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ABSTRACT

Bilevel problems are widely used to describe the decision prob-
lems with hierarchical upper-lower-level structures in many eco-
nomic fields. The bilevel optimisation problem (BLOP) is
intrinsically NP-hard when its objectives and constraints are com-
plex and the decision variables are large in scale at both levels.
An efficient hybrid differential evolutionary algorithm for BLOP
(HDEAB) is proposed where the optimal lower level value function
mapping method, the differential evolutionary algorithm, k-near-
est neighbours (KNN) and a nested local search are hybridised to
improve the computational accuracy and efficiency. To show the
performance of the HDEAB, numerical studies were conducted on
SMD (Sinha, Maro and Deb) instances and an application example
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of optimising a venture capital staged-financing contract. The
results demonstrate that the HDEAB outperforms the BLEAQ (bile-
vel evolutionary algorithm based on quadratic approximations)
greatly in solving the BLOPs with different scales.

1. Introduction

Many decision-making problems in the economic, public and private sectors could be
described as bilevel optimisation problems (BLOPs), such as the taxing strategy (Wei,
Liang, Liu, Mei, & Tian, 2014), environment economics (Sinha, Malo, & Deb, 2013),
homeland security (Wein, 2009), the toll-setting problem (Brotcorne, Labbé,
Marcotte, & Savard, 2001), operational decision-making problem (Haghighat &
Kennedy, 2012), transportation policy formulation (Sinha, Malo, & Deb, 2015), spatial
targeting of agri-environmental policy (Whittaker et al., 2017), and so on. The main
characteristic of the BLOP is the hierarchical upper-lower-level structure (i.e., lead-
er—follower structure), where the private profit-seeking follower at the lower level
could well be in conflict with the leader’s objective at the upper level. Typically, there
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are three features in a bilevel decision-making process: (1) decision-makers at both
levels give their decisions in sequence: first for the leader, second for the follower,
and both of them aim to optimise their own objectives with constraints; (2) the infor-
mation powers are asymmetric at different levels: the leader at the upper level has com-
plete knowledge of the follower at the lower level, while the follower only observes the
leader’s decisions; and (3) decision-making tasks at both levels are interlinked: the fol-
lower optimises the objectives according to the leader’s decisions, while the leader has to
incorporate the follower’s response into the procedure of optimising his objectives.

From the point of view of mathematical programming, a nested strategy is
required to solve the BLOP, where the lower level optimisation problem is served as
a constraint of the upper level optimisation problem. However, it is not an easy task
to solve the BLOP in a fast and precise way because the lower level optimisation
problem is required to be solved for each decision at the upper level. Non-convexity
and disconnectedness might rise easily at the lower level even for a simple bilevel
problem (e.g., functions at both levels are linear, convex and differentiable), not to
mention that the functions at both levels are non-convex and non-differentiable in
real-world applications. Furthermore, with the number of decision variables increas-
ing at both upper and lower level problems, the task of solving the BLOP could be
turned into a disaster: it is impossible to solve the BLOP mathematically even when
the bilevel problems can be reduced into single-level ones (Chen & Florian, 1995). It
is still unlikely the global optimality for the BLOP will be obtained when the number
of its decision variables is large in scale (e.g., the number at both levels is more than
10, otherwise the scale is defined as small) (Sinha et al., 2014). Researchers have
proved the BLOP to be strong NP-hard in nature, which is similar to the scheduling,
production planning and routing problems (Brajkovi¢, Perni¢, & Ikoni¢, 2018; Pérez-
Rodriguez, Hernandez-Aguirre, & Jons, 2017; Zhang, Wen, Zhu, & Hu, 2017). It is
more applicable to have the satisficing solutions instead of global optimums for the
BLOP. More and more researchers have been focusing on using the meta-modelling
method with heuristic algorithms (e.g., evolutionary algorithm (EA)) to solve the
BLOPs in recent decades. Sinha and his co-authors are the notable ones who have
successfully improved the computational accuracy and efficiency of solving different
BLOPs by a bilevel evolutionary algorithm based on quadratic approximations
(BLEAQ) (Sinha, Malo, & Deb, 2018). However, the BLEAQ still performs poorly
when the BLOP is not sufficiently regular or simple (e.g., non-linear, non-convex,
non-differentiable, etc.), thus room has been left for further improvements.

This study proposes a hybrid differential evolutionary algorithm for BLOP
(HDEAB), which greatly outperforms the BLEAQ and contributes in two aspects. (i)
It greatly improves the computational accuracies for both levels. First, to avoid the
multi-valued (or set-valued) phenomenon in BLEAQ, the optimal lower level value
function mapping is adopted as the meta-modelling method to reduce the BLOP into
a single-level problem. Second, the differential evolutionary algorithm (DEA) is
adopted as the optimisation engine at both levels, which avoids the discontinuous,
non-convex, non-differential phenomenon on the feasible regions and objectives. (ii)
The HDEAB also highlights the computational efficiency. First, the k-nearest neigh-
bours (KNN) technique is used to save the calls of function evaluations (FEs) at the
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lower level. Second, a nested local search method is used to further save the calls of
FEs (i.e., the times to invoke the evaluation of FEs) at the lower level by providing
the upper level candidate decision variables with higher quality. Third, the DEA is
applied to boost further the computational efficiency.

