that there exists i ∈ N0 such that Ai(f) is a proper subset of Ai(g) and let

Bi(f) =

{(

t, . . . , t
︸ ︷︷ ︸

n0

, f(t), . . . , f(t)
︸ ︷︷ ︸

n1

, . . . , f i(t), . . . , f i(t)
︸ ︷︷ ︸

ni

, f i+1(t), . . .

)

∣
∣
∣ t ∈ Ai(g) \Ai(f)

}

⊆ lim−⊸F,

Bi(g) =

{(

t, . . . , t
︸ ︷︷ ︸

n0

, g(t), . . . , g(t)
︸ ︷︷ ︸

n1

, . . . , gi(t), . . . , gi(t)
︸ ︷︷ ︸

ni

, gi+1(t), . . .

)

∣
∣
∣ t ∈ Ai(g) \Ai(f)

}

⊆ lim−⊸G.

Then ϕ(Bi(f)) = Bi(g) and since f i+1(t) 6= f i(t) and gi+1(t) = gi(t) it holds
that |Bi(f)| > |Bi(g)|, since both, Bi(f) and Bi(g) are finite. Therefore ϕ is
not injective.

We conclude the paper with the following illustrative example.

Example 4.8. Let F,G : [0, 1] ⊸ [0, 1] be defined by their graphs Γ(F )
and Γ(G), as shown on Figure 6. Then by Theorem 4.6 lim−⊸G is a quotient

0
0

1

1

0.5

0.5

0
0

1

1

0.5

0.5

Figure 6. Γ(F ) (left) and Γ(G) (right)

space of lim−⊸F . Note that lim−⊸F is a Cantor fan (see [2, p. 22]), while a

homeomorphic copy of the quotient space lim−⊸G is seen on Figure 7.
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tions and discussions. The author also thanks the anonymous referees for
useful remarks.



476 T. SOVIČ

Figure 7. A homeomorphic copy of lim−⊸G from Example 4.8
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