The remainder of this study is organised as follows. Section 2 reviews the related
literature in BLOP in the recent decades. Section 3 analyses the performances of three
meta-modelling methods in reducing the bilevel problem into a single-level one.
Section 4 introduces the principles and pseudo-codes of the HDEAB in solving the
BLOP. Section 5 provides detailed numerical studies for comparing the performances
of the HDEAB and BLEAQ on SMD (Sinha, Maro, & Deb 2018) instances and an
application example of optimising a venture capital stage-financing contract with dif-
ferent scales. Section 6 gives the conclusions.

2. Literature review

For recent decades, much literature has presented various algorithms to solve the
BLOPs, which can be categorised into two streams: (1) using the classical algorithms;
and (2) adopting the evolutionary algorithms.

2.1. The classical algorithms for solving the BLOP

The most attractive merit of the classical algorithms lies in the fact that the optimal
results can be theoretically guaranteed. When the lower level problem is convex and
sufficiently regular, it can reduce the bilevel problem into a single-level one by using
the Karush-Kuhn-Tucker (KKT) method, where the Lagrangian multipliers and com-
plementarity constraints are introduced to incorporate the lower level problem into
the upper level one. However, this method increases the total number of decision var-
iables, which gives rise to three undesired phenomena: (1) non-convexity happens
easily even when the lower level problem is sufficiently regular; (2) the computational
burden could rise exponentially, because more decision variables have to be optimised
(Sinha et al., 2018); and (3) it could not easily handle the situation when the objec-
tives and constraints of BLOP are non-linear or non-convex.

To overcome the shortcomings of the KKT method, many researchers resorted to
other approaches. For example, a descent algorithm was developed for solving a non-
linear BLOP (Savard & Gauvin, 1994). A trust region method was adopted to solve
the generalised BLOP (Marcotte, Savard, & Zhu, 2001), where the bilevel problem
was locally approximated with a model involving a linear program at the upper level
and linear variational inequality at the lower level. In Colson, Marcotte, and Savard
(2005), the BLOP was solved in two steps: first, a bilevel linear quadratic model was
used to approximate the BLOP, thus it was reduced into a single-level problem;
second, the reduced problem could be solved with a mixed integer program-
ming method.

The above classical methods might be restricted in their applications in the real
world. For a more general BLOP where the objectives and constraints (i.e., functions)
involved are non-convex and non-differentiable, the classical methods are unable to
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solve the BLOP exactly. It is computation-expensive to obtain a solution when the
numbers of decision variables at both levels are large in scale, because the BLOP is
strongly NP-hard in nature (Benayed & Blair, 1990; Vicente, Savard, & Judice, 1994).

2.2. The evolutionary algorithms for solving the BLOP

Since most BLOPs are intrinsically NP-hard, it is realistic to have a satisficing solu-
tion rather than the optimal one. The EA requires few on the types of objectives and
constraints, so that it complements the shortcomings of the classical methods. The
studies with the EA contributed almost 10% of all studies in solving BLOPs (Sinha
et al., 2018).

The work in Mathieu, Pittard, and Anandalingam (1994) might be the first study
to solve the BLOP with an EA. In this work, the upper level problem was solved by a
genetic algorithm (GA), while the lower level problem was solved by a linear pro-
gramming method. This pure nested strategy solved the BLOP in a nested manner:
the lower level optimisation problem was solved for every given upper level decision.
Recently, more researchers considered the EA to be better than the classical methods
in computational efficiency and accuracy for solving the BLOP with more complex
conditions and constraints (Yin, 2000). Based on a constraint-handling scheme, an
EA with a specifically-designed crossover operator was proposed to solve the non-lin-
ear BLOP (Wang, Jiao, & Li, 2005). When the objectives were linear and the con-
straint regions were polyhedrons at both levels, an algorithm was developed by
combining the classical extreme point enumeration techniques with a genetic search,
which was able to solve the quasi-concave BLOP with the linear lower level function
(Calvete, Gale, & Mateo, 2008). The work proposed by Wang, Li, and Dang (2011)
moved a great step forward, where a new EA was proposed and could handle a non-
differentiable upper level objective and non-convex lower level problem. A much sim-
pler approach was proposed in Angelo, Krempser, and Barbosa (2013), where two dif-
ferential evolutionary techniques were applied on both levels with the continuous
decision variables. Recently, an EA embedded with the KKT proximity was proposed
in Sinha, Malo, and Deb (2017), which demonstrated a promising future of solving
the BLOPs by hybridising EA and other approximate approaches.

There is room for improving the pure nested strategies mentioned above in solving
BLOPs. It is often unnecessary to solve the lower level optimisation problem for every
upper level decision (Sinha et al., 2018). There will be a great improvement in boost-
ing the computational efficiency, when the lower level calls of the FEs could be saved.
Sinha and his co-authors showed that the lower level calls of the FEs could be saved
greatly through the meta-modelling methods. For example, they introduced a BLEAQ
where the reaction set mapping method was adopted (Sinha et al, 2013). This
approach demonstrated its capability of handling the BLOPs with different kinds of
complexities by using a smaller number of FEs. Later, they improved the BLEAQ by
archiving and local search techniques (Sinha et al. 2014). This improved BLEAQ
offered a significant improvement in reducing the calls of FEs at both levels.
Recently, they proposed a meta-modelling-based strategy to iteratively approximate
the optimal lower level value function (Sinha, Malo, & Deb, 2016). It not only freed
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the high restrictive class of bilevel problems, but also saved the computational burden
for some complex BLOPs. Angelo, Krempser, and Barbosa (2014) reported a DEA
assisted with a similarity-based surrogate model (i.e., KNN) to reduce greatly the FEs
on the lower level problem by the KNN techniques.

2.3. Distinctiveness of this research

This study was motivated by Angelo et al. (2014) and Sinha et al. (2017). Although
these two works did great jobs in solving different BLOPs, there were shortcomings
that hampered the computational accuracy and efficiency.

First, the reaction set mapping adopted in BLEAQ is not an ideal meta-modelling
method to save the lower level calls in Sinha et al. (2017) because the quadratic
approximation method used in BLEAQ requires calculating the inverse of the coefti-
cient matrix. When the number of upper level decision variables (i.e., n) is on a large
scale, the computational complexity could reach O(n®) to solve the inverse once for
each variable at the lower level. Furthermore, the quadratic approximation method
might perform poorly on the boundary of the original approximation region because
the discontinuity could rise due to the constraints of the decision variables at both
levels. Besides, the multi-valued phenomenon would raise the discontinuity in the
reaction set mapping method used in Sinha et al. (2017), thus causing the low com-
putational accuracy.

Second, compared with the BLEAQ in Sinha et al. (2017), there is an obvious
advantage of the algorithm proposed in Angelo et al. (2014), which could make it
easier to use the KNN candidate as an approximation of the lower level optimal solu-
tion. However, the disadvantage of this method is that it randomly selects only one
KNN candidate of the lower level optimal decisions for the given upper level decision
variables. This method might pick the undesired KNN candidate while ignoring the
well-behaved one due to the random selection. Therefore, low computational effi-
ciency and accuracy would occur simultaneously in Angelo et al. (2014).

Third, the algorithms proposed in Angelo et al. (2014) and Sinha et al. (2017)
often converge rather slowly for some BLOPs where the multi-valued phenomenon
might exist at lower level problems. Once the meta-modelling method fails to find
the real optimum for the upper level problem, the convergence of approximation will
be rather time-consuming.

To overcome the shortcomings of the algorithms in Angelo et al. (2014) and Sinha
et al. (2017), we propose a more efficient algorithm called HDEAB. First, to ensure a
higher computational accuracy, the optimal lower level value function mapping
method is utilised to reduce the BLOPs into single-level ones. Second, the KNN
method is adopted to save the lower level calls of FEs. Third, a nested local search is
used for boosting the computational efficiency by providing the upper level candidate
with higher quality. By numerical studies on the SMD instances, we demonstrate that
the HDEAB has the same robustness as the BLEAQ presented in Sinha et al. (2017).
What is more, the HDEAB performs withhigher computational accuracy and effi-
ciency, and could solve the BLOP with larger scale of decision variables than
the BLEAQ.
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3. Reduction methods for BLOPs

Consider a general BLOP with n and m decision variables at the upper and lower
level problems, respectively (i.e., x, € X, CR" and x; € X; C R", where the sub-
scripts u and [ denote the upper and lower levels, respectively). Decision-makers
at both levels are private-profit maximisers with different objectives (ie., F:
R" xR™ — R and f : R" x R" — R). A general BLOP is given in Equation (1):

min F(x,,x;)

s.t. x; € argmin{f (x,, x) : g(xu 1) < 0,j=1,2,...,]}
x1€X; (1)
Gk(xu,xl) § O,k = 1,2, ...,K

x, € Xy, x1 € X

where Gy and g denote the constraints for the upper and lower level problems.

For the given upper level decision variables x,, the follower optimises the lower
level decision variables x; to maximise his/her own objective. While for the leader,
he/she has to incorporate x; into his/her own objective before optimising x,. The pro-
cedures for solving the BLOP are highly nested, hence it is computation-expensive
when the numbers of decision variables at both levels increase. If the bilevel problem
is reduced into a single-level one, then the computational efficiency of solving the
BLOP could be greatly improved.

The reaction set mapping and the optimal lower level value function mapping
method are meta-modelling methods, which are most related to this study, to reduce
the BLOP. They focus on the same reduction principle: incorporating the lower level
problem into the upper level by various mapping methods. Once the reduction work
is done, various optimisation techniques could be utilised to approximate the optimal
solution of the BLOP. Note that even the bilevel problem could be reduced into a sin-
gle-level one, and the task of solving the BLOP is still NP-hard in nature as the num-
ber of decision variables increases.

3.1. Reaction set mapping method

In this method, the constraints defined at the lower level problem can be represented
by the reaction set mapping (denoted as the y-mapping), which is given by

V(x,) = argmin{f (x,, x1) : g(xu> %) < 0,j=1,2,...,]} (2)

x1€X;

Then the BLOP can be reduced into a single-level constrained optimisation prob-
lem, which is given by

min F(x,,x;)

s.t. x; € Y(xy,)

Gk(xu,xl) <0,k=12,...,K
x, € X,

3)
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Once the value of {i(x,) is determined, a smaller search space of x; could be
obtained. Particularly when the \(x,) is single-valued, there is no need to optimise x;
because x; = y(x,) always holds. Only x, needs to be optimised in the X, space,
which is given by Equation (4):

~ min F(x,)
s.t. Ge(x,) <0,k=1,...,K (4)
x, € Xy

where F(xu) - F(xu’ ‘Jl(xu)) and Gk(xu) - Gk(xu’ \l[(xu»

When {(x,) is set-valued, the optimisation of x, will face serious problems of dis-
continuity or local optimums. No optimisation technique can promise that it is easy
and straightforward to approximate \(x,). For example, in Figure 1 the trace could
be discontinuous and non-differentiable (e.g., traces 1 and 2) in the grey shaded area
where (x,0) is multi-valued for a certain x,,. The optimisation technique could
not predict the \(x, o) whether it is attributed to trace 1 or to trace 2.

Three shortcomings might counteract the advantages of the y-mapping.

First, the widely used quadratic approximation method in the y-mapping always
requires calculation of the inverse of the coefficient matrix. When the number of
upper level decision variables (i.e., ) is large, it is a rather computationally expensive
task to solve the inverse of coefficients matrix; because the computational complexity
could reach O(n®) to solve the inverse once at a time. The complexity of approxima-
tion for the optimal solution of the lower level with m decision variables will reach
O(n® x m) once at a time. It is extremely time-consuming to iteratively approximate
the lower level optimum. We could not promise to get the approximation within the
given time (i.e., 5hours) under certain computational environments (e.g., given the
CPU and memories).

P(xy)

—
\ Trace 2

Y xu
Multi-value region

Figure 1. Multi-valued \-mapping and the possible traces in the multi-value region. Source:
The authors.
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Second, the decision variables at both levels might be always constrained.
Discontinuity frequently rises on the boundaries of the decision variables at both
levels. The assumption embedded in the quadratic approximation method is that
the small samples come from a family of smooth or continuous functions.
Therefore, it might perform poorly on the boundaries where discontinuity
takes place.

Third, the algorithms proposed in Angelo et al. (2014) and Sinha et al. (2017)
reported only one feasible solution of the lower level problem for each iteration.
However, when there are many local optimums for the lower level problem, the
quadratic approximation method could fail to give a suitable lower level solution for
the given upper level decision vector, thus the convergence of the algorithms might
be rather slow and the computational accuracy might be doubtful.

3.2. Optimal lower level value function mapping method

This method (denoted as the ¢-mapping) is another meta-modelling method to
reduce the bilevel problem. For a given x,, the minimum lower level function value
¢(x,) could be given as follows:

o(x,) = ,ei)l(ll{f(x”’xl) :8i(xuwx) <0,j=1,2,...,]} (5)

X

By Equation (5), the BLOP could be reduced into a single-level problem which is
shown as follows:

min F(x,,x;)
)

st fxwx) < o(x,
Gk(xu,xl) §0,k: 1,2, ...,K (6)
gj(xu,xl) S O)] - 1)2) ~)]
Xy € Xuaxl € Xl

Both x; and x, in Equation (6) should be predicted in the @-mapping. It is differ-
ent from the y-mapping where only the prediction of x; is needed. Therefore, more
computational efforts are needed to solve the BLOP by the ¢-mapping than by the
-mapping. Interestingly, predicting x; and x, could overcome the shortcoming of
the discontinuity in the \y-mapping where the (x,) is multi-valued. For example,
as shown in Figure 2, the discontinuity phenomenon in the y-mapping has gone at
Xuo in the @-mapping. This is because the ¢-mapping is always single-valued by
Equation (5). Therefore, the @-mapping could provide a relatively higher accuracy
than the \-mapping in solving BLOP. Note that the value function @(x,) is seldom
known and should be still obtained by the approximation tool.

Now, let us think of approximating the ¢(x,), and let ¢(x,) be the approximation
of @(x,). Note that there will be errors in approximating ¢ (x,). These errors might
lead ¢(x,) to be less than the true ¢(x,), thus could exclude the true solution of the
BLOP. To avoid this phenomenon, an error term (i.e., €) is added on to the ¢(x,),
thus Equation (6) can be reformulated as:
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o) a

continuous

qo(xu,O) """"

discontinuous

Y(xu)

Figure 2. The advantage of the @-mapping over the \-mapping in the multi-valued region.
Source: The authors.

min F(x,,x;)
st flxx) < O(xy) +¢
k=12,...,K (7)

x, € X,x €X

The @-mapping has its advantages in avoiding the discontinuity and providing a
more continuous trace for approximation than the \y-mapping, by which a higher
computational accuracy in solving BLOP can be achieved. However, the computa-
tional efficiency might be hampered if no method can be used to accelerate the
approximation of the @-mapping.

4. Algorithm description

In this study, the @-mapping is chosen to solve the BLOP for its higher computa-
tional accuracy. To improve the computational efficiency, the KNN method is first
adopted to save the calls of FEs at the lower level. Second, a nested local search is
used to provide the upper level candidate with higher quality, which further saves the
calls of FEs at the lower level. Third, the steps of the HDEAB are outlined, which
hybridises the DEA, KNN and the nested local search. The HDEAB’s pseudo-codes
are given in the online supplement.
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4.1. Using KNN to save the calls of the FEs at lower level

As shown in Equation (7), the evaluation of ¢(x,) requires immense approximations at
the lower level for the given x,. Hold the fact in mind that if the approximation tasks at
the lower level problem (i.e., f(x,, x1) < @(x,) + €) can be save, then the computational
efficiency of the @-mapping can be greatly improved. In order to speed up the approxima-
tion procedures for the optimal lower level solution (x;), the KNN is used to construct a
candidate X;. The candidate X; could be iteratively estimated by Equation (8) for arbitrarily
given upper level decision variables x,, o:

K
5C1 = ijxl’j
j=1
. (8)

wj = dﬁl(xu,O’ xu,j)/zdil(xu,o, xu,j)

i=1

where x,,; is the archived jth-nearest upper level decision variable, x;; is the corre-
sponding jth-nearest lower level optimal solution, and d(-) is the Euclidean distance,
which measures x, o and x, ;.

For a given x,,j, the candidate x; could be accepted as the true lower level optimal
solution if f(x,, j,X;) satisfies the constraints in Equation (7). Otherwise, if X; is not
satisfied the neighbours of X; should be searched to approximate the true x; until
f(xu,j, x1) satisfies the constraints.

4.2. Using a nested local search to boost the computational efficiency

In principle, if the upper level candidate x, with a relatively high quality could be
obtained, then the calls of FEs at the lower level could be further saved and the computa-
tional efficiency of the ¢-mapping could be improved. However, this task should be
solved in a nested way: for the lower level candidate x; given by Equation (7), it should
first be made sure that the upper level candidate %, falls into the feasible region which is
given by Equation (8). Otherwise, it cannot be hoped that %; is the satisfied candidate.

Recall the reduced BLOP in Equation (7). If x, € X,, is chosen as the feasible
region, then many infeasible candidates of the upper level (x,) might be brought in
due to the constraints. Generally, the feasible region of x, is no larger than X, due to
Gi(-) and gj(-). It will be computation-expensive to exclude the infeasible candidate
X,. Fortunately, a x,, with a higher quality could be obtained by solving Equation (9),
which are the constraints in Equation (7):

min 0

st g(Xuwx) <0,j=1,2,...,]
Gk(fcu,xl) <0,k=12,...,K
X, € Xyx1 €X;

)

where zero denotes that the objective is constant.
The X, that satisfies the constraints in Equation (9) will be considered as the feas-
ible candidate for the upper level problem. Once the X, is ready, the approximation
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tools (e.g., the sequential quadratic programming (SQP) or the DEA) can be utilised
to predict the X;. By solving Equation (9), the total calls of FEs at the lower level
could be greatly saved by using x, with a relatively higher quality.

4.3. Hybridise the DEA, KNN and the nested local search

In this section the steps of the HDEAB are introduced, in which the DEA is adopted
as the optimisation engine for both levels. The main reason is that the DEA could,
astonishingly, handle the BLOP where the objectives are non-convex, non-differential
or have many local optimums (Tripathy & Panda, 2017).

The HDEAB contains five steps, which are initialisation, mutation, crossover, selec-
tion and the termination criterion. To keep the consistency of the notations, let X
without subscript denote the vector of the decision variables at both levels. There are
M decision variables in the X. Let minI1(X) be the objective (e.g., I1(-) can be either
F(-) or f(-) in Equation (7)).

e Step 1: Initialisation

Before using the DEA to optimise the II(X), the population (ie., X;g,
i=1,...,N) should first be constructed, which has the form:

Xic = [xl,i,G’ <X G ...,XM,,‘,G],I' =1,...,N (10)

where X; ¢ denotes the ith individual vector at the Gth generation (X; ¢ is called the
gene), N denotes the size of the population, and x; ; ¢ denotes the jth variable of the
ith individual vector at the Gth generation.

Suppose ij and ij are the lower and upper boundaries for the j th variable,
respectively. The initial population X; o is randomly selected from [ij,x]U}.

e Step 2: Mutation

For each X; g, a mutant vector V; . (also called the donor individual) can be
generated at the G + 1th generation by the following formulation:

Vi,G+l = Xbest,G + “(Xrl,G_sz,G) (11)

where Vigi1 = [ViG+1> ---»Vji,G+1> - - > YM,i,G+1)» 71 and 7, are the indexes (which
are integers) randomly chosen in {1, ..., N}, p is the mutation factor, and pn € [0, 2.
r; and r, should be different, thus the size of the population (N) should be no less
than three. Xp., ¢ is the best individual in the population.

e Step 3: Crossover
To increase the diversity of the individuals in the population, the crossover is essen-

tial in the DEA. A new trail individual Uj g1 = [U1,iG415 - -5 Uji, G1s - - > UM, i, G+1)
could be generated by the following crossover procedure:
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(12)

e _ [ viicnif rand;; < CR, or j= Iuna
)i Gt x;,i,gelse

where i =1,2,...,N, j=1,2,...,M; CR is the probability for crossover, which is a
constant between [0, 1]; rand; ; is uniformly distributed in [0, 1]; and I,4,q is a random
integer between 1 and N, thus I,,g ensures that U g+1 # X; ¢. Each new generated
trial individual U; g1 should fall between the boundaries given by Equation (7).

e Step 4: Selection

After the crossover, the new trial individual U; g, is treated as the candidate solu-
tion of the individual at the G + 1th generation. Comparison between X; ¢ and U; 41
should be made to select the best candidate. The lowest function value measured by
Equation (13) is used as the selection criterion for the one which will enter the next
generation.

' ) Ui if (U, 611) < (Xi6)
XiGr = {Xi,G,otherwise (13)

First, U; g1 enters the population if it satisfies Equation (14):

_ ) Uiy ifTI(Uj 641) < max;<jnTI(X )
X = {X,»,G,otherwise (14)

Second, if the termination criterion is unsatisfied, then go back to the muta-
tion step.

e Step 5: Termination criterion

In this study, the variance-based termination criterion is used for both levels. This
termination criterion at the G th generation for X¢ ; could be given by og, which is
shown below:

M GZ )
6= 5 (15)

2
i=1 cSO,i

where Gé’i and G(Z)’i denote the variances for X ; and X ;, respectively, and M is the
number of decision variables in vector Xg; The algorithm is terminated when
oG < Op. The value of o usually lies between zero and one. By the definition of
oG, the value of og is closely related to of ;. If the value of of ; is very small (i.e.,
1x107), then ag = S0, Gg,; is applied. In this study, the local search is employed
when og < (ocsmp)o'l, otherwise the local search does not have to be employed because
Xg,; is always far from its optimal solution when ozG>(ocSmp)0'1.
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5. Numerical study

In this section, to compare the performance of the HDEAB and BLEAQ, numerical
studies are conducted on the SMD instances and an application example given of
optimising a venture capital staged-financing contract. Both approaches are run on
each SMD instance 31 times, which is also the number of times that had been done
in Sinha et al. (2017). All numerical studies are conducted on Matlab2016a with the
hardware CPU i5 @3.20 GHz and 8 G RAM.

5.1. Performance on the small-scale SMD instances

The SMD instances contain 12 problems, of which the first eight instances are the
unconstrained BLOPs and the rest are constrained. To compare the performance of
the HDEAB and BLEAQ, the same parameters are used as those used in Sinha et al.
(2017) to generate the small-scale SMD instances (i.e., p=1, g=2, r=1), where the
numbers of decision variables at the upper and lower levels are two and three,
respectively (i.e., the scale is 2 x 3). For SMD6, s=1 is used to generate the instance
with a scale of 2 x 3. In this study, the scale of 2 x 3 is defined as small.

The parameters for the HDEAB in this study are as follows: for the unconstrained
SMD instances, the population sizes for upper and lower levels are N=20 and
n =20, while for the constrained SMD instances, N=30 and n=30. The rest of
parameters are: 0%, = 1075, o, =107% 1 =10.9, CR=10.9 and & = 10" "°.

Both approaches could provide a 100% success rate in approximating the bench-
mark solution for every SMD instance with small scale. Compared with the best-
known solution of each SMD instance, there are 31 absolute differences and the calls
of FEs for upper level (UL) and lower level (LL) problems, respectively. The median
absolute differences (MADs) and median function evaluations (MFEs) are used to
measure the computational accuracies and efficiencies at both levels.

The numerical results of the MADs and MFEs at both levels of 12 SMD instances
are given in Tables 1 and 2. The results show that the HDEAB performs with much
higher computational accuracies and efficiencies than the BLEAQ on each SMD
instance. The average MADs at UL and LL given by the HDEAB are 10.72% and
5.33% of those given by the BLEAQ. The average MFEs at UL and LL given by the
HDEAB are only 24.8% and 18.6% of those given by the BLEAQ.

5.2. Performance on the large-scale SMD instances

To our best knowledge, the largest scale of the SMD instances is 10 x 10, and the
BLEAQ could only successfully solve the first eight unconstrained instances (Sinha
et al, 2014). To investigate the largest scale that could be successfully solved by
HDEAB and BLEAQ, the numbers of decision variables are gradually doubled at both
levels (ie., 5 x 5, 10 x 10 and 20 x 20). o, = 107° and of,,, = 10~° are the same
for both approaches. The computational time is restricted to within 5hours for each
SMD instance because it will be extremely time-consuming when the scale reaches
20 x 20, which might be unbearable for the decision-makers. However, one has to

note that different computational environments will lead to different computational
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Table 1. MADs at the UL and LL on small-scale SMD instances.

MADs at UL MADs at LL

Instance HDEAB BLEAQ Ratio HDEAB BLEAQ Ratio

SMD1 2.27E-13 1.16E-09 1.96E-04 2.67E-13 7.13E-10 3.74E-04
SMD2 2.21E-11 5.44E-06 4,06E-06 2.54E-11 5.50E-06 4.62E-06
SMD3 3.27E-14 7.55E-06 4.33E-09 2.32E-13 5.50E-06 4.22E-08
SMD4 1.33E-08 1.15E-07 1.16E-01 1.33E-08 1.86E-06 7.15E-03
SMD5 4.68E-12 2.00E-07 2.34E-05 4.68E-12 2.50E-07 1.87E-05
SMD6 8.61E-16 1.34E-07 6.43E-09 1.29E-16 9.82E-09 1.31E-08
SMD7 6.00E-11 5.81E-06 1.03E-05 5.22E-11 9.23E-06 5.66E-06
SMD8 4.25E-06 2.21E-04 1.92E-02 7.69E-07 5.53E-05 1.39E-02
SMD9 4.30E-11 4.22E-06 1.02E-05 7.06E-11 1.16E-05 6.09E-06
SMD10 2.70E-04 1.02E-03 2.65E-01 4.68E-05 8.55E-04 5.47E-02
SMD11 1.13E-03 1.28E-03 8.83E-01 1.16E-01 2.08E-03 5.58E-01
SMD12 1.53E-04 4.56E-02 3.36E-03 1.09E-04 2.00E-02 5.45E-03

Source: Given by simulations.

consumptions. In this study, the iteration is stopped when either the stop criterion or
the time restriction is reached.

Tables 3 and 4 give the numerical results of the performance of these two
approaches on the same SMD instances. The largest scale for the BLEAQ is 10 x 10,
which is the same as in Sinha et al. (2014). The BLEAQ cannot provide the numerical
solutions for any SMD instance within 5hours when the MFEs at the lower level exceed
1E + 07. However, the HDEAB could successfully obtain the numerical results for the
scale up to 20 x 20 even when MFEs at lower level reach 1E+ 09. No numerical solu-
tion will be obtained by the HDEAB and BLEAQ within 5hours when the scale of
SMD instance is larger than 20 x 20 because the MFEs at the lower level increase expo-
nentially. The HDEAB also provides higher computational accuracy and efficiency than
the BLEAQ. Take the 10 x 10 SMD instances, for example, the average MADs at UL
(LL) given by the HDEAB are 0.73% (4.04%) of those by the BLEAQ, and the average
MFEs at UL (LL) given by the HDEAB are 6.2% (14.8%) of those by the BLEAQ.

5.3. An application example: optimal venture capital staged-financing contract

In this section, we consider an application example of BLOP where the entrepreneur
(EN) and venture capitalist (VC) are entering a staged-financing contract.

In this example, the return on investment (ROI) of the start-up is r, which is a
random variable, with p and o2 being the mean and variance, respectively. EN is the
leader who decides to invest an amount of the owner’s capital (y) and the proportion
of revenue shared with the VC’s equity investment (y). VC is the follower who
invests the EN with a mixture of equity and debt in M stages for mitigating the risk
of investment. VC’s decision variables are the investment amount on equity in stage i
(x;,1, which brings the revenue yrx;;), and the investment amount on debt in stage i
(%2, which brings the revenue ryx; ,; r4 is the interest rate). The VC’s total amount
of investment is x = (x,1...xp1) + (X1,2 - - - Xa2)-

The total revenues of EN and VC are given by
Ren = r(x+y)=yr(xi1 + ...+ xm1)—rale,2 + .o+ xu,2)—d(y) (16)

Ryc = yr(xl,l + ... —|—XM)1) + Td(xl)z + ...+ XM,z)—C<X)
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Table 2. MFEs at the UL and LL on small-scale SMD instances.

MFEs at UL MFEs at LL

Instance HDEAB BLEAQ Ratio HDEAB BLEAQ Ratio
SMD1 273 1.19E+ 03 0.23 33,248 2.37E405 0.14
SMD2 234 1.20E+ 03 0.20 26,197 4.06E 4 05 0.06
SMD3 274 1.29E+03 0.21 31,659 2.83E405 0.1

SMD4 274 1.32E+03 0.21 29,528 3.84E 405 0.07
SMD5 253 2.06E + 03 0.12 33,492 8.42E 405 0.04
SMD6 377 4.08E 403 0.09 4408 6.04E 4- 03 0.73
SMD7 334 1.27E403 0.26 38,507 3.82E 405 0.10
SMD8 484 3.54E+ 03 0.14 65,202 1.73E+ 06 0.04
SMD9 268 1.26E+ 03 0.21 54,031 4.03E+ 05 0.13
SMD10 718 1.92E+ 03 0.37 190,314 5.45E 405 0.35
SMD11 1237 2.39E+03 0.51 301,179 4.63E+ 06 0.07
SMD12 632 1.50E + 03 0.42 185,997 4.79E 405 0.39

Source: Given by simulations.

Table 3. MADs at the UL and LL when the scale of the SMD instances varies.

5x%x5 10x10 20x20
Scale Instance HDEAB BLEAQ HDEAB BLEAQ HDEAB BLEAQ
SMD1 UL 1.29E-07 4.23E-03 3.12E-05 9.96E-03 6.12E-07 -
LL 1.22E-07 4.14E-03 3.10E-05 4.01E-03 3.39E-06 -
SMD2 UL 1.58E-04 2.17E-03 9.34E-04 7.95E-03 1.69E-06 -
LL 1.58E-04 3.05E-03 3.80E-04 5.20E-03 1.69E-06 -
SMD3 UL 6.38E-08 2.27E-06 4.76E-06 9.85E-03 4.64E-08 -
LL 6.16E-08 2.79E-07 2.93E-05 4.49E-03 7.45E-08 -
SMD4 UL 3.93E-05 4.81E-03 6.12E-06 9.14E-03 4.32E-05 -
LL 7.45E-08 5.95E-03 3.39E-05 3.29E-04 4.69E-05
SMD5 UL 4.56E-08 2.94E-04 7.16E-05 6.27E-03 9.18E-12 -
LL 3.66E-08 7.09E-04 7.25E-06 4.17E-03 3.97E-11 -
SMD6 UL 1.18E-11 1.37E-03 4.39E-08 5.15E-03 5.46E-09 -
LL 7.24E-16 3.65E-16 6.95E-11 5.25E-11 2.32E-13 -
SMD7 UL 1.63E-06 9.03E-03 5.45E-04 5.23E-03 3.41E-07 -
LL 1.68E-06 6.39E-05 6.97E-06 1.32E-03 1.98E-06 -
SMD8 UL 7.22E-05 1.37E-02 1.24E-03 4.23E-03 7.58E-05 -
LL 3.93E-05 7.56E-03 9.64E-04 5.19E-03 7.84E-05 -

Source: Given by simulations.

where d(y) and ¢(x) are the EN and VC’s opportunity costs, and d'(-)>0, d”(-)>0,
¢ ()>0 and " (-)>0.

Both EN’s and VC’s objectives (Fgy and Fy¢) are given in Equation (17), which
are the classical investment portfolio optimisations. Both players aim to maximise
their revenues for given risks.

maxFpy = BeyE[Ren] + (1—PBgy) Var[Rex] (17)

maxFyc = BycE[Rvc] + (1—PByc) Var[Ryc]
where E[-] and Var[-| are the mean and variance operators, and gy and By are the
players’ attitude factors on the revenues and risks. Theoretically, Fgy and Fy¢ reach
their maximal values at the global optimums.

When x and y are unconstrained, Equation (17) can be solved analytically through
backward induction, while it cannot be solved analytically when x and y are con-
strained. The scale of Equation (17) is 2M x 2. When the value of M increases, non-
convexity rises easily.
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Table 4. MFEs at the UL and LL when the scale of the SMD instances varies.

5x5 10x10 20%20
Scale Instance HDEAB BLEAQ HDEAB BLEAQ HDEAB BLEAQ
SMD1 UL 202 3208 774 202,144 2371 -
LL 48,838 562,071 578,562 1,839,412 7,586,864 -
SMD2 UL 242 3812 699 181,833 2246 -
LL 30,658 645,960 436,976 2,538,009 6,097,331 -
SMD3 UL 286 4876 859 216,891 3266 -
LL 46,287 740,598 641,077 2,709,139 14,279,949 -
SMD4 uL 251 5412 721 262,246 3272 -
LL 23,941 835,286 158,864 4,193,010 9,366,748
SMD5 UL 272 8802 745 199,568 2524 -
LL 48,321 785,518 569,842 5,735,669 8,739,080 -
SMD6 UL 373 10,222 1081 321,707 3643 -
LL 6795 887,076 37,093 6,546,023 550,721 -
SMD7 uL 520 23,766 1257 2,312,093 4204 -
LL 73,775 102,0613 808,414 1,047,442 12,240,037 -
SMD8 UL 972 63,434 3267 218,965 12,542 -
LL 166,985 1,245,362 485,554 3,908,141 1.113E+08 -

Source: Given by simulations.

Table 5. Performances when the scale of the application example varies.

HDEAB (MFEs) BLEAQ (MFEs)

Scale uL LL uL LL FHDEAB /pPUEAQ FHDEAB FPIEAQ
10x2 (M=5) 78 1462 138 7679 1.000 1.000
20x2 (M=10) 241 30,238 1123 138,009 1.051 1.023
40x2 (M =20) 956 88,039 6689 738,009 1.085 1.045
100x2 (M = 50) 1859 938,009 15,698 32,288,009 1.156 1.026

Source: Given by simulations.

To compare the performances of HDEAB and BLEAQ), we set the parameters as follows:
uw=10, 6 =5, r; = 0.1, By = Byc = 0.5, c(x) = x%, and d(y) = y>. M varies from 5
to 25. To save space, we only conduct numerical studies on the constrained case, where
x € [0,100] and y € [0, 10]. Parameters for the HDEAB are the same as in Section 5.2.

Table 5 gives the numerical results, where FHDPAB/FPLEAQ and FHDEAB /pDEAQ ape
the average ratios of objective values obtained by HDEAB and BLEAQ, respectively.

For the application example, we have two findings:

i. Regardless of the scale, the HDEAB outperforms the BLEAQ greatly on the com-
putational efficiencies on both levels.

ii. When the scale of the application example is small, two approaches provide the
same computational precisions as the FIDFAB /FeLCEAQ and FHDFAB /pBLEAQ oquals
one. However, The HDEAB provides higher values of FFRE4E and FHPEAB than
the BLEAQ does when the scale increases. The reason is that the BLEAQ could
easily fall into the local optimum due to the non-convexity introduced by a
larger value of M and the constraints of x and y.

6. Conclusion

In this study, an efficient approach (HDEAB) was proposed to solve the BLOPs. In
HDEAB: (i) the optimal lower level value function mapping method was adopted to
provide higher computational accuracy; (ii) the KNN and a nested local search were
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hybridised to boost the computational efficiency; and (iii) the DEA was utilised as the
optimisation engine for both levels. From the numerical studies on the SMD instan-
ces, the HDEAB demonstrated higher performances than the BLEAQ on both small-
and large-scale SMD instances. Specifically, on the small-scale SMD instances (i.e.,
2 x 3), the computational accuracies at upper and lower levels given by the HDEAB
were 9.3 and 18.9 times higher than those by the BLEAQ while costing only 24.8%
and 18.6% of the calls of MFEs required by the BLEAQ. Given the computational
environment, the HDEAB could solve the largest scale SMD instances up to 20 x 20,
while the BLEAQ could only solve 10 x 10 SMD instances in maximal. On 10 x 10
SMD instances, the HDEAB provided 137.4 and 24.8 times higher computational
accuracy at upper and lower levels than the BLEAQ, while costing only 6.2% and
14.8% of the calls of MFEs required by the BLEAQ. By an application example in
optimal VC staged-financing contract, the HDEAB outperformed the BLEAQ in pro-
viding higher objective values for both entrepreneurs and venture capitalists.
